Articles | Volume 23, issue 17
https://doi.org/10.5194/acp-23-10163-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-10163-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A multimodel evaluation of the potential impact of shipping on particle species in the Mediterranean Sea
Helmholtz-Zentrum Hereon, Institute of Coastal Environmental
Chemistry, 21502 Geesthacht, Germany
Matthias Karl
Helmholtz-Zentrum Hereon, Institute of Coastal Environmental
Chemistry, 21502 Geesthacht, Germany
Volker Matthias
Helmholtz-Zentrum Hereon, Institute of Coastal Environmental
Chemistry, 21502 Geesthacht, Germany
Sonia Oppo
AtmoSud, Air Quality Observatory in the Provence-Alpes-Côte d'Azur region, 13006 Marseille, France
Richard Kranenburg
TNO, Netherlands Organisation for Applied Scientific Research, 3584 CB Utrecht, the Netherlands
Jeroen Kuenen
TNO, Netherlands Organisation for Applied Scientific Research, 3584 CB Utrecht, the Netherlands
Sara Jutterström
IVL, Swedish Environmental Research Institute, 411 33 Gothenburg,
Sweden
Jana Moldanova
IVL, Swedish Environmental Research Institute, 411 33 Gothenburg,
Sweden
Elisa Majamäki
FMI, Finnish Meteorological Institute, 00560 Helsinki, Finland
Jukka-Pekka Jalkanen
FMI, Finnish Meteorological Institute, 00560 Helsinki, Finland
Related authors
Lea Fink, Matthias Karl, Volker Matthias, Sonia Oppo, Richard Kranenburg, Jeroen Kuenen, Jana Moldanova, Sara Jutterström, Jukka-Pekka Jalkanen, and Elisa Majamäki
Atmos. Chem. Phys., 23, 1825–1862, https://doi.org/10.5194/acp-23-1825-2023, https://doi.org/10.5194/acp-23-1825-2023, 2023
Short summary
Short summary
Potential ship impact on air pollution in the Mediterranean Sea was simulated with five chemistry transport models. An evaluation of the results for NO2 and O3 air concentrations and dry deposition is presented. Emission data, modeled year and domain were the same. Model run outputs were compared to measurements from background stations. We focused on comparing model outputs regarding the concentration of regulatory pollutants and the relative ship impact on total air pollution concentrations.
Volker Matthias, Markus Quante, Jan A. Arndt, Ronny Badeke, Lea Fink, Ronny Petrik, Josefine Feldner, Daniel Schwarzkopf, Eliza-Maria Link, Martin O. P. Ramacher, and Ralf Wedemann
Atmos. Chem. Phys., 21, 13931–13971, https://doi.org/10.5194/acp-21-13931-2021, https://doi.org/10.5194/acp-21-13931-2021, 2021
Short summary
Short summary
COVID-19 lockdown measures in spring 2020 led to cleaner air in central Europe. Densely populated areas benefitted mainly from largely reduced NO2 concentrations, while rural areas experienced lower reductions in NO2 but also lower ozone concentrations. Very low particulate matter (PM) concentrations in parts of Europe were not an effect of lockdown measures. Model simulations show that modified weather conditions are more significant for ozone and PM than severe traffic emission reductions.
Laura Rautiainen, Milla Johansson, Mikko Lensu, Jani Tyynelä, Jukka-Pekka Jalkanen, Ken Stenbäck, Harry Lonka, and Lauri Laakso
EGUsphere, https://doi.org/10.5194/egusphere-2025-1790, https://doi.org/10.5194/egusphere-2025-1790, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
We present an experimental Automatic Identification System (AIS) receiver set-up to study anomalous signal propagation over coastal and marine waters in the northern Baltic Sea. Anomalous atmospheric conditions can allow for the AIS messages to be received from farther distances than under normal conditions. The results show that under anomalous conditions, the messages can be received up to 600 km away and have both diurnal and seasonal cycles.
Hiram Abif Meza-Landero, Julia Bruckert, Ronny Petrick, Pascal Simon, Heike Vogel, Volker Matthias, Johannes Bieser, and Martin Ramacher
EGUsphere, https://doi.org/10.5194/egusphere-2025-2289, https://doi.org/10.5194/egusphere-2025-2289, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
To understand how persistent hazardous industrial chemicals travel through the air and are deposited back on Earth's surface, we created a new computer model that combines meteorology and chemistry in clouds and clean air. Using the most recent global emissions data, this model represents the trajectory and changes of these chemicals, matching patterns in many areas and overlooking others. The work seeks to improve global monitoring and modeling of hazardous chemicals.
Marc Guevara, Augustin Colette, Antoine Guion, Valentin Petiot, Mario Adani, Joaquim Arteta, Anna Benedictow, Robert Bergström, Andrea Bolignano, Paula Camps, Ana C. Carvalho, Jesper Heile Christensen, Florian Couvidat, Ilia D’Elia, Hugo Denier van der Gon, Gaël Descombes, John Douros, Hilde Fagerli, Yalda Fatahi, Elmar Friese, Lise Frohn, Michael Gauss, Camilla Geels, Risto Hänninen, Kaj Hansen, Oriol Jorba, Jacek W. Kaminski, Rostislav Kouznetsov, Richard Kranenburg, Jeroen Kuenen, Victor Lannuque, Frédérik Meleux, Agnes Nyíri, Yuliia Palamarchuk, Carlos Pérez García-Pando, Lennard Robertson, Felicita Russo, Arjo Segers, Mikhail Sofiev, Joanna Struzewska, Renske Timmermans, Andreas Uppstu, Alvaro Valdebenito, and Zhuyun Ye
EGUsphere, https://doi.org/10.5194/egusphere-2025-1287, https://doi.org/10.5194/egusphere-2025-1287, 2025
Short summary
Short summary
Air quality models require hourly emissions to accurately represent dispersion and physico-chemical processes in the atmosphere. Since emission inventories are typically provided at the annual level, emissions are downscaled to a refined temporal resolution using temporal profiles. This study quantifies the impact of using new anthropogenic temporal profiles on the performance of an European air quality multi-model ensemble. Overall, the findings indicate an improvement of the modelling results.
Ioannis Kioutsioukis, Christian Hogrefe, Paul A. Makar, Ummugulsun Alyuz, Jessy O. Bash, Roberto Bellasio, Roberto Bianconi, Tim Buttler, Olivia E. Clifton, Philippe Cheung, Alma Hodzic, Richard Kranenburg, Aurelia Lupascu, Kester Momoh, Juan Luis Perez-Camaño, John Pleim, Young-Hee Ryu, Robero San Jose, Donna Schwede, Ranjeet Sokhi, and Stefano Galmarini
EGUsphere, https://doi.org/10.5194/egusphere-2025-1091, https://doi.org/10.5194/egusphere-2025-1091, 2025
Short summary
Short summary
Deposition is a key in air quality modelling. An evaluation of the AQMEII4 models is performed prior to analysing the different deposition schemes in relation to the LULC used. Such analysis is unprecedented. Among the results, LULC masks have to be harmonised and up-to-date information used in place of outdated and too course masks. Alternatively LULC masks should be evaluated and intercom pared when multiple model results are analysed.
Paul A. Makar, Philip Cheung, Christian Hogrefe, Ayodeji Akingunola, Ummugulsum Alyuz, Jesse O. Bash, Michael D. Bell, Roberto Bellasio, Roberto Bianconi, Tim Butler, Hazel Cathcart, Olivia E. Clifton, Alma Hodzic, Ioannis Kioutsioukis, Richard Kranenburg, Aurelia Lupascu, Jason A. Lynch, Kester Momoh, Juan L. Perez-Camanyo, Jonathan Pleim, Young-Hee Ryu, Roberto San Jose, Donna Schwede, Thomas Scheuschner, Mark W. Shephard, Ranjeet S. Sokhi, and Stefano Galmarini
Atmos. Chem. Phys., 25, 3049–3107, https://doi.org/10.5194/acp-25-3049-2025, https://doi.org/10.5194/acp-25-3049-2025, 2025
Short summary
Short summary
The large range of sulfur and nitrogen deposition estimates from air quality models results in a large range of predicted impacts. We used models and deposition diagnostics to identify the processes controlling atmospheric sulfur and nitrogen deposition variability. Controlling factors included the uptake of gases and aerosols by hydrometeors, aerosol inorganic chemistry, particle dry deposition, ammonia bidirectional fluxes, gas deposition via plant cuticles and soil, and land use data.
Androniki Maragkidou, Tiia Grönholm, Laura Rautiainen, Juha Nikmo, Jukka-Pekka Jalkanen, Timo Mäkelä, Timo Anttila, Lauri Laakso, and Jaakko Kukkonen
Atmos. Chem. Phys., 25, 2443–2457, https://doi.org/10.5194/acp-25-2443-2025, https://doi.org/10.5194/acp-25-2443-2025, 2025
Short summary
Short summary
The Baltic Sea's designation as a sulfur emission control area in 2006, with subsequent regulations, significantly reduced sulfur emissions from shipping. Our study analysed air quality data from 2003 to 2020 on the island Utö and employed modelling, showing a continuous decrease in SO2 concentrations since 2003 and thus evidencing the effectiveness of such regulations in improving air quality. It also underscored the importance of long-term, high-resolution monitoring at remote marine sites.
Diego Guizzardi, Monica Crippa, Tim Butler, Terry Keating, Rosa Wu, Jacek W. Kamiński, Jeroen Kuenen, Junichi Kurokawa, Satoru Chatani, Tazuko Morikawa, George Pouliot, Jacinthe Racine, Michael D. Moran, Zbigniew Klimont, Patrick M. Manseau, Rabab Mashayekhi, Barron H. Henderson, Steven J. Smith, Rachel Hoesly, Marilena Muntean, Manjola Banja, Edwin Schaaf, Federico Pagani, Jung-Hun Woo, Jinseok Kim, Enrico Pisoni, Junhua Zhang, David Niemi, Mourad Sassi, Annie Duhamel, Tabish Ansari, Kristen Foley, Guannan Geng, Yifei Chen, and Qiang Zhang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-601, https://doi.org/10.5194/essd-2024-601, 2025
Preprint under review for ESSD
Short summary
Short summary
The global air pollution emission mosaic HTAP_v3.1 is the state-of-the-art database for addressing the evolution of a set of policy-relevant air pollutants over the past 2 decades. The inventory is made by the harmonization and blending of seven regional inventories, gapfilled using the most recent release of EDGAR (EDGARv8). By incorporating the best available local information, the HTAP_v3.1 mosaic inventory can be used for policy-relevant studies at both regional and global levels.
Christian Hogrefe, Stefano Galmarini, Paul A. Makar, Ioannis Kioutsioukis, Olivia E. Clifton, Ummugulsum Alyuz, Jesse O. Bash, Roberto Bellasio, Roberto Bianconi, Tim Butler, Philip Cheung, Alma Hodzic, Richard Kranenburg, Aurelia Lupascu, Kester Momoh, Juan Luis Perez-Camanyo, Jonathan E. Pleim, Young-Hee Ryu, Roberto San Jose, Martijn Schaap, Donna B. Schwede, and Ranjeet Sokhi
EGUsphere, https://doi.org/10.5194/egusphere-2025-225, https://doi.org/10.5194/egusphere-2025-225, 2025
Short summary
Short summary
Performed under the umbrella of the fourth phase of the Air Quality Model Evaluation International Initiative (AQMEII4), this study applies AQMEII4 diagnostic tools to better characterize how dry deposition removes pollutants from the atmosphere in regional-scale models. The results also strongly suggest that improvement and harmonization of the representation of land use in these models would serve the community in their future development efforts.
Augustin Colette, Gaëlle Collin, François Besson, Etienne Blot, Vincent Guidard, Frederik Meleux, Adrien Royer, Valentin Petiot, Claire Miller, Oihana Fermond, Alizé Jeant, Mario Adani, Joaquim Arteta, Anna Benedictow, Robert Bergström, Dene Bowdalo, Jorgen Brandt, Gino Briganti, Ana C. Carvalho, Jesper Heile Christensen, Florian Couvidat, Ilia D’Elia, Massimo D’Isidoro, Hugo Denier van der Gon, Gaël Descombes, Enza Di Tomaso, John Douros, Jeronimo Escribano, Henk Eskes, Hilde Fagerli, Yalda Fatahi, Johannes Flemming, Elmar Friese, Lise Frohn, Michael Gauss, Camilla Geels, Guido Guarnieri, Marc Guevara, Antoine Guion, Jonathan Guth, Risto Hänninen, Kaj Hansen, Ulas Im, Ruud Janssen, Marine Jeoffrion, Mathieu Joly, Luke Jones, Oriol Jorba, Evgeni Kadantsev, Michael Kahnert, Jacek W. Kaminski, Rostislav Kouznetsov, Richard Kranenburg, Jeroen Kuenen, Anne Caroline Lange, Joachim Langner, Victor Lannuque, Francesca Macchia, Astrid Manders, Mihaela Mircea, Agnes Nyiri, Miriam Olid, Carlos Pérez García-Pando, Yuliia Palamarchuk, Antonio Piersanti, Blandine Raux, Miha Razinger, Lennard Robertson, Arjo Segers, Martijn Schaap, Pilvi Siljamo, David Simpson, Mikhail Sofiev, Anders Stangel, Joanna Struzewska, Carles Tena, Renske Timmermans, Thanos Tsikerdekis, Svetlana Tsyro, Svyatoslav Tyuryakov, Anthony Ung, Andreas Uppstu, Alvaro Valdebenito, Peter van Velthoven, Lina Vitali, Zhuyun Ye, Vincent-Henri Peuch, and Laurence Rouïl
EGUsphere, https://doi.org/10.5194/egusphere-2024-3744, https://doi.org/10.5194/egusphere-2024-3744, 2024
Short summary
Short summary
The Copernicus Atmosphere Monitoring Service – Regional Production delivers daily forecasts, analyses, and reanalyses of air quality in Europe. The Service relies on a distributed modelling production by eleven leading European modelling teams following stringent requirements with an operational design which has no equivalent in the world. All the products are full, free, open and quality assured and disseminated with a high level of reliability.
Pascal Simon, Martin Otto Paul Ramacher, Stefan Hagemann, Volker Matthias, Hanna Joerss, and Johannes Bieser
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-236, https://doi.org/10.5194/essd-2024-236, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Per- and Polyfluorinated Alkyl Substances (PFAS) constitute a group of often toxic, persistent, and bioaccumulative substances. We constructed a global Emissions model and inventory based on multiple datasets for 23 widely used PFAS. The model computes temporally and spatially resolved model ready emissions distinguishing between emissions to air and emissions to water covering the time span from 1950 up until 2020 on an annual basis to be used for chemistry transport modelling.
Stelios Myriokefalitakis, Matthias Karl, Kim A. Weiss, Dimitris Karagiannis, Eleni Athanasopoulou, Anastasia Kakouri, Aikaterini Bougiatioti, Eleni Liakakou, Iasonas Stavroulas, Georgios Papangelis, Georgios Grivas, Despina Paraskevopoulou, Orestis Speyer, Nikolaos Mihalopoulos, and Evangelos Gerasopoulos
Atmos. Chem. Phys., 24, 7815–7835, https://doi.org/10.5194/acp-24-7815-2024, https://doi.org/10.5194/acp-24-7815-2024, 2024
Short summary
Short summary
A state-of-the-art thermodynamic model has been coupled with the city-scale chemistry transport model EPISODE–CityChem to investigate the equilibrium between the inorganic gas and aerosol phases over the greater Athens area, Greece. The simulations indicate that the formation of nitrates in an urban environment is significantly affected by local nitrogen oxide emissions, as well as ambient temperature, relative humidity, photochemical activity, and the presence of non-volatile cations.
Piers M. Forster, Chris Smith, Tristram Walsh, William F. Lamb, Robin Lamboll, Bradley Hall, Mathias Hauser, Aurélien Ribes, Debbie Rosen, Nathan P. Gillett, Matthew D. Palmer, Joeri Rogelj, Karina von Schuckmann, Blair Trewin, Myles Allen, Robbie Andrew, Richard A. Betts, Alex Borger, Tim Boyer, Jiddu A. Broersma, Carlo Buontempo, Samantha Burgess, Chiara Cagnazzo, Lijing Cheng, Pierre Friedlingstein, Andrew Gettelman, Johannes Gütschow, Masayoshi Ishii, Stuart Jenkins, Xin Lan, Colin Morice, Jens Mühle, Christopher Kadow, John Kennedy, Rachel E. Killick, Paul B. Krummel, Jan C. Minx, Gunnar Myhre, Vaishali Naik, Glen P. Peters, Anna Pirani, Julia Pongratz, Carl-Friedrich Schleussner, Sonia I. Seneviratne, Sophie Szopa, Peter Thorne, Mahesh V. M. Kovilakam, Elisa Majamäki, Jukka-Pekka Jalkanen, Margreet van Marle, Rachel M. Hoesly, Robert Rohde, Dominik Schumacher, Guido van der Werf, Russell Vose, Kirsten Zickfeld, Xuebin Zhang, Valérie Masson-Delmotte, and Panmao Zhai
Earth Syst. Sci. Data, 16, 2625–2658, https://doi.org/10.5194/essd-16-2625-2024, https://doi.org/10.5194/essd-16-2625-2024, 2024
Short summary
Short summary
This paper tracks some key indicators of global warming through time, from 1850 through to the end of 2023. It is designed to give an authoritative estimate of global warming to date and its causes. We find that in 2023, global warming reached 1.3 °C and is increasing at over 0.2 °C per decade. This is caused by all-time-high greenhouse gas emissions.
Philippe Thunis, Jeroen Kuenen, Enrico Pisoni, Bertrand Bessagnet, Manjola Banja, Lech Gawuc, Karol Szymankiewicz, Diego Guizardi, Monica Crippa, Susana Lopez-Aparicio, Marc Guevara, Alexander De Meij, Sabine Schindlbacher, and Alain Clappier
Geosci. Model Dev., 17, 3631–3643, https://doi.org/10.5194/gmd-17-3631-2024, https://doi.org/10.5194/gmd-17-3631-2024, 2024
Short summary
Short summary
An ensemble emission inventory is created with the aim of monitoring the status and progress made with the development of EU-wide inventories. This emission ensemble serves as a common benchmark for the screening and allows for the comparison of more than two inventories at a time. Because the emission “truth” is unknown, the approach does not tell which inventory is the closest to reality, but it identifies inconsistencies that require special attention.
Antonin Soulie, Claire Granier, Sabine Darras, Nicolas Zilbermann, Thierno Doumbia, Marc Guevara, Jukka-Pekka Jalkanen, Sekou Keita, Cathy Liousse, Monica Crippa, Diego Guizzardi, Rachel Hoesly, and Steven J. Smith
Earth Syst. Sci. Data, 16, 2261–2279, https://doi.org/10.5194/essd-16-2261-2024, https://doi.org/10.5194/essd-16-2261-2024, 2024
Short summary
Short summary
Anthropogenic emissions are the result of transportation, power generation, industrial, residential and commercial activities as well as waste treatment and agriculture practices. This work describes the new CAMS-GLOB-ANT gridded inventory of 2000–2023 anthropogenic emissions of air pollutants and greenhouse gases. The methodology to generate the emissions is explained and the datasets are analysed and compared with publicly available global and regional inventories for selected world regions.
Heidi Hellén, Rostislav Kouznetsov, Kaisa Kraft, Jukka Seppälä, Mika Vestenius, Jukka-Pekka Jalkanen, Lauri Laakso, and Hannele Hakola
Atmos. Chem. Phys., 24, 4717–4731, https://doi.org/10.5194/acp-24-4717-2024, https://doi.org/10.5194/acp-24-4717-2024, 2024
Short summary
Short summary
Mixing ratios of C2-C5 NMHCs and methanethiol were measured on an island in the Baltic Sea using an in situ gas chromatograph. Shipping emissions were found to be an important source of ethene, ethyne, propene, and benzene. High summertime mixing ratios of methanethiol and dependence of mixing ratios on seawater temperature and height indicated the biogenic origin to possibly be phytoplankton or macroalgae. These emissions may have a strong impact on SO2 production and new particle formation.
Ville-Veikko Paunu, Niko Karvosenoja, David Segersson, Susana López-Aparicio, Ole-Kenneth Nielsen, Marlene Schmidt Plejdrup, Throstur Thorsteinsson, Dam Thanh Vo, Jeroen Kuenen, Hugo Denier van der Gon, Jukka-Pekka Jalkanen, Jørgen Brandt, and Camilla Geels
Earth Syst. Sci. Data, 16, 1453–1474, https://doi.org/10.5194/essd-16-1453-2024, https://doi.org/10.5194/essd-16-1453-2024, 2024
Short summary
Short summary
Air pollution is an important cause of adverse health effects, even in Nordic countries. To assess their health impacts, emission inventories with high spatial resolution are needed. We studied how national data and methods for the spatial distribution of the emissions compare to a European level inventory. For road transport the methods are well established, but for machinery and off-road emissions the current recommendations for the spatial distribution of these emissions should be improved.
Ruben Urraca, Greet Janssens-Maenhout, Nicolás Álamos, Lucas Berna-Peña, Monica Crippa, Sabine Darras, Stijn Dellaert, Hugo Denier van der Gon, Mark Dowell, Nadine Gobron, Claire Granier, Giacomo Grassi, Marc Guevara, Diego Guizzardi, Kevin Gurney, Nicolás Huneeus, Sekou Keita, Jeroen Kuenen, Ana Lopez-Noreña, Enrique Puliafito, Geoffrey Roest, Simone Rossi, Antonin Soulie, and Antoon Visschedijk
Earth Syst. Sci. Data, 16, 501–523, https://doi.org/10.5194/essd-16-501-2024, https://doi.org/10.5194/essd-16-501-2024, 2024
Short summary
Short summary
CoCO2-MOSAIC 1.0 is a global mosaic of regional bottom-up inventories providing gridded (0.1×0.1) monthly emissions of anthropogenic CO2. Regional inventories include country-specific information and finer spatial resolution than global inventories. CoCO2-MOSAIC provides harmonized access to these datasets and can be considered as a regionally accepted reference to assess the quality of global inventories, as done in the current paper.
Peter Manshausen, Duncan Watson-Parris, Matthew W. Christensen, Jukka-Pekka Jalkanen, and Philip Stier
Atmos. Chem. Phys., 23, 12545–12555, https://doi.org/10.5194/acp-23-12545-2023, https://doi.org/10.5194/acp-23-12545-2023, 2023
Short summary
Short summary
Aerosol from burning fuel changes cloud properties, e.g., the number of droplets and the content of water. Here, we study how clouds respond to different amounts of shipping aerosol. Droplet numbers increase linearly with increasing aerosol over a broad range until they stop increasing, while the amount of liquid water always increases, independently of emission amount. These changes in cloud properties can make them reflect more or less sunlight, which is important for the earth's climate.
Marc Guevara, Hervé Petetin, Oriol Jorba, Hugo Denier van der Gon, Jeroen Kuenen, Ingrid Super, Claire Granier, Thierno Doumbia, Philippe Ciais, Zhu Liu, Robin D. Lamboll, Sabine Schindlbacher, Bradley Matthews, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 23, 8081–8101, https://doi.org/10.5194/acp-23-8081-2023, https://doi.org/10.5194/acp-23-8081-2023, 2023
Short summary
Short summary
This study provides an intercomparison of European 2020 emission changes derived from official inventories, which are reported by countries under the framework of several international conventions and directives, and non-official near-real-time estimates, the use of which has significantly grown since the COVID-19 outbreak. The results of the work are used to produce recommendations on how best to approach and make use of near-real-time emissions for modelling and monitoring applications.
Monica Crippa, Diego Guizzardi, Tim Butler, Terry Keating, Rosa Wu, Jacek Kaminski, Jeroen Kuenen, Junichi Kurokawa, Satoru Chatani, Tazuko Morikawa, George Pouliot, Jacinthe Racine, Michael D. Moran, Zbigniew Klimont, Patrick M. Manseau, Rabab Mashayekhi, Barron H. Henderson, Steven J. Smith, Harrison Suchyta, Marilena Muntean, Efisio Solazzo, Manjola Banja, Edwin Schaaf, Federico Pagani, Jung-Hun Woo, Jinseok Kim, Fabio Monforti-Ferrario, Enrico Pisoni, Junhua Zhang, David Niemi, Mourad Sassi, Tabish Ansari, and Kristen Foley
Earth Syst. Sci. Data, 15, 2667–2694, https://doi.org/10.5194/essd-15-2667-2023, https://doi.org/10.5194/essd-15-2667-2023, 2023
Short summary
Short summary
This study responds to the global and regional atmospheric modelling community's need for a mosaic of air pollutant emissions with global coverage, long time series, spatially distributed data at a high time resolution, and a high sectoral resolution in order to enhance the understanding of transboundary air pollution. The mosaic approach to integrating official regional emission inventories with a global inventory based on a consistent methodology ensures policy-relevant results.
Lea Fink, Matthias Karl, Volker Matthias, Sonia Oppo, Richard Kranenburg, Jeroen Kuenen, Jana Moldanova, Sara Jutterström, Jukka-Pekka Jalkanen, and Elisa Majamäki
Atmos. Chem. Phys., 23, 1825–1862, https://doi.org/10.5194/acp-23-1825-2023, https://doi.org/10.5194/acp-23-1825-2023, 2023
Short summary
Short summary
Potential ship impact on air pollution in the Mediterranean Sea was simulated with five chemistry transport models. An evaluation of the results for NO2 and O3 air concentrations and dry deposition is presented. Emission data, modeled year and domain were the same. Model run outputs were compared to measurements from background stations. We focused on comparing model outputs regarding the concentration of regulatory pollutants and the relative ship impact on total air pollution concentrations.
Pascal Wintjen, Frederik Schrader, Martijn Schaap, Burkhard Beudert, Richard Kranenburg, and Christian Brümmer
Biogeosciences, 19, 5287–5311, https://doi.org/10.5194/bg-19-5287-2022, https://doi.org/10.5194/bg-19-5287-2022, 2022
Short summary
Short summary
For the first time, we compared four methods for estimating the annual dry deposition of total reactive nitrogen into a low-polluted forest ecosystem. In our analysis, we used 2.5 years of flux measurements, an in situ modeling approach, a large-scale chemical transport model (CTM), and canopy budget models. Annual nitrogen dry deposition budgets ranged between 4.3 and 6.7 kg N ha−1 a−1, depending on the applied method.
Philippe Thunis, Alain Clappier, Enrico Pisoni, Bertrand Bessagnet, Jeroen Kuenen, Marc Guevara, and Susana Lopez-Aparicio
Geosci. Model Dev., 15, 5271–5286, https://doi.org/10.5194/gmd-15-5271-2022, https://doi.org/10.5194/gmd-15-5271-2022, 2022
Short summary
Short summary
In this work, we propose a screening method to improve the quality of emission inventories, which are responsible for large uncertainties in air-quality modeling. The first step of screening consists of keeping only emission contributions that are relevant enough. In a second step, the method identifies large differences that provide evidence of methodological divergence or errors. We used the approach to compare two versions of the CAMS-REG European-scale inventory over 150 European cities.
Marc Guevara, Hervé Petetin, Oriol Jorba, Hugo Denier van der Gon, Jeroen Kuenen, Ingrid Super, Jukka-Pekka Jalkanen, Elisa Majamäki, Lasse Johansson, Vincent-Henri Peuch, and Carlos Pérez García-Pando
Earth Syst. Sci. Data, 14, 2521–2552, https://doi.org/10.5194/essd-14-2521-2022, https://doi.org/10.5194/essd-14-2521-2022, 2022
Short summary
Short summary
To control the spread of the COVID-19 disease, European governments implemented mobility restriction measures that resulted in an unprecedented drop in anthropogenic emissions. This work presents a dataset of emission adjustment factors that allows quantifying changes in 2020 European primary emissions per country and pollutant sector at the daily scale. The resulting dataset can be used as input in modelling studies aiming at quantifying the impact of COVID-19 on air quality levels.
Ronny Badeke, Volker Matthias, Matthias Karl, and David Grawe
Geosci. Model Dev., 15, 4077–4103, https://doi.org/10.5194/gmd-15-4077-2022, https://doi.org/10.5194/gmd-15-4077-2022, 2022
Short summary
Short summary
For air quality modeling studies, it is very important to distribute pollutants correctly into the model system. This has not yet been done for shipping pollution in great detail. We studied the effects of different vertical distributions of shipping pollutants on the urban air quality and derived advanced formulas for it. These formulas take weather conditions and ship-specific parameters like the exhaust gas temperature into account.
Matthias Karl, Liisa Pirjola, Tiia Grönholm, Mona Kurppa, Srinivasan Anand, Xiaole Zhang, Andreas Held, Rolf Sander, Miikka Dal Maso, David Topping, Shuai Jiang, Leena Kangas, and Jaakko Kukkonen
Geosci. Model Dev., 15, 3969–4026, https://doi.org/10.5194/gmd-15-3969-2022, https://doi.org/10.5194/gmd-15-3969-2022, 2022
Short summary
Short summary
The community aerosol dynamics model MAFOR includes several advanced features: coupling with an up-to-date chemistry mechanism for volatile organic compounds, a revised Brownian coagulation kernel that takes into account the fractal geometry of soot particles, a multitude of nucleation parameterizations, size-resolved partitioning of semi-volatile inorganics, and a hybrid method for the formation of secondary organic aerosols within the framework of condensation and evaporation.
Ranjeet S. Sokhi, Nicolas Moussiopoulos, Alexander Baklanov, John Bartzis, Isabelle Coll, Sandro Finardi, Rainer Friedrich, Camilla Geels, Tiia Grönholm, Tomas Halenka, Matthias Ketzel, Androniki Maragkidou, Volker Matthias, Jana Moldanova, Leonidas Ntziachristos, Klaus Schäfer, Peter Suppan, George Tsegas, Greg Carmichael, Vicente Franco, Steve Hanna, Jukka-Pekka Jalkanen, Guus J. M. Velders, and Jaakko Kukkonen
Atmos. Chem. Phys., 22, 4615–4703, https://doi.org/10.5194/acp-22-4615-2022, https://doi.org/10.5194/acp-22-4615-2022, 2022
Short summary
Short summary
This review of air quality research focuses on developments over the past decade. The article considers current and future challenges that are important from air quality research and policy perspectives and highlights emerging prominent gaps of knowledge. The review also examines how air pollution management needs to adapt to new challenges and makes recommendations to guide the direction for future air quality research within the wider community and to provide support for policy.
Jeroen Kuenen, Stijn Dellaert, Antoon Visschedijk, Jukka-Pekka Jalkanen, Ingrid Super, and Hugo Denier van der Gon
Earth Syst. Sci. Data, 14, 491–515, https://doi.org/10.5194/essd-14-491-2022, https://doi.org/10.5194/essd-14-491-2022, 2022
Short summary
Short summary
This paper presents an 18-year time series for anthropogenic emissions for the main air pollutants in Europe, distinguishing 15 main source categories. It provides a complete overview of emissions to air and is designed to support air quality modelling. The data build where possible on official country total emissions used in the policy processes, but where necessary alternative data were used. The emission data are spatially distributed at high resolution (~ 6 km x 6 km) in a consistent way.
Johannes Passig, Julian Schade, Robert Irsig, Thomas Kröger-Badge, Hendryk Czech, Thomas Adam, Henrik Fallgren, Jana Moldanova, Martin Sklorz, Thorsten Streibel, and Ralf Zimmermann
Atmos. Chem. Phys., 22, 1495–1514, https://doi.org/10.5194/acp-22-1495-2022, https://doi.org/10.5194/acp-22-1495-2022, 2022
Short summary
Short summary
The single-particle distribution of health-relevant polycyclic aromatic hydrocarbons (PAHs) was studied at the Swedish coast in autumn. We found PAHs bound to long-range transported particles from eastern and central Europe and also from ship emissions and local sources. This is the first field study using a new technology revealing single-particle data from both inorganic components and PAHs. We discuss PAH profiles that are indicative of several sources and atmospheric aging processes.
Shelley van der Graaf, Enrico Dammers, Arjo Segers, Richard Kranenburg, Martijn Schaap, Mark W. Shephard, and Jan Willem Erisman
Atmos. Chem. Phys., 22, 951–972, https://doi.org/10.5194/acp-22-951-2022, https://doi.org/10.5194/acp-22-951-2022, 2022
Short summary
Short summary
CrIS NH3 satellite observations are assimilated into the LOTOS-EUROS model using two different methods. In the first method the data are used to fit spatially varying NH3 emission time factors. In the second method a local ensemble transform Kalman filter is used. Compared to in situ observations, combining both methods led to the most significant improvements in the modeled concentrations and deposition, illustrating the usefulness of CrIS NH3 to improve the spatiotemporal distribution of NH3.
Jaclyn Clement Kinney, Karen M. Assmann, Wieslaw Maslowski, Göran Björk, Martin Jakobsson, Sara Jutterström, Younjoo J. Lee, Robert Osinski, Igor Semiletov, Adam Ulfsbo, Irene Wåhlström, and Leif G. Anderson
Ocean Sci., 18, 29–49, https://doi.org/10.5194/os-18-29-2022, https://doi.org/10.5194/os-18-29-2022, 2022
Short summary
Short summary
We use data crossing Herald Canyon in the Chukchi Sea collected in 2008 and 2014 together with numerical modelling to investigate the circulation in the western Chukchi Sea. A large fraction of water from the Chukchi Sea enters the East Siberian Sea south of Wrangel Island and circulates in an anticyclonic direction around the island. To assess the differences between years, we use numerical modelling results, which show that high-frequency variability dominates the flow in Herald Canyon.
Marcus Reckermann, Anders Omstedt, Tarmo Soomere, Juris Aigars, Naveed Akhtar, Magdalena Bełdowska, Jacek Bełdowski, Tom Cronin, Michał Czub, Margit Eero, Kari Petri Hyytiäinen, Jukka-Pekka Jalkanen, Anders Kiessling, Erik Kjellström, Karol Kuliński, Xiaoli Guo Larsén, Michelle McCrackin, H. E. Markus Meier, Sonja Oberbeckmann, Kevin Parnell, Cristian Pons-Seres de Brauwer, Anneli Poska, Jarkko Saarinen, Beata Szymczycha, Emma Undeman, Anders Wörman, and Eduardo Zorita
Earth Syst. Dynam., 13, 1–80, https://doi.org/10.5194/esd-13-1-2022, https://doi.org/10.5194/esd-13-1-2022, 2022
Short summary
Short summary
As part of the Baltic Earth Assessment Reports (BEAR), we present an inventory and discussion of different human-induced factors and processes affecting the environment of the Baltic Sea region and their interrelations. Some are naturally occurring and modified by human activities, others are completely human-induced, and they are all interrelated to different degrees. The findings from this study can largely be transferred to other comparable marginal and coastal seas in the world.
Jari Walden, Liisa Pirjola, Tuomas Laurila, Juha Hatakka, Heidi Pettersson, Tuomas Walden, Jukka-Pekka Jalkanen, Harri Nordlund, Toivo Truuts, Miika Meretoja, and Kimmo K. Kahma
Atmos. Chem. Phys., 21, 18175–18194, https://doi.org/10.5194/acp-21-18175-2021, https://doi.org/10.5194/acp-21-18175-2021, 2021
Short summary
Short summary
Ship emissions play an important role in the deposition of gaseous compounds and nanoparticles (Ntot), affecting climate, human health (especially in coastal areas), and eutrophication. Micrometeorological methods showed that ship emissions were mainly responsible for the deposition of Ntot, whereas they only accounted for a minor proportion of CO2 deposition. An uncertainty analysis applied to the fluxes and fuel sulfur content results demonstrated the reliability of the results.
Siv K. Lauvset, Nico Lange, Toste Tanhua, Henry C. Bittig, Are Olsen, Alex Kozyr, Marta Álvarez, Susan Becker, Peter J. Brown, Brendan R. Carter, Leticia Cotrim da Cunha, Richard A. Feely, Steven van Heuven, Mario Hoppema, Masao Ishii, Emil Jeansson, Sara Jutterström, Steve D. Jones, Maren K. Karlsen, Claire Lo Monaco, Patrick Michaelis, Akihiko Murata, Fiz F. Pérez, Benjamin Pfeil, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Bronte Tilbrook, Anton Velo, Rik Wanninkhof, Ryan J. Woosley, and Robert M. Key
Earth Syst. Sci. Data, 13, 5565–5589, https://doi.org/10.5194/essd-13-5565-2021, https://doi.org/10.5194/essd-13-5565-2021, 2021
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by the chemical analysis of water bottle samples from scientific cruises. GLODAPv2.2021 is the third update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality control, including systematic evaluation of measurement biases. This version contains data from 989 hydrographic cruises covering the world's oceans from 1972 to 2020.
Margarita Choulga, Greet Janssens-Maenhout, Ingrid Super, Efisio Solazzo, Anna Agusti-Panareda, Gianpaolo Balsamo, Nicolas Bousserez, Monica Crippa, Hugo Denier van der Gon, Richard Engelen, Diego Guizzardi, Jeroen Kuenen, Joe McNorton, Gabriel Oreggioni, and Antoon Visschedijk
Earth Syst. Sci. Data, 13, 5311–5335, https://doi.org/10.5194/essd-13-5311-2021, https://doi.org/10.5194/essd-13-5311-2021, 2021
Short summary
Short summary
People worry that growing man-made carbon dioxide (CO2) concentrations lead to climate change. Global models, use of observations, and datasets can help us better understand behaviour of CO2. Here a tool to compute uncertainty in man-made CO2 sources per country per year and month is presented. An example of all sources separated into seven groups (intensive and average energy, industry, humans, ground and air transport, others) is presented. Results will be used to predict CO2 concentrations.
Sara Jutterström, Filip Moldan, Jana Moldanová, Matthias Karl, Volker Matthias, and Maximilian Posch
Atmos. Chem. Phys., 21, 15827–15845, https://doi.org/10.5194/acp-21-15827-2021, https://doi.org/10.5194/acp-21-15827-2021, 2021
Short summary
Short summary
For the Baltic Sea countries, shipping emissions are an important source of air pollution. This study investigates the contribution of shipping emissions to the acidification and eutrophication of soils and freshwater within the airshed of the Baltic Sea in the years 2012 and 2040. The implementation of emission control areas and improving energy efficiency significantly reduces the negative impact on ecosystems expressed as a decrease in the exceedance of critical loads for sulfur and nitrogen.
Stefano Galmarini, Paul Makar, Olivia E. Clifton, Christian Hogrefe, Jesse O. Bash, Roberto Bellasio, Roberto Bianconi, Johannes Bieser, Tim Butler, Jason Ducker, Johannes Flemming, Alma Hodzic, Christopher D. Holmes, Ioannis Kioutsioukis, Richard Kranenburg, Aurelia Lupascu, Juan Luis Perez-Camanyo, Jonathan Pleim, Young-Hee Ryu, Roberto San Jose, Donna Schwede, Sam Silva, and Ralf Wolke
Atmos. Chem. Phys., 21, 15663–15697, https://doi.org/10.5194/acp-21-15663-2021, https://doi.org/10.5194/acp-21-15663-2021, 2021
Short summary
Short summary
This technical note presents the research protocols for phase 4 of the Air Quality Model Evaluation International Initiative (AQMEII4). This initiative has three goals: (i) to define the state of wet and dry deposition in regional models, (ii) to evaluate how dry deposition influences air concentration and flux predictions, and (iii) to identify the causes for prediction differences. The evaluation compares LULC-specific dry deposition and effective conductances and fluxes.
Volker Matthias, Markus Quante, Jan A. Arndt, Ronny Badeke, Lea Fink, Ronny Petrik, Josefine Feldner, Daniel Schwarzkopf, Eliza-Maria Link, Martin O. P. Ramacher, and Ralf Wedemann
Atmos. Chem. Phys., 21, 13931–13971, https://doi.org/10.5194/acp-21-13931-2021, https://doi.org/10.5194/acp-21-13931-2021, 2021
Short summary
Short summary
COVID-19 lockdown measures in spring 2020 led to cleaner air in central Europe. Densely populated areas benefitted mainly from largely reduced NO2 concentrations, while rural areas experienced lower reductions in NO2 but also lower ozone concentrations. Very low particulate matter (PM) concentrations in parts of Europe were not an effect of lockdown measures. Model simulations show that modified weather conditions are more significant for ozone and PM than severe traffic emission reductions.
Camilla Geels, Morten Winther, Camilla Andersson, Jukka-Pekka Jalkanen, Jørgen Brandt, Lise M. Frohn, Ulas Im, Wing Leung, and Jesper H. Christensen
Atmos. Chem. Phys., 21, 12495–12519, https://doi.org/10.5194/acp-21-12495-2021, https://doi.org/10.5194/acp-21-12495-2021, 2021
Short summary
Short summary
In this study, we set up new shipping emissions scenarios and use two chemistry transport models and a health assessment model to assess the development of air quality and related health impacts in the Nordic region. Shipping alone is associated with about 850 premature deaths during present-day conditions, decreasing to approximately 550–600 cases in the 2050 scenarios.
Jukka-Pekka Jalkanen, Lasse Johansson, Magda Wilewska-Bien, Lena Granhag, Erik Ytreberg, K. Martin Eriksson, Daniel Yngsell, Ida-Maja Hassellöv, Kerstin Magnusson, Urmas Raudsepp, Ilja Maljutenko, Hulda Winnes, and Jana Moldanova
Ocean Sci., 17, 699–728, https://doi.org/10.5194/os-17-699-2021, https://doi.org/10.5194/os-17-699-2021, 2021
Short summary
Short summary
This modelling study describes a methodology for describing pollutant discharges from ships to the sea. The pilot area used is the Baltic Sea area and discharges of bilge, ballast, sewage, wash water as well as stern tube oil are reported for the year 2012. This work also reports the release of SOx scrubber effluents. This technique may be used by ships to comply with tight sulfur limits inside Emission Control Areas, but it also introduces a new pollutant stream from ships to the sea.
Ronny Badeke, Volker Matthias, and David Grawe
Atmos. Chem. Phys., 21, 5935–5951, https://doi.org/10.5194/acp-21-5935-2021, https://doi.org/10.5194/acp-21-5935-2021, 2021
Short summary
Short summary
This work aims to describe the physical distribution of ship exhaust gases in the near field, e.g., inside of a harbor. Results were calculated with a mathematical model for different meteorological and technical conditions. It has been shown that large vessels like cruise ships have a significant effect of up to 55 % downward movement of exhaust gas, as they can disturb the ground near wind circulation. This needs to be considered in urban air pollution studies.
Sami D. Seppälä, Joel Kuula, Antti-Pekka Hyvärinen, Sanna Saarikoski, Topi Rönkkö, Jorma Keskinen, Jukka-Pekka Jalkanen, and Hilkka Timonen
Atmos. Chem. Phys., 21, 3215–3234, https://doi.org/10.5194/acp-21-3215-2021, https://doi.org/10.5194/acp-21-3215-2021, 2021
Short summary
Short summary
The effects of fuel sulfur content restrictions implemented by the International Maritime Organization in the Baltic Sea (in July 2010 and January 2015) on the particle properties of ship exhaust plumes and ambient aerosol were studied. The restrictions reduced the particle number concentrations and median particle size in plumes and number concentrations in ambient aerosol. These changes may improve human health in coastal areas and decrease the cooling effect of exhaust emissions from ships.
Marc Guevara, Oriol Jorba, Carles Tena, Hugo Denier van der Gon, Jeroen Kuenen, Nellie Elguindi, Sabine Darras, Claire Granier, and Carlos Pérez García-Pando
Earth Syst. Sci. Data, 13, 367–404, https://doi.org/10.5194/essd-13-367-2021, https://doi.org/10.5194/essd-13-367-2021, 2021
Short summary
Short summary
The temporal variability of atmospheric emissions is linked to changes in activity patterns, emission processes and meteorology. Accounting for the change in temporal emission characteristics is a key aspect for modelling the trends of air pollutants. This work presents a dataset of global and European emission temporal profiles to be used for air quality modelling purposes. The profiles were constructed considering the influences of local sociodemographic factors and climatological conditions.
Marc Guevara, Oriol Jorba, Albert Soret, Hervé Petetin, Dene Bowdalo, Kim Serradell, Carles Tena, Hugo Denier van der Gon, Jeroen Kuenen, Vincent-Henri Peuch, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 21, 773–797, https://doi.org/10.5194/acp-21-773-2021, https://doi.org/10.5194/acp-21-773-2021, 2021
Short summary
Short summary
Most European countries have imposed lockdowns to combat the spread of the COVID-19 pandemic. Such a socioeconomic disruption has resulted in a sudden drop of atmospheric emissions and air pollution levels. This study quantifies the daily reductions in national emissions and associated levels of nitrogen dioxide (NO2) due to the COVID-19 lockdowns in Europe, by making use of multiple open-access measured activity data as well as artificial intelligence and modelling techniques.
Xinrui Ge, Martijn Schaap, Richard Kranenburg, Arjo Segers, Gert Jan Reinds, Hans Kros, and Wim de Vries
Atmos. Chem. Phys., 20, 16055–16087, https://doi.org/10.5194/acp-20-16055-2020, https://doi.org/10.5194/acp-20-16055-2020, 2020
Short summary
Short summary
This article is about improving the modeling of agricultural ammonia emissions. By considering land use, meteorology and agricultural practices, ammonia emission totals officially reported by countries are distributed in space and time. We illustrated the first step for a better understanding of the variability of ammonia emission, with the possibility of being applied at a European scale, which is of great significance for ammonia budget research and future policy-making.
Are Olsen, Nico Lange, Robert M. Key, Toste Tanhua, Henry C. Bittig, Alex Kozyr, Marta Álvarez, Kumiko Azetsu-Scott, Susan Becker, Peter J. Brown, Brendan R. Carter, Leticia Cotrim da Cunha, Richard A. Feely, Steven van Heuven, Mario Hoppema, Masao Ishii, Emil Jeansson, Sara Jutterström, Camilla S. Landa, Siv K. Lauvset, Patrick Michaelis, Akihiko Murata, Fiz F. Pérez, Benjamin Pfeil, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Bronte Tilbrook, Anton Velo, Rik Wanninkhof, and Ryan J. Woosley
Earth Syst. Sci. Data, 12, 3653–3678, https://doi.org/10.5194/essd-12-3653-2020, https://doi.org/10.5194/essd-12-3653-2020, 2020
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by chemical analysis of water bottle samples at scientific cruises. GLODAPv2.2020 is the second update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality control, including systematic evaluation of measurement biases. This version contains data from 946 hydrographic cruises covering the world's oceans from 1972 to 2019.
Jianbing Jin, Arjo Segers, Hong Liao, Arnold Heemink, Richard Kranenburg, and Hai Xiang Lin
Atmos. Chem. Phys., 20, 15207–15225, https://doi.org/10.5194/acp-20-15207-2020, https://doi.org/10.5194/acp-20-15207-2020, 2020
Short summary
Short summary
Data assimilation provides a powerful tool to estimate emission inventories by feeding observations. This emission inversion relies on the correct assumption about the emission uncertainty, which describes the potential spatiotemporal spreads of sources. However, an unrepresentative uncertainty is unavoidable. Especially in the complex dust emission, the uncertainties can hardly all be taken into account. This study reports how adjoint can be used to detect errors in the emission uncertainty.
Jan Eiof Jonson, Michael Gauss, Michael Schulz, Jukka-Pekka Jalkanen, and Hilde Fagerli
Atmos. Chem. Phys., 20, 11399–11422, https://doi.org/10.5194/acp-20-11399-2020, https://doi.org/10.5194/acp-20-11399-2020, 2020
Short summary
Short summary
We have calculated the effects of air pollution in Europe from shipping on levels of PM2.5 and ozone and depositions of oxidised nitrogen and sulfur from individual sea areas and from all global shipping. Model results are shown for Europe as a whole but also focusing on select, mainly coastal, countries. Calculations are made using 2017 emissions supplemented by calculations reducing sulfur emissions from ships by about 80 % following the implementation of the 2020 global sulfur cap.
Lasse Johansson, Erik Ytreberg, Jukka-Pekka Jalkanen, Erik Fridell, K. Martin Eriksson, Maria Lagerström, Ilja Maljutenko, Urmas Raudsepp, Vivian Fischer, and Eva Roth
Ocean Sci., 16, 1143–1163, https://doi.org/10.5194/os-16-1143-2020, https://doi.org/10.5194/os-16-1143-2020, 2020
Short summary
Short summary
Very little is currently known about the activities and emissions of private leisure boats. To change this, a new model was created (BEAM). The model was used for the Baltic Sea to estimate leisure boat emissions, also considering antifouling paint leach. When compared to commercial shipping, the modeled leisure boat emissions were seen to be surprisingly large for some pollutant species, and these emissions were heavily concentrated on coastal inhabited areas during summer and early autumn.
Martin O. P. Ramacher, Lin Tang, Jana Moldanová, Volker Matthias, Matthias Karl, Erik Fridell, and Lasse Johansson
Atmos. Chem. Phys., 20, 10667–10686, https://doi.org/10.5194/acp-20-10667-2020, https://doi.org/10.5194/acp-20-10667-2020, 2020
Short summary
Short summary
The effects of shipping emissions on air quality and health in the harbour city of Gothenburg were simulated for different scenarios for the year 2040 with coupled regional and city-scale chemistry transport models to evaluate the impact of regional emission regulations and onshore electricity for ships at berth. The results show that contributions of shipping to exposure and associated health impacts from particulate matter and NO2 decrease significantly compared to 2012 in all scenarios.
Cited articles
Agrawal, H., Welch, W. A., Miller, J. W., and Cockert, D. R.: Emission
measurements from a crude oil tanker at sea, Environ. Sci. Technol.,
42, 7098–7103, https://doi.org/10.1021/es703102y, 2008.
Agrawal, H., Eden, R., Zhang, X., Fine, P. M., Katzenstein, A., Miller, J.
W., Ospital, J., Teffera, S., and Cocker, D. R.: Primary particulate matter
from ocean-going engines in the Southern California Air Basin, Environ. Sci.
Technol., 43, 5398–5402, https://doi.org/10.1021/es8035016, 2009.
Agrawal, H., Welch, W. A., Henningsen, S., Miller, J. W., and Cocker, D. R.:
Emissions from main propulsion engine on container ship at sea, J. Geophys.
Res, 115, D23205, https://doi.org/10.1029/2009JD013346, 2010.
Aksoyoglu, S., Baltensperger, U., and Prévôt, A. S. H.: Contribution of ship emissions to the concentration and deposition of air pollutants in Europe, Atmos. Chem. Phys., 16, 1895–1906, https://doi.org/10.5194/acp-16-1895-2016, 2016.
Alfaro, S. D. and Gomes, L.: Modeling mineral aerosol production by wind
erosion: Emission intensities and aerosol size distributions in source
areas., J. Geophys. Res., 106, 18075–18084, https://doi.org/10.1029/2000jd900339, 2001.
Appel, K. W., Napelenok, S. L., Foley, K. M., Pye, H. O. T., Hogrefe, C., Luecken, D. J., Bash, J. O., Roselle, S. J., Pleim, J. E., Foroutan, H., Hutzell, W. T., Pouliot, G. A., Sarwar, G., Fahey, K. M., Gantt, B., Gilliam, R. C., Heath, N. K., Kang, D., Mathur, R., Schwede, D. B., Spero, T. L., Wong, D. C., and Young, J. O.: Description and evaluation of the Community Multiscale Air Quality (CMAQ) modeling system version 5.1, Geosci. Model Dev., 10, 1703–1732, https://doi.org/10.5194/gmd-10-1703-2017, 2017.
Astitha, M., Lelieveld, J., Abdel Kader, M., Pozzer, A., and de Meij, A.: Parameterization of dust emissions in the global atmospheric chemistry-climate model EMAC: impact of nudging and soil properties, Atmos. Chem. Phys., 12, 11057–11083, https://doi.org/10.5194/acp-12-11057-2012, 2012.
Baldasano, J. M., Pay, M. T., Jorba, O., Gassó, S., and
Jiménez-Guerrero, P.: An annual assessment of air quality with the
CALIOPE modeling system over Spain, Sci. Total Environ., 409, 2163–2178,
https://doi.org/10.1016/j.scitotenv.2011.01.041, 2011.
Banzhaf, S., Schaap, M., Kerschbaumer, A., Reimer, E., Stern, R., van der
Swaluw, E., and Builtjes, P.: Implementation and evaluation of pH-dependent
cloud chemistry and wet deposition in the chemical transport model
REM-Calgrid, Atmos. Environ., 49, 378–390,
https://doi.org/10.1016/j.atmosenv.2011.10.069, 2012.
Barbu, A. L., Segers, A. J., Schaap, M., Heemink, A. W., and Builtjes,
P. J. H.: A multi-component data assimilation experiment directed to sulphur
dioxide and sulphate over Europe, Atmos. Environ., 43, 1622–1631,
https://doi.org/10.1016/j.atmosenv.2008.12.005, 2009.
Behera, S. N., Sharma, M., Aneja, V. P., and Balasubramanian, R.: Ammonia in the atmosphere: a
review on emission sources, atmospheric chemistry and deposition on
terrestrial bodies, Environ Sci. Pollut. R., 20, 8092–8131,
https://doi.org/10.1007/s11356-013-2051-9, 2013.
Berge, E. and Jakobsen, H. A.: A regional scale multilayer model for the calculation of long-term transport and deposition of air pollution in Europe, Tellus B, 50, 205–223, https://doi.org/10.3402/tellusb.v50i3.16097, 1998.
Bergström, R., Denier van der Gon, H. A. C., Prévôt, A. S. H., Yttri, K. E., and Simpson, D.: Modelling of organic aerosols over Europe (2002–2007) using a volatility basis set (VBS) framework: application of different assumptions regarding the formation of secondary organic aerosol, Atmos. Chem. Phys., 12, 8499–8527, https://doi.org/10.5194/acp-12-8499-2012, 2012.
Bieser, J., Aulinger, A., Matthias, V., Quante, M., and van der Denier Gon,
H. A. C.: Vertical emission profiles for Europe based on plume rise
calculations, Environ. Pollut., 159, 2935–2946,
https://doi.org/10.1016/j.envpol.2011.04.030, 2011.
Binkowski, F. S. and Shankar, U.: The Regional Particulate Matter Model: 1.
Model description and preliminary results, J. Geophys. Res., 100,
26191–26209, https://doi.org/10.1029/95JD02093, 1995.
Binkowski, F. S. and Roselle, S. J.: Models-3 Community Multiscale Air
Quality (CMAQ) model aerosol component 1. Model description, J. Geophys.
Res., 108, 4183, https://doi.org/10.1029/2001JD001409, 2003.
Byun, D. and Schere, K. L.: Review of the Governing Equations, Computational
Algorithms, and Other Components of the Models-3 Community Multiscale Air
Quality (CMAQ) Modeling System, Appl. Mech. Rev., 2, 51–77,
https://doi.org/10.1115/1.2128636, 2006.
Carlton, A. G., Bhave, P. V., Napelenok, S. L., Edney, E. O., Sarwar, G.,
Pinder, R. W., Pouliot, G. A., and Houyoux, M.: Model representation of
secondary organic aerosol in CMAQv4.7, Appl. Mech. Rev., 59, 51–77,
https://doi.org/10.1021/es100636q, 2010.
Celik, S., Drewnick, F., Fachinger, F., Brooks, J., Darbyshire, E., Coe, H., Paris, J.-D., Eger, P. G., Schuladen, J., Tadic, I., Friedrich, N., Dienhart, D., Hottmann, B., Fischer, H., Crowley, J. N., Harder, H., and Borrmann, S.: Influence of vessel characteristics and atmospheric processes on the gas and particle phase of ship emission plumes: in situ measurements in the Mediterranean Sea and around the Arabian Peninsula, Atmos. Chem. Phys., 20, 4713–4734, https://doi.org/10.5194/acp-20-4713-2020, 2020.
Chen, R., Hu, B., Liu, Y., Xu, J., Yang, G., Xu, D., and Chen, C.: Beyond
PM2.5: The role of ultrafine particles on adverse health effects of air
pollution, Biochim. Biophys. Acta, 1860, 2844–2855,
https://doi.org/10.1016/j.bbagen.2016.03.019, 2016.
Cholakian, A., Mailler, S., Pennel, R., Valari, M., Couvidat, F., Menut, L., and Siour, G.: CHIMERE v2020r3 version (+ WRF 3.7.1 + OASIS-MCT3), model code, https://www.lmd.polytechnique.fr/chimere/2020_getcode.php, last access: 19 January 2023.
Clappier, A., Thunis, P., Beekmann, M., Putaud, J. P., and Meij, A. de:
Impact of SOx, NOx and NH3 emission reductions on PM2.5 concentrations
across Europe: Hints for future measure development, Environ. Int., 156,
106699, https://doi.org/10.1016/j.envint.2021.106699, 2021.
Corbett, J. J. and Fischbeck, P.: Emissions from ships, Science, 278, 5339,
823–824, 1997.
COSMO Consortium: Models Supported by COSMO, COSMO [model], https://www.cosmo-model.org/content/support/software/default.htm#models, last access: 7 September 2023.
Donahue, N. M., Robinson, A. L., and Pandis, S. N.: Atmospheric organic
particulate matter: From smoke to secondary organic aerosol, Atmos. Environ.,
43, 94–106, https://doi.org/10.1016/j.atmosenv.2008.09.055, 2009.
Donateo, A., Gregoris, E., Gambaro, A., Merico, E., Giua, R., Nocioni, A.,
and Contini, D.: Contribution of harbour activities and ship traffic to
PM2.5, particle number concentrations and PAHs in a port city of the
Mediterranean Sea (Italy), Environ. Sci. Pollut. R., 21, 9415–9429,
https://doi.org/10.1007/s11356-014-2849-0, 2014.
ECMWF IFS: ERA-Interim Reanalysis Data, GitHub [data set, code], https://github.com/ecmwf-ifs/era-interim (last access: 7 September 2023), 2023.
Emberson, L. D., Simpson, D., Tuovinen, J.-P., Ashmore, M. R. and Cambridge,
H. M.: Towards a Model of Ozone Deposition and Stomatal Uptake over
Europe, EMEP/MSC-W Note 6/00, Norwegian Meteorological Institute, Oslo, 57,
2000.
EMEP MSC-W.: metno/emep-ctm: OpenSource rv4.34 (202001) (rv4_34), Zenodo [model code], https://doi.org/10.5281/zenodo.3647990, 2020.
EMEP Status Report 1/2022: Transboundary particulate matter,
photo-oxidants, acidifying and eutrophying components, Joint MSC-W & CCC
& CEIP & CIAM Report, https://emep.int/publ/reports/2022/EMEP_Status_Report_1_2022.pdf (last access: 7 September 2023),
2022.
Erisman, J. W., van Pul, A., and Wyers, P.: Parametrization of surface
resistance for the quantification of atmospheric deposition of acidifying
pollutants and ozone, Atmos. Environ., 28, 2595–2607,
https://doi.org/10.1016/1352-2310(94)90433-2, 1994.
Esri: ArcGIS Pro 2.7.1, Esri, https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview (last access: 7 September 2023), 2020.
EU DIRECTIVE 2008/50/EC: European parliament: Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe, http://data.europa.eu/eli/dir/2008/50/oj (last access: 6 September 2023), 2008.
European Environment Agency: Air Quality Data Download Service, Discomap, European Environment Agency [data set], https://discomap.eea.europa.eu/map/fme/AirQualityExport.htm (last access: 7 September 2023), 2023.
Eyring, V.: Emissions from international shipping: 1. The last 50 years, J.
Geophys. Res., 110, D17305, https://doi.org/10.1029/2004JD005619, 2005.
Eyring, V., Stevenson, D. S., Lauer, A., Dentener, F. J., Butler, T., Collins, W. J., Ellingsen, K., Gauss, M., Hauglustaine, D. A., Isaksen, I. S. A., Lawrence, M. G., Richter, A., Rodriguez, J. M., Sanderson, M., Strahan, S. E., Sudo, K., Szopa, S., van Noije, T. P. C., and Wild, O.: Multi-model simulations of the impact of international shipping on Atmospheric Chemistry and Climate in 2000 and 2030, Atmos. Chem. Phys., 7, 757–780, https://doi.org/10.5194/acp-7-757-2007, 2007.
Fécan, F., Marticorena, B., and Bergametti, G.: Parametrization of the increase of the aeolian erosion threshold wind friction velocity due to soil moisture for arid and semi-arid areas, Ann. Geophys., 17, 149–157, https://doi.org/10.1007/s00585-999-0149-7, 1999.
Fink, L., Karl, M., Matthias, V., Oppo, S., Kranenburg, R., Kuenen, J., Moldanova, J., Jutterström, S., Jalkanen, J.-P., and Majamäki, E.: Potential impact of shipping on air pollution in the Mediterranean region – a multimodel evaluation: comparison of photooxidants NO2 and O3, Atmos. Chem. Phys., 23, 1825–1862, https://doi.org/10.5194/acp-23-1825-2023, 2023.
Folberth, G. A., Hauglustaine, D. A., Lathière, J., and Brocheton, F.: Interactive chemistry in the Laboratoire de Météorologie Dynamique general circulation model: model description and impact analysis of biogenic hydrocarbons on tropospheric chemistry, Atmos. Chem. Phys., 6, 2273–2319, https://doi.org/10.5194/acp-6-2273-2006, 2006.
Foley, K. M., Roselle, S. J., Appel, K. W., Bhave, P. V., Pleim, J. E., Otte, T. L., Mathur, R., Sarwar, G., Young, J. O., Gilliam, R. C., Nolte, C. G., Kelly, J. T., Gilliland, A. B., and Bash, J. O.: Incremental testing of the Community Multiscale Air Quality (CMAQ) modeling system version 4.7, Geosci. Model Dev., 3, 205–226, https://doi.org/10.5194/gmd-3-205-2010, 2010.
Fountoukis, C. and Nenes, A.: ISORROPIA II: a computationally efficient thermodynamic equilibrium model for K+–Ca2+–Mg2+–NH –Na+–SO –NO –Cl−–H2O aerosols, Atmos. Chem. Phys., 7, 4639–4659, https://doi.org/10.5194/acp-7-4639-2007, 2007.
Friedrich, N., Eger, P., Shenolikar, J., Sobanski, N., Schuladen, J., Dienhart, D., Hottmann, B., Tadic, I., Fischer, H., Martinez, M., Rohloff, R., Tauer, S., Harder, H., Pfannerstill, E. Y., Wang, N., Williams, J., Brooks, J., Drewnick, F., Su, H., Li, G., Cheng, Y., Lelieveld, J., and Crowley, J. N.: Reactive nitrogen around the Arabian Peninsula and in the Mediterranean Sea during the 2017 AQABA ship campaign, Atmos. Chem. Phys., 21, 7473–7498, https://doi.org/10.5194/acp-21-7473-2021, 2021.
Gao, R. and Sang, N.: Quasi-ultrafine particles promote cell metastasis via
HMGB1-mediated cancer cell adhesion, Environ. Pollut., 256, 113390,
https://doi.org/10.1016/j.envpol.2019.113390, 2020.
Gašparac, G., Jeričević, A., Kumar, P., and Grisogono, B.: Regional-scale modelling for the assessment of atmospheric particulate matter concentrations at rural background locations in Europe, Atmos. Chem. Phys., 20, 6395–6415, https://doi.org/10.5194/acp-20-6395-2020, 2020.
Ge, Y., Heal, M. R., Stevenson, D. S., Wind, P., and Vieno, M.: Evaluation of global EMEP MSC-W (rv4.34) WRF (v3.9.1.1) model surface concentrations and wet deposition of reactive N and S with measurements, Geosci. Model Dev., 14, 7021–7046, https://doi.org/10.5194/gmd-14-7021-2021, 2021.
Ginoux, P., Chin, M., Tegen, I., Prospero, J. M., Holben, B., Dubovik, O.,
and Lin, S.-J.: Sources and distributions of dust aerosols simulated
with the GOCART model, J. Geophys. Res., 106, 20255–20273,
https://doi.org/10.1029/2000JD000053, 2001.
Gomes, L., Rajot, J. L., Alfaro, S. C., and Gaudichet, A.: Validation of a
dust production model from measurements performed in semi-arid agricultural
areas of Spain and Niger, Catena, 52, 257–271, 2003.
Granier, C., Darras, S., van der Denier Gon, H., Doubalova, J., Elguindi,
N., Galle, B., Gauss, M., Guevara, M., Jalkanen, J.-P., Kuenen, J., Liousse,
C., Quack, B., Simpson, D., and Sindelarova, K.: The Copernicus Atmosphere
Monitoring Service global and regional emissions: (April 2019 version),
Copernicus Atmosphere Monitoring Service (CAMS) report,
https://doi.org/10.24380/d0bn-kx16, 2019.
Guenther, A., Zimmerman, P., Harley, P., Monson, R., and Fall, R.: Isoprene and monoterpene rate variability: model evaluations and sensitivity analyses, J. Geophys. Res., 98, 12609–12617, https://doi.org/10.1029/93JD00527, 1993.
Guenther, A., Hewitt, C., Erickson, D., Fall, R., Geron, C., Graedel, T., Harley, P., Klinger, L., Lerdau, M., McKay, W., Pierce, T., Scholes, R., Steinbrecher, R., Tallamraju, R., Taylor, J., and Zimmerman, P.: A global model of natural volatile organic compound emissions, J. Geophys. Res., 100, 8873–8892, https://doi.org/10.1029/94JD02950, 1995.
Hauglustaine, D. A., Balkanski, Y., and Schulz, M.: A global model simulation of present and future nitrate aerosols and their direct radiative forcing of climate, Atmos. Chem. Phys., 14, 11031–11063, https://doi.org/10.5194/acp-14-11031-2014, 2014.
Henzing, J. S., Olivié, D. J. L., and van Velthoven, P. F. J.: A parameterization of size resolved below cloud scavenging of aerosols by rain, Atmos. Chem. Phys., 6, 3363–3375, https://doi.org/10.5194/acp-6-3363-2006, 2006.
Heusinkveld, H. J., Wahle, T., Campbell, A., Westerink, R. H. S., Tran, L.,
Johnston, H., Stone, V., Cassee, F. R., and Schins, R. P. F.:
Neurodegenerative and neurological disorders by small inhaled particles,
NeuroToxicology, 56, 94–106, https://doi.org/10.1016/j.neuro.2016.07.007,
2016.
Im, U., Bianconi, R., Solazzo, E., Kioutsioukis, I., Badia, A., Balzarini, A., Baró, R., Bellasio, R., Brunner, D., Chemel, C., Curci, G., van der Denier Gon, H., Flemming, J., Forkel, R., Giordano, L., Jiménez-Guerrero, P., Hirtl, M., Hodzic, A., Honzak, L., Jorba, O., Knote, C., Makar, P. A., Manders-Groot, A., Neal, L., Pérez, J. L., Pirovano, G., Pouliot, G., San Jose, R., Savage, N., Schroder, W., Sokhi, R. S., Syrakov, D., Torian, A., Tuccella, P., Wang, K., Werhahn, J., Wolke, R., Zabkar, R., Zhang, Y., Zhang, J., Hogrefe, C., and Galmarini, S.: Evaluation of operational online-coupled regional air quality models over Europe and North America in the context of AQMEII phase 2. Part II: Particulate matter, Atmos. Environ. 17, 421–441, https://doi.org/10.1016/j.atmosenv.2014.08.072, 2014.
Im, U., Bianconi, R., Solazzo, E., Kioutsioukis, I., Badia, A., Balzarini,
A., Baró, R., Bellasio, R., Brunner, D., Chemel, C., Curci, G., van der
Denier Gon, H., Flemming, J., Forkel, R., Giordano, L.,
Jiménez-Guerrero, P., Hirtl, M., Hodzic, A., Honzak, L., Jorba, O.,
Knote, C., Makar, P. A., Manders-Groot, A., Neal, L., Pérez, J. L.,
Pirovano, G., Pouliot, G., San Jose, R., Savage, N., Schroder, W., Sokhi, R.
S., Syrakov, D., Torian, A., Tuccella, P., Wang, K., Werhahn, J., Wolke, R.,
Zabkar, R., Zhang, Y., Zhang, J., Hogrefe, C., and Galmarini, S.: Evaluation
of operational online-coupled regional air quality models over Europe and
North America in the context of AQMEII phase 2. Part II: Particulate matter,
Atmos. Environ., 115, 421–441,
https://doi.org/10.1016/j.atmosenv.2014.08.072, 2015.
IMO (International Maritime Organization): Marine Environment Protection
Committee (MEPC) – 79th session, 12–16 December 2022,
https://www.imo.org/en/MediaCentre/MeetingSummaries/Pages/MEPC-79th-session.aspx
(last access: 16 January 2023), 2022.
Jägerbrand, A. K., Brutemark, A., Barthel Svedén, J., and Gren,
I.-M.: A review on the environmental impacts of shipping on aquatic and
nearshore ecosystems, Sci. Total Environ., 695, 133637,
https://doi.org/10.1016/j.scitotenv.2019.133637, 2019.
Jalkanen, J.-P., Brink, A., Kalli, J., Pettersson, H., Kukkonen, J., and Stipa, T.: A modelling system for the exhaust emissions of marine traffic and its application in the Baltic Sea area, Atmos. Chem. Phys., 9, 9209–9223, https://doi.org/10.5194/acp-9-9209-2009, 2009.
Jalkanen, J.-P., Johansson, L., Kukkonen, J., Brink, A., Kalli, J., and Stipa, T.: Extension of an assessment model of ship traffic exhaust emissions for particulate matter and carbon monoxide, Atmos. Chem. Phys., 12, 2641–2659, https://doi.org/10.5194/acp-12-2641-2012, 2012.
Johansson, L., Jalkanen, J.-P., Kalli, J., and Kukkonen, J.: The evolution of shipping emissions and the costs of regulation changes in the northern EU area, Atmos. Chem. Phys., 13, 11375–11389, https://doi.org/10.5194/acp-13-11375-2013, 2013.
Johansson, L., Jalkanen, J.-P., and Kukkonen, J.: Global assessment of
shipping emissions in 2015 on a high spatial and temporal resolution, Atmos.
Environ., 167, 403–415, https://doi.org/10.1016/j.atmosenv.2017.08.042,
2017.
Jiang, W., Smyth, S., Giroux, É., Roth, H., and Yin, D.: Differences
between CMAQ fine mode particle and PM2.5 concentrations and their impact on
model performance evaluation in the lower Fraser valley, Atmos.
Environ., 40, 4973–4985,
https://doi.org/10.1016/j.atmosenv.2005.10.069, 2006.
Jimenez, J. L., Canagaratna, M. R., Donahue, N. M., Prevot, A. S. H., Zhang,
Q., Kroll, J. H., DeCarlo, P. F., Allan, J. D., Coe, H., Ng, N. L., Aiken,
A. C., Docherty, K. S., Ulbrich, I. M., Grieshop, A. P., Robinson, A. L.,
Duplissy, J., Smith, J. D., Wilson, K. R., Lanz, V. A., Hueglin, C., Sun, Y.
L., Tian, J., Laaksonen, A., Raatikainen, T., Rautiainen, J., Vaattovaara,
P., Ehn, M., Kulmala, M., Tomlinson, J. M., Collins, D. R., Cubison, M. J.,
Dunlea, E. J., Huffman, J. A., Onasch, T. B., Alfarra, M. R., Williams, P.
I., Bower, K., Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., Weimer,
S., Demerjian, K., Salcedo, D., Cottrell, L., Griffin, R., Takami, A.,
Miyoshi, T., Hatakeyama, S., Shimono, A., Sun, J. Y., Zhang, Y. M., Dzepina,
K., Kimmel, J. R., Sueper, D., Jayne, J. T., Herndon, S. C., Trimborn, A.
M., Williams, L. R., Wood, E. C., Middlebrook, A. M., Kolb, C. E.,
Baltensperger, U., and Worsnop, D. R.: Evolution of organic aerosols in the
atmosphere, Science, 326, 1525–1529,
https://doi.org/10.1126/science.1180353, 2009.
Jonson, J. E., Gauss, M., Schulz, M., Jalkanen, J.-P., and Fagerli, H.: Effects of global ship emissions on European air pollution levels, Atmos. Chem. Phys., 20, 11399–11422, https://doi.org/10.5194/acp-20-11399-2020, 2020.
Karamfilova, E.: BRIEFING Implementation Appraisal, Revision of the EU
Ambient Air Quality Directives, EPRS European Parliamentary Research
Service,
https://www.europarl.europa.eu/RegData/etudes/BRIE/2022/734679/EPRS_BRI(2022)734679_EN.pdf (last access: 7 September 2023), 2022.
Karl, M., Bieser, J., Geyer, B., Matthias, V., Jalkanen, J.-P., Johansson, L., and Fridell, E.: Impact of a nitrogen emission control area (NECA) on the future air quality and nitrogen deposition to seawater in the Baltic Sea region, Atmos. Chem. Phys., 19, 1721–1752, https://doi.org/10.5194/acp-19-1721-2019, 2019.
Kelly, J. T., Bhave, P. V., Nolte, C. G., Shankar, U., and Foley, K. M.: Simulating emission and chemical evolution of coarse sea-salt particles in the Community Multiscale Air Quality (CMAQ) model, Geosci. Model Dev., 3, 257–273, https://doi.org/10.5194/gmd-3-257-2010, 2010.
Kiesewetter, G., Schoepp, W., Heyes, C., and Amann, M.: Modelling PM2.5
impact indicators in Europe: Health effects and legal compliance, Environ.
Modell Softw., 74, 201–211, https://doi.org/10.1016/j.envsoft.2015.02.022,
2015.
Klingmüller, K., Metzger, S., Abdelkader, M., Karydis, V. A., Stenchikov, G. L., Pozzer, A., and Lelieveld, J.: Revised mineral dust emissions in the atmospheric chemistry–climate model EMAC (MESSy 2.52 DU_Astitha1 KKDU2017 patch), Geosci. Model Dev., 11, 989–1008, https://doi.org/10.5194/gmd-11-989-2018, 2018.
Kleijn, D., Kohler, F., Báldi, A., Batáry, P., Concepción, E.
D., Clough, Y., Díaz, M., Gabriel, D., Holzschuh, A., Knop, E.,
Kovács, A., Marshall, E. J. P., Tscharntke, T., and Verhulst, J.: On the
relationship between farmland biodiversity and land-use intensity in Europe,
P. R. Soc., 276, 1658, https://doi.org/10.1098/rspb.2008.1509, 2009.
Klimont, Z., Kupiainen, K., Heyes, C., Purohit, P., Cofala, J., Rafaj, P., Borken-Kleefeld, J., and Schöpp, W.: Global anthropogenic emissions of particulate matter including black carbon, Atmos. Chem. Phys., 17, 8681–8723, https://doi.org/10.5194/acp-17-8681-2017, 2017.
Kranenburg, R., Segers, A. J., Hendriks, C., and Schaap, M.: Source apportionment using LOTOS-EUROS: module description and evaluation, Geosci. Model Dev., 6, 721–733, https://doi.org/10.5194/gmd-6-721-2013, 2013.
Krupa, S. V.: Effects of atmospheric ammonia (NH3) on terrestrial vegetation:
a review, Environ. Pollut., 124, 179–221,
https://doi.org/10.1016/s0269-7491(02)00434-7, 2003.
Kuenen, J., Dellaert, S., Visschedijk, A., Jalkanen, J.-P., Super, I., and Denier van der Gon, H.: CAMS-REG-v4: a state-of-the-art high-resolution European emission inventory for air quality modelling, Earth Syst. Sci. Data, 14, 491–515, https://doi.org/10.5194/essd-14-491-2022, 2022.
Kuenen, J. J. P., Visschedijk, A. J. H., Jozwicka, M., and Denier van der Gon, H. A. C.: TNO-MACC_II emission inventory; a multi-year (2003–2009) consistent high-resolution European emission inventory for air quality modelling, Atmos. Chem. Phys., 14, 10963–10976, https://doi.org/10.5194/acp-14-10963-2014, 2014.
Loosmore, G. A. and Cederwall, R. T.: Precipitation scavenging of
atmospheric aerosols for emergency response applications: testing an updated
model with new real-time data, Atmos. Environ., 38, 993–1003,
https://doi.org/10.1016/j.atmosenv.2003.10.055, 2004.
Mallet, M. D., D'Anna, B., Même, A., Bove, M. C., Cassola, F., Pace, G., Desboeufs, K., Di Biagio, C., Doussin, J.-F., Maille, M., Massabò, D., Sciare, J., Zapf, P., di Sarra, A. G., and Formenti, P.: Summertime surface PM1 aerosol composition and size by source region at the Lampedusa island in the central Mediterranean Sea, Atmos. Chem. Phys., 19, 11123–11142, https://doi.org/10.5194/acp-19-11123-2019, 2019.
Manders, A. M. M., Builtjes, P. J. H., Curier, L., Denier van der Gon, H. A. C., Hendriks, C., Jonkers, S., Kranenburg, R., Kuenen, J. J. P., Segers, A. J., Timmermans, R. M. A., Visschedijk, A. J. H., Wichink Kruit, R. J., van Pul, W. A. J., Sauter, F. J., van der Swaluw, E., Swart, D. P. J., Douros, J., Eskes, H., van Meijgaard, E., van Ulft, B., van Velthoven, P., Banzhaf, S., Mues, A. C., Stern, R., Fu, G., Lu, S., Heemink, A., van Velzen, N., and Schaap, M.: Curriculum vitae of the LOTOS–EUROS (v2.0) chemistry transport model, Geosci. Model Dev., 10, 4145–4173, https://doi.org/10.5194/gmd-10-4145-2017, 2017.
Manders-Groot, A., Segers, A., and Jonkers, S.: LOTOS-EUROS v2.0 Reference
Guide, Report,
https://airqualitymodeling.tno.nl/publish/pages/3175/lotos-euros-reference-guide.pdf (last access: 7 September 2023), 2016.
Marmer, E. and Langmann, B.: Impact of ship emissions on the Mediterranean
summertime pollution and climate: A regional model study, Atmos. Environ.,
39, 4659–4669, https://doi.org/10.1016/j.atmosenv.2005.04.014, 2005.
Mårtensson, E. M., Nilsson, E. D., Leeuw, G. de, Cohen, L. H., and
Hansson, H.-C.: Laboratory simulations and parameterization of the primary
marine aerosol production, J. Geophys. Res., 108, 4297,
https://doi.org/10.1029/2002JD002263, 2003.
Marticorena, B. and Bergametti, G.: Modelling the atmospheric dust cycle: 1.
Design of a soil drived dust emission scheme., J. Geophys. Res., 100,
16415–16430, https://doi.org/10.1029/95jd00690, 1995.
Marticorena, B., Bergametti, G., Aumont, B., Callot, Y.,
N'Doumé, C., and Legrand, M.: Modelling the atmospheric dust
cycle: 2. Simulation of Saharan dust sources, J. Geophys. Res., 102, 4387–4404, 1997.
Matthias, V.: The aerosol distribution in Europe derived with the Community Multiscale Air Quality (CMAQ) model: comparison to near surface in situ and sunphotometer measurements, Atmos. Chem. Phys., 8, 5077–5097, https://doi.org/10.5194/acp-8-5077-2008, 2008.
Matthias, V., Bewersdorff, I., Aulinger, A., and Quante, M.: The
contribution of ship emissions to air pollution in the North Sea regions,
Environ. Pollut., 158, 2241–2250,
https://doi.org/10.1016/j.envpol.2010.02.013, 2010.
Menut, L., Bessagnet, B., Khvorostyanov, D., Beekmann, M., Blond, N., Colette, A., Coll, I., Curci, G., Foret, G., Hodzic, A., Mailler, S., Meleux, F., Monge, J.-L., Pison, I., Siour, G., Turquety, S., Valari, M., Vautard, R., and Vivanco, M. G.: CHIMERE 2013: a model for regional atmospheric composition modelling, Geosci. Model Dev., 6, 981–1028, https://doi.org/10.5194/gmd-6-981-2013, 2013.
Monahan, E. C., Spiel, D. E., and Davidson, K. L.: A Model of Marine Aerosol
Generation Via Whitecaps and Wave Disruption, OCSL,
2, https://doi.org/10.1007/978-94-009-4668-2_16, 1986.
Nenes, A., Pandis, S. N., and Pilinis, C.: ISORROPIA: A New Thermodynamic
Equilibrium Model for Multiphase Multicomponent Inorganic Aerosols, Aquat.
Geochem., 4, 123–152, https://doi.org/10.1023/A:1009604003981, 1998.
Nunes, R. A. O., Alvim-Ferraz, M. C. M., Martins, F. G., Calderay-Cayetano, F., Durán-Grados, V., Moreno-Gutiérrez, J., Jalkanen, J.-P., Hannuniemi, H., and Sousa, S. I. V.: Shipping emissions in the Iberian Peninsula and the impacts on air quality, Atmos. Chem. Phys., 20, 9473–9489, https://doi.org/10.5194/acp-20-9473-2020, 2020.
Ovadnevaite, J., Manders, A., de Leeuw, G., Ceburnis, D., Monahan, C., Partanen, A.-I., Korhonen, H., and O'Dowd, C. D.: A sea spray aerosol flux parameterization encapsulating wave state, Atmos. Chem. Phys., 14, 1837–1852, https://doi.org/10.5194/acp-14-1837-2014, 2014.
Palacios-Peña, L., Lorente-Plazas, R., Montávez, J. P., and
Jiménez-Guerrero, P.: Saharan Dust Modeling Over the Mediterranean Basin
and Central Europe: Does the Resolution Matter?, Front. Earth Sci., 7, 290,
https://doi.org/10.3389/feart.2019.00290, 2019.
Pandolfi, M., Gonzalez-Castanedo, Y., Alastuey, A., La Rosa, J. D. de,
Mantilla, E., La Campa, A. S. de, Querol, X., Pey, J., Amato, F., and
Moreno, T.: Source apportionment of PM10 and PM2.5 at multiple sites in
the strait of Gibraltar by PMF: impact of shipping emissions, Environ. Sci.
Pollut. R., 18, 260–269, https://doi.org/10.1007/s11356-010-0373-4, 2011.
Pepe, N., Pirovano, G., Balzarini, A., Toppetti, A., Riva, G. M., Amato, F.,
and Lonati, G.: Enhanced CAMx source apportionment analysis at an urban
receptor in Milan based on source categories and emission regions, Atmos.
Environ. X, 2, 100020, https://doi.org/10.1016/j.aeaoa.2019.100020, 2019.
Pleim, J. E., Xiu, A., Finkelstein, P. L., and Otte, T. L.: A Coupled
Land-Surface and Dry Deposition Model and Comparison to Field Measurements
of Surface Heat, Moisture, and Ozone Fluxes, Water Air Soil Poll.-Focus,
1, 243–252, https://doi.org/10.1023/A:1013123725860, 2001.
Prati, M. V., Costagliola, M. A., Quaranta, F., and Murena, F.: Assessment
of ambient air quality in the port of Naples, J. Air Waste Manage.,
65, 970–979, https://doi.org/10.1080/10962247.2015.1050129, 2015.
Pun, B. K., Seigneur, C., and Lohman, K.: Modeling secondary organic aerosol formation via multiphase partitioning with molecular data, Environ. Sci. Technol., 40, 4722–4731, https://doi.org/10.1021/es0522736, 2006.
Pye, H. O. T. and Pouliot, G. A.: Modeling the role of alkanes, polycyclic
aromatic hydrocarbons, and their oligomers in secondary organic aerosol
formation, Environ. Sci. Technol., 46, 6041–6047,
https://doi.org/10.1021/es300409w, 2012.
Pye, H. O. T., Murphy, B. N., Xu, L., Ng, N. L., Carlton, A. G., Guo, H., Weber, R., Vasilakos, P., Appel, K. W., Budisulistiorini, S. H., Surratt, J. D., Nenes, A., Hu, W., Jimenez, J. L., Isaacman-VanWertz, G., Misztal, P. K., and Goldstein, A. H.: On the implications of aerosol liquid water and phase separation for organic aerosol mass, Atmos. Chem. Phys., 17, 343–369, https://doi.org/10.5194/acp-17-343-2017, 2017.
Ramboll Environment and Health: CAMx Source Code and Documentation, CAMx v6.50 (April 30, 2018), https://camx-wp.azurewebsites.net/download/source/ (last access: 7 September 2023), 2018.
Ramboll Environment and Health: User's Guide COMPREHENSIVE AIR QUALITY MODEL
WITH EXTENSIONS: Version 7.10, User's Guide,
https://camx-wp.azurewebsites.net/Files/CAMxUsersGuide_v7.10.pdf (last access: 7 September 2023), 2020.
Reichle, L. J., Cook, R., Yanca, C. A., and Sonntag, D. B.: Development of
organic gas exhaust speciation profiles for nonroad spark-ignition and
compression-ignition engines and equipment, J. Air Waste Manage.,
65, 1185–1193, https://doi.org/10.1080/10962247.2015.1020118, 2015.
Remke, E., Brouwer, E., Kooijman, A., Blindow, I., Esselink, H., and
Roelofs, J. G. M.: Even low to medium nitrogen deposition impacts vegetation
of dry, coastal dunes around the Baltic Sea, Environ. Pollut., 157,
792–800, https://doi.org/10.1016/j.envpol.2008.11.020, 2009.
Riccio, A., Ciaramella, A., Giunta, G., Galmarini, S., Solazzo, E., and
Potempski, S.: On the systematic reductionof data complexity in multimodel
atmospheric dispersion ensemble modeling, J. Geophys. Res., 117, D05314,
https://doi.org/10.1029/2011JD016503, 2012.
Robinson, A. L., Donahue, N. M., Shrivastava, M. K., Weitkamp, E. A., Sage,
A. M., Grieshop, A. P., Lane, T. E., Pierce, J. R., and Pandis, S. N.:
Rethinking organic aerosols: semivolatile emissions and photochemical aging,
Science, 315, 1259—1262, https://doi.org/10.1126/science.1133061, 2007.
Roselle, S. J. and Binkowski, F. S.: Cloud Dynamics and Chemistry, Chap. 11, https://www.cmascenter.org/cmaq/science_documentation/pdf/ch11.pdf (last access: 7 September 2023), 1999.
Schaap, M., van Loon, M., ten Brink, H. M., Dentener, F. J., and Builtjes, P. J. H.: Secondary inorganic aerosol simulations for Europe with special attention to nitrate, Atmos. Chem. Phys., 4, 857–874, https://doi.org/10.5194/acp-4-857-2004, 2004.
Schaap, M., Sauter, F., Boersen, G., and Builtjes, P.: The integration of LOTOS and EUROS: Activities during 2004. Tech. rep. Apeldoorn, The Netherlands (in Dutch): TNOreport B&O-A R2005/209, 2005 (data available at: https://lotos-euros.tno.nl/open-source-version/,
last access: 19 January 2023).
Schaap, M., Manders, A. M. M., Hendriks, E. C. J., Cnossen, J. M., Segers,
A. J. S., Denier van der Gon, H. A. C., Jozwicka, M., Sauter, F., Velders, G.,
Matthijsen, J., and Builtjes, P. J. H.: Regional modelling of particulate matter
for the Netherlands, Tech. rep., Netherlands Environmental Assessment Agency
(PBL), https://www.pbl.nl/sites/default/files/downloads/500099008_0.pdf (last access: 7 September 2023), 2009.
Schembari, C., Cavalli, F., Cuccia, E., Hjorth, J., Calzolai, G., Pérez,
N., Pey, J., Prati, P., and Raes, F.: Impact of a European directive on ship
emissions on air quality in Mediterranean harbours, Atmos. Environ.,
61, 661–669, https://doi.org/10.1016/j.atmosenv.2012.06.047, 2012.
Schober, P., Boer, C., and Schwarte, L. A.: Correlation Coefficients:
Appropriate Use and Interpretation, Anesth. Analg., 126, 1763–1768,
https://doi.org/10.1213/ANE.0000000000002864, 2018.
Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics, John Wiley and Sons, New York, ISBN 9781119221166, 1998.
Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics:
From Air Pollution to Climate Change. 2nd Edition, John Wiley & Sons, New
York, ISBN 978-1118947401, 2006.
Simpson, D., Benedictow, A., Berge, H., Bergström, R., Emberson, L. D., Fagerli, H., Flechard, C. R., Hayman, G. D., Gauss, M., Jonson, J. E., Jenkin, M. E., Nyíri, A., Richter, C., Semeena, V. S., Tsyro, S., Tuovinen, J.-P., Valdebenito, Á., and Wind, P.: The EMEP MSC-W chemical transport model – technical description, Atmos. Chem. Phys., 12, 7825–7865, https://doi.org/10.5194/acp-12-7825-2012, 2012.
Simpson, D., Bergström, R., Briolat, A., Imhof, H., Johansson, J., Priestley, M., and Valdebenito, A.: GenChem v1.0 – a chemical pre-processing and testing system for atmospheric modelling, Geosci. Model Dev., 13, 6447–6465, https://doi.org/10.5194/gmd-13-6447-2020, 2020.
Sippula, O., Stengel, B., Sklorz, M., Streibel, T., Rabe, R., Orasche, J.,
Lintelmann, J., Michalke, B., Abbaszade, G., Radischat, C., Gröger, T.,
Schnelle-Kreis, J., Harndorf, H., and Zimmermann, R.: Particle emissions
from a marine engine: chemical composition and aromatic emission profiles
under various operating conditions, Environ. Sci. Technol., 48,
11721–11729, https://doi.org/10.1021/es502484z, 2014.
Solazzo, E., Bianconi, R., Pirovano, G., Matthias, V., Vautard, R., Moran,
M. D., Wyat Appel, K., Bessagnet, B., Brandt, J., Christensen, J. H.,
Chemel, C., Coll, I., Ferreira, J., Forkel, R., Francis, X. V., Grell, G.,
Grossi, P., Hansen, A. B., Miranda, A. I., Nopmongcol, U., Prank, M.,
Sartelet, K. N., Schaap, M., Silver, J. D., Sokhi, R. S., Vira, J., Werhahn,
J., Wolke, R., Yarwood, G., Zhang, J., Rao, S. T., and Galmarini, S.:
Operational model evaluation for particulate matter in Europe and North
America in the context of AQMEII, Atmos. Environ., 53, 75–92,
https://doi.org/10.1016/j.atmosenv.2012.02.045, 2012.
Solazzo, E., Riccio, A., Kioutsioukis, I., and Galmarini, S.: Pauci ex tanto numero: reduce redundancy in multi-model ensembles, Atmos. Chem. Phys., 13, 8315–8333, https://doi.org/10.5194/acp-13-8315-2013, 2013.
Solazzo, E., Riccio, A., van Dingenen, R., Valentini, L., and Galmarini, S.:
Evaluation and uncertainty estimation of the impact of air quality modelling
on crop yields and premature deaths using a multi-model ensemble, Sci. Total
Environ., 633, 1437–1452, https://doi.org/10.1016/j.scitotenv.2018.03.317,
2018.
Song, S.-K. and Shon, Z.-H.: Current and future emission estimates of
exhaust gases and particles from shipping at the largest port in Korea,
Environ. Sci. Pollut. R., 21, 6612–6622,
https://doi.org/10.1007/s11356-014-2569-5, 2014.
Sotiropoulou, R. E. P. and Tagaris, E.: Impact of Shipping Emissions on
European Air Quality, in:
Perspectives on Atmospheric Sciences, edited by: Karacostas, T., Bais, A., and Nastos, P., Springer Atmospheric Sciences,
https://doi.org/10.1007/978-3-319-35095-0_149, 2017.
Strader, R., Lurmann, F., and Pandis, S. N.: Evaluation of secondary organic aerosol formation in winter, Atmos. Environ., 33, 4849–4863, https://doi.org/10.1016/S1352-2310(99)00310-6, 1999.
Tadic, I., Crowley, J. N., Dienhart, D., Eger, P., Harder, H., Hottmann, B., Martinez, M., Parchatka, U., Paris, J.-D., Pozzer, A., Rohloff, R., Schuladen, J., Shenolikar, J., Tauer, S., Lelieveld, J., and Fischer, H.: Net ozone production and its relationship to nitrogen oxides and volatile organic compounds in the marine boundary layer around the Arabian Peninsula, Atmos. Chem. Phys., 20, 6769–6787, https://doi.org/10.5194/acp-20-6769-2020, 2020.
Tomasi, C. and Lupi, A.: Primary and secondary sources of atmospheric aerosol, Atmospheric Aerosols: Life Cycles and Effects on Air Quality and Climate, Wiley, 1–86, https://doi.org/10.1002/9783527336449.ch1, 2017.
Tuccella, P., Menut, L., Briant, R., Deroubaix, A., Khvorostyanov, D.,
Mailler, S., Siour, G., and Turquety, S.: Implementation of Aerosol-Cloud
Interaction within WRF-CHIMERE Online Coupled Model: Evaluation and
Investigation of the Indirect Radiative Effect from Anthropogenic Emission
Reduction on the Benelux Union, Atmosphere, 10, 20,
https://doi.org/10.3390/atmos10010020, 2019.
UCAR/NCAR Earth System Laboratory: WRF – Weather Research and Forecasting Model Users' Page, MMM/WRF [model code], https://doi.org/10.5065/D6MK6B4K, 2023.
US EPA Office of Research and Development: CMAQ (5.2), Zenodo [model code], https://doi.org/10.5281/zenodo.1167892, 2017.
Večeřa, Z., Mikuška, P., Smolík, J., Eleftheriadis, K.,
Bryant, C., Colbeck, I., and Lazaridis, M.: Shipboard Measurements of
Nitrogen Dioxide, Nitrous Acid, Nitric Acid and Ozone in the Eastern
Mediterranean Sea, Water Air Soil Poll.-Focus, 8, 117–125,
https://doi.org/10.1007/s11267-007-9133-y, 2008.
Viana, M., Amato, F., Alastuey, A., Querol, X., Moreno, T., Dos Santos, S.
G., Herce, M. D., and Fernández-Patier, R.: Chemical tracers of
particulate emissions from commercial shipping, Environ. Sci. Technol.,
43, 7472–7477, https://doi.org/10.1021/es901558t, 2009.
Viana, M., Hammingh, P., Colette, A., Querol, X., Degraeuwe, B., Vlieger, I.
d., and van Aardenne, J.: Impact of maritime transport emissions on coastal
air quality in Europe, Atmos. Environ., 90, 96–105,
https://doi.org/10.1016/j.atmosenv.2014.03.046, 2014.
Viana, M., Rizza, V., Tobías, A., Carr, E., Corbett, J., Sofiev, M.,
Karanasiou, A., Buonanno, G., and Fann, N.: Estimated health impacts from
maritime transport in the Mediterranean region and benefits from the use of
cleaner fuels, Environ. Internat., 138, 105670,
https://doi.org/10.1016/j.envint.2020.105670, 2020.
Wesely, M. L.: Parameterization of surface resistances to gaseous dry
deposition in regional-scale numerical models, Atmos. Environ., 23,
1293–1304, https://doi.org/10.1016/0004-6981(89)90153-4, 1989.
Whitten, G. Z., Hogo, H., and Killus, J. P.: The carbon-bond mechanism: A
condensed kinetic mechanism for photochemical smog, Environ. Sci. Technol.,
18, 280–287, 1980.
Wiedinmyer, C., Akagi, S. K., Yokelson, R. J., Emmons, L. K., Al-Saadi, J. A., Orlando, J. J., and Soja, A. J.: The Fire INventory from NCAR (FINN): a high resolution global model to estimate the emissions from open burning, Geosci. Model Dev., 4, 625–641, https://doi.org/10.5194/gmd-4-625-2011, 2011.
WPS: The Weather Research and Forecasting (WRF) Preprocessing System, GitHub [data set, code], https://github.com/wrf-model/WPS, last access: 7 September 2023.
Zender, C., Bian, H., and Newman, D.: Mineral Dust Entrainmentand Deposition
(DEAD) model: Description and 1990s dust climatology, J. Geophys. Res.,
108, 4416–4437, https://doi.org/10.1029/2002jd002775, 2003.
Zhang, L., Brook, J. R., and Vet, R.: A revised parameterization for gaseous dry deposition in air-quality models, Atmos. Chem. Phys., 3, 2067–2082, https://doi.org/10.5194/acp-3-2067-2003, 2003.
Zhong, Q., Shen, H., Yun, X., Chen, Y., Ren, Y.'a., Xu, H., Shen, G., Du,
W., Meng, J., Li, W., Ma, J., and Tao, S.: Global Sulfur Dioxide Emissions
and the Driving Forces, Environ. Sci. Technol., 54, 6508–6517,
https://doi.org/10.1021/acs.est.9b07696, 2020.
Short summary
The Mediterranean Sea is a heavily trafficked shipping area, and air quality monitoring stations in numerous cities along the Mediterranean coast have detected high levels of air pollutants originating from shipping emissions. The current study investigates how existing restrictions on shipping-related emissions to the atmosphere ensure compliance with legislation. Focus was laid on fine particles and particle species, which were simulated with five different chemical transport models.
The Mediterranean Sea is a heavily trafficked shipping area, and air quality monitoring stations...
Altmetrics
Final-revised paper
Preprint