Articles | Volume 22, issue 13
https://doi.org/10.5194/acp-22-8843-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-8843-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Volcanic stratospheric injections up to 160 Tg(S) yield a Eurasian winter warming indistinguishable from internal variability
Kevin DallaSanta
NASA Goddard Institute for Space Studies, New York, New York, USA
Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York, USA
Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York, USA
Department of Earth and Environmental Sciences, Columbia University, New York, New York, USA
Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York, USA
Related authors
Tiehan Zhou, Kevin DallaSanta, Larissa Nazarenko, Gavin A. Schmidt, and Zhonghai Jin
Atmos. Chem. Phys., 21, 7395–7407, https://doi.org/10.5194/acp-21-7395-2021, https://doi.org/10.5194/acp-21-7395-2021, 2021
Short summary
Short summary
Stratospheric radiative damping increases with rising CO2. Sensitivity experiments using the one-dimensional mechanistic models of the quasi-biennial oscillation (QBO) indicate a shortening of the simulated QBO period due to the enhancing of the radiative damping. This result suggests that increasing radiative damping may play a role in determining the QBO period in a warming climate along with wave momentum flux entering the stratosphere and tropical vertical residual velocity.
Tyler P. Janoski, Ivan Mitevski, Ryan J. Kramer, Michael Previdi, and Lorenzo M. Polvani
Geosci. Model Dev., 18, 3065–3079, https://doi.org/10.5194/gmd-18-3065-2025, https://doi.org/10.5194/gmd-18-3065-2025, 2025
Short summary
Short summary
We developed ClimKern, a Python package and radiative kernel repository, to simplify calculating radiative feedbacks and make climate sensitivity studies more reproducible. Testing of ClimKern with sample climate model data reveals that radiative kernel choice may be more important than previously thought, especially in polar regions. Our work highlights the need for kernel sensitivity analyses to be included in future studies.
Adam A. Scaife, Mark P. Baldwin, Amy H. Butler, Andrew J. Charlton-Perez, Daniela I. V. Domeisen, Chaim I. Garfinkel, Steven C. Hardiman, Peter Haynes, Alexey Yu Karpechko, Eun-Pa Lim, Shunsuke Noguchi, Judith Perlwitz, Lorenzo Polvani, Jadwiga H. Richter, John Scinocca, Michael Sigmond, Theodore G. Shepherd, Seok-Woo Son, and David W. J. Thompson
Atmos. Chem. Phys., 22, 2601–2623, https://doi.org/10.5194/acp-22-2601-2022, https://doi.org/10.5194/acp-22-2601-2022, 2022
Short summary
Short summary
Great progress has been made in computer modelling and simulation of the whole climate system, including the stratosphere. Since the late 20th century we also gained a much clearer understanding of how the stratosphere interacts with the lower atmosphere. The latest generation of numerical prediction systems now explicitly represents the stratosphere and its interaction with surface climate, and here we review its role in long-range predictions and projections from weeks to decades ahead.
Tiehan Zhou, Kevin DallaSanta, Larissa Nazarenko, Gavin A. Schmidt, and Zhonghai Jin
Atmos. Chem. Phys., 21, 7395–7407, https://doi.org/10.5194/acp-21-7395-2021, https://doi.org/10.5194/acp-21-7395-2021, 2021
Short summary
Short summary
Stratospheric radiative damping increases with rising CO2. Sensitivity experiments using the one-dimensional mechanistic models of the quasi-biennial oscillation (QBO) indicate a shortening of the simulated QBO period due to the enhancing of the radiative damping. This result suggests that increasing radiative damping may play a role in determining the QBO period in a warming climate along with wave momentum flux entering the stratosphere and tropical vertical residual velocity.
Antara Banerjee, Amy H. Butler, Lorenzo M. Polvani, Alan Robock, Isla R. Simpson, and Lantao Sun
Atmos. Chem. Phys., 21, 6985–6997, https://doi.org/10.5194/acp-21-6985-2021, https://doi.org/10.5194/acp-21-6985-2021, 2021
Short summary
Short summary
We find that simulated stratospheric sulfate geoengineering could lead to warmer Eurasian winters alongside a drier Mediterranean and wetting to the north. These effects occur due to the strengthening of the Northern Hemisphere stratospheric polar vortex, which shifts the North Atlantic Oscillation to a more positive phase. We find the effects in our simulations to be much more significant than the wintertime effects of large tropical volcanic eruptions which inject much less sulfate aerosol.
Cited articles
Baldwin, M.: The Arctic Oscillation and its role in stratosphere-troposphere
coupling, SPARC Newsletter, 14, 10–14, 2000. a
Baldwin, M. P. and Thompson, D. W.: A critical comparison of
stratosphere–troposphere coupling indices, Q. J. Roy.
Meteor. Soc., 135, 1661–1672, https://doi.org/10.1002/qj.479, 2009. a
Banerjee, A., Butler, A. H., Polvani, L. M., Robock, A., Simpson, I. R., and Sun, L.: Robust winter warming over Eurasia under stratospheric sulfate geoengineering – the role of stratospheric dynamics, Atmos. Chem. Phys., 21, 6985–6997, https://doi.org/10.5194/acp-21-6985-2021, 2021. a
Bittner, M., Schmidt, H., Timmreck, C., and Sienz, F.: Using a large ensemble
of simulations to assess the Northern Hemisphere stratospheric dynamical
response to tropical volcanic eruptions and its uncertainty, Geophys.
Res. Lett., 43, 9324–9332, https://doi.org/10.1002/2016GL070587, 2016. a, b, c
Christiansen, B.: Volcanic eruptions, large-scale modes in the Northern
Hemisphere, and the El Niño-Southern Oscillation, J. Climate,
21, 910–922, https://doi.org/10.1175/2007JCLI1657.1, 2008. a, b
Clyne, M., Lamarque, J.-F., Mills, M. J., Khodri, M., Ball, W., Bekki, S., Dhomse, S. S., Lebas, N., Mann, G., Marshall, L., Niemeier, U., Poulain, V., Robock, A., Rozanov, E., Schmidt, A., Stenke, A., Sukhodolov, T., Timmreck, C., Toohey, M., Tummon, F., Zanchettin, D., Zhu, Y., and Toon, O. B.: Model physics and chemistry causing intermodel disagreement within the VolMIP-Tambora Interactive Stratospheric Aerosol ensemble, Atmos. Chem. Phys., 21, 3317–3343, https://doi.org/10.5194/acp-21-3317-2021, 2021. a, b
Coupe, J. and Robock, A.: The Influence of Stratospheric Soot and Sulfate
Aerosols on the Northern Hemisphere Wintertime Atmospheric Circulation,
J. Geophys. Res.-Atmos., 126, e2020JD034513,
https://doi.org/10.1029/2020JD034513, 2021. a, b
DallaSanta, K., Gerber, E. P., and Toohey, M.: The circulation response to
volcanic eruptions: The key roles of stratospheric warming and eddy
interactions, J. Climate, 32, 1101–1120,
https://doi.org/10.1175/JCLI-D-18-0099.1, 2019. a, b, c
Dee, S. G., Cobb, K. M., Emile-Geay, J., Ault, T. R., Edwards, R. L., Cheng,
H., and Charles, C. D.: No consistent ENSO response to volcanic forcing over
the last millennium, Science, 367, 1477–1481, https://doi.org/10.1126/science.aax2000,
2020. a
Deser, C., Phillips, A., Bourdette, V., and Teng, H.: Uncertainty in climate
change projections: the role of internal variability, Clim. Dynam., 38,
527–546, https://doi.org/10.1007/s00382-010-0977-x, 2012. a
Driscoll, S., Bozzo, A., Gray, L. J., Robock, A., and Stenchikov, G.: Coupled
Model Intercomparison Project 5 (CMIP5) simulations of climate following
volcanic eruptions, J. Geophys. Res., 117, D17105,
https://doi.org/10.1029/2012JD017607, 2012. a, b, c
Eyring, V., Lamarque, J.-F., Hess, P., Arfeuille, F., Bowman, K., Chipperfiel,
M. P., Duncan, B., Fiore, A., Gettelman, A., Giorgetta, M. A., Granier, C.,
Hegglin, M., Kinnison, D., Kunze, M., Langematz, U., Luo, B.,
Martin, R., Matthes, K., Newman, P., Peter, T., Robock, A.,
Ryerson, T., Saiz-Lopez, A., Salawitch, R., Schultz, M.,
Shepherd, T., Shindell, D., Staehelin, J., Tegtmeier, S., Thomason, L., Tilmes, S., Vernier, J.-P., Waugh, D., and Young, P.:
Overview of IGAC/SPARC Chemistry-Climate Model Initiative (CCMI) community
simulations in support of upcoming ozone and climate assessments, SPARC
Newsletter, 40, 48–66, 2013. a
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016. a
Fischer, E. M., Luterbacher, J., Zorita, E., Tett, S. F. B., Casty, C., and
Wanner, H.: European climate response to tropical volcanic eruptions over
the last half millennium, Geophys. Res. Lett., 34, L05707,
https://doi.org/10.1029/2006GL027992, 2007. a, b
Graf, H., Kirchner, I., Robock, A., and Schult, I.: Pinatubo eruption winter
climate effects: Model versus observations, Clim. Dynam., 9, 81–93,
https://doi.org/10.1007/BF00210011, 1993. a, b
Hansen, J., Sato, M., Ruedy, R., Nazarenko, L., Lacis, A., Schmidt, G. A.,
Russell, G., Aleinov, I., Bauer, M., Bauer, S., Bell, N., Cairns, B., Canuto,
V., Chandler, M., Cheng, Y., Del Genio, A., Faluvegi, G., Fleming, E.,
Friend, A., Hall, T., Jackman, C., Kelley, M., Kiang, N., Koch, D., Lean, J.,
Lerner, J., Lo, K., Menon, S., Miller, R., Minnis, P., Novakov, T., Oinas,
V., Perlwitz, J., Perlwitz, J., Rind, D., Romanou, A., Shindell, D., Stone,
P., Sun, S., Tausnev, N., Thresher, D., Wielicki, B., Wong, T., Yao, M., and
Zhang, S.: Efficacy of climate forcings, J. Geophys. Res.-Atmos., 110, D18104, https://doi.org/10.1029/2005JD005776, 2005. a
Khodri, M., Izumo, T., Vialard, J., Janicot, S., Cassou, C., Lengaigne, M.,
Mignot, J., Gastineau, G., Guilyardi, E., Lebas, N., Robock A., and McPhaden, M. J.: Tropical
explosive volcanic eruptions can trigger El Niño by cooling tropical
Africa, Nat. Commun., 8, 778, https://doi.org/10.1038/s41467-017-00755-6,
2017. a
Kirchner, I., Stenchikov, G. L., Graf, H.-F., Robock, A., and Antuña,
J. C.: Climate model simulation of winter warming and summer cooling
following the 1991 Mount Pinatubo volcanic eruption, J. Geophys.
Res.-Atmos., 104, 19039–19055, https://doi.org/10.1029/1999JD900213,
1999. a
Kodera, K.: Influence of volcanic eruptions on the troposphere through
stratospheric dynamical processes in the northern hemisphere winter, J. Geophys. Res.-Atmos., 99, 1273–1282,
https://doi.org/10.1029/93JD02731, 1994. a
Kravitz, B., MacMartin, D. G., Mills, M. J., Richter, J. H., Tilmes, S.,
Lamarque, J.-F., Tribbia, J. J., and Vitt, F.: First simulations of designing
stratospheric sulfate aerosol geoengineering to meet multiple simultaneous
climate objectives, J. Geophys. Res.-Atmos., 122,
12–616, https://doi.org/10.1002/2017JD026874, 2017. a, b
Luterbacher, J., Dietrich, D., Xoplaki, E., Grosjean, M., and Wanner, H.:
European seasonal and annual temperature variability, trends, and extremes
since 1500, Science, 303, 1499–1503, https://doi.org/10.1126/science.1093877, 2004. a
Maher, N., Milinski, S., Suarez-Gutierrez, L., Botzet, M., Dobrynin, M.,
Kornblue, L., Kröger, J., Takano, Y., Ghosh, R., Hedemann, C., Li, C., Li,
H., Manzini, E., Notz, N., Putrasahan, D., Boysen, L., Claussen, M., Ilyina,
T., Olonscheck, D., Raddatz, T., Stevens, B., and Marotzke, J.: The Max
Planck Institute Grand Ensemble: Enabling the Exploration of Climate System
Variability, J. Adv. Model. Earth Sy., 11, 2050–2069,
https://doi.org/10.1029/2019MS001639, 2019. a
Miller, R. L., Schmidt, G. A., Nazarenko, L. S., Bauer, S. E., Kelley, M.,
Ruedy, R., Russell, G. L., Ackerman, A. S., Aleinov, I., Bauer, M., Bleck,
R., Canuto, V., Cesana, G., Cheng, Y., Clune, T. L., Cook, B. I., Cruz,
C. A., Del Genio, A. D., Elsaesser, G. S., Faluvegi, G., Kiang, N. Y., Kim,
D., Lacis, A. A., Leboissetier, A., LeGrande, A. N., Lo, K. K., Marshall, J.,
Matthews, E. E., McDermid, S., Mezuman, K., Murray, L. T., Oinas, V., Orbe,
C., Pérez García-Pando, C., Perlwitz, J. P., Puma, M. J., Rind,
D., Romanou, A., Shindell, D. T., Sun, S., Tausnev, N., Tsigaridis, K.,
Tselioudis, G., Weng, E., Wu, J., and Yao, M. S.: CMIP6 Historical
Simulations (1850–2014) With GISS-E2.1, J. Adv. Model.
Earth Sy., 13, e2019MS002034, https://doi.org/10.1029/2019MS002034, 2021. a, b
NASA Goddard Institute for Space Studies (NASA/GISS): NASA-GISS GISS-E2-2-G model output prepared for CMIP6 CMIP historical, Earth System Grid Federation, WCRP [data set], https://doi.org/10.22033/ESGF/CMIP6.7129, 2019. a
Orbe, C., Rind, D., Jonas, J., Nazarenko, L., Faluvegi, G., Murray, L. T.,
Shindell, D. T., Tsigaridis, K., Zhou, T., Kelley, M., and Schmidt, G. A.: GISS Model E2.
2: A Climate Model Optimized for the Middle Atmosphere – 2. Validation of
Large-Scale Transport and Evaluation of Climate Response, J.
Geophys. Res.-Atmos., 125, e2020JD033151,
https://doi.org/10.1029/2020JD033151, 2020 (code available at: https://www.giss.nasa.gov/tools/modelE/, last access: 4 July 2022). a, b, c
Plumb, R. A.: Tracer interrelationships in the stratosphere, Rev.
Geophys., 45, RG4005, https://doi.org/10.1029/2005RG000179, 2007. a
Rind, D., Suozzo, R., and Balachandran, N. K.: The GISS Global Climate–Middle
Atmosphere Model. Part II: Model Variability Due to Interactions between
Planetary Waves, the Mean Circulation and Gravity Wave Drag, J. Atmos. Sci.,
45, 371–386, https://doi.org/10.1175/1520-0469(1988)045<0371:TGGCMA>2.0.CO;2, 1988. a
Rind, D., Orbe, C., Jonas, J., Nazarenko, L., Zhou, T., Kelley, M., Lacis, A.,
Shindell, D., Faluvegi, G., Romanou, A., Russell, G., Tausnev, N., Bauer, M.,
and Schmidt, G.: GISS Model E2.2: A Climate Model Optimized for the Middle
Atmosphere – Model Structure, Climatology, Variability, and Climate
Sensitivity, J. Geophys. Res.-Atmos., 125, e2019JD032204,
https://doi.org/10.1029/2019JD032204, 2020 (code available at: https://www.giss.nasa.gov/tools/modelE/, last access: 4 July 2022). a, b
Robock, A.: Comment on “No consistent ENSO response to volcanic forcing over the last millennium”, Science, 369, eabc0502, https://doi.org/10.1126/science.abc0502, 2020. a
Robock, A. and Mao, J.: Winter Warming from Large Volcanic Eruptions,
Geophys. Res. Lett., 12, 2405–2408, https://doi.org/10.1029/92GL02627, 1992. a, b, c
Robock, A. and Mao, J.: The volcanic signal in surface temperature
observations, J. Climate, 8, 1086–1103,
https://doi.org/10.1175/1520-0442(1995)008<1086:TVSIST>2.0.CO;2, 1995. a, b
Shindell, D. T., Schmidt, G. A., Mann, M. E., and Faluvegi, G.: Dynamic winter
climate response to large tropical volcanic eruptions since 1600, J.
Geophys. Res.-Atmos., 109, D05104, https://doi.org/10.1029/2003JD004151, 2004. a
Stenchikov, G., Robock, A., Ramaswamy, V., Schwarzkopf, M. D., Hamilton, K.,
and Ramachandran, S.: Arctic Oscillation response to the 1991 Mount Pinatubo
eruption: Effects of volcanic aerosols and ozone depletion, J.
Geophys. Res.-Atmos., 107, 4803, https://doi.org/10.1029/2002JD002090, 2002. a, b
Stenchikov, G., Hamilton, K., Stouffer, R. J., Robock, A., Ramaswamy, V.,
Santer, B., and Graf, H.-F.: Arctic Oscillation response to volcanic
eruptions in the IPCC AR4 climate models, J. Geophys. Res.-Atmos., 111, D07107, https://doi.org/10.1029/2005JD006286, 2006. a
Stenchikov, G. L., Kirchner, I., Robock, A., Graf, H.-F., Antuña, J. C.,
Grainger, R. G., Lambert, A., and Thomason, L.: Radiative forcing from the
1991 Mount Pinatubo volcanic eruption, J. Geophys. Res.-Atmos., 103, 13837–13857, https://doi.org/10.1029/98JD00693, 1998. a
Thomas, M. A., Giorgetta, M. A., Timmreck, C., Graf, H.-F., and Stenchikov, G.: Simulation of the climate impact of Mt. Pinatubo eruption using ECHAM5 – Part 2: Sensitivity to the phase of the QBO and ENSO, Atmos. Chem. Phys., 9, 3001–3009, https://doi.org/10.5194/acp-9-3001-2009, 2009.
a, b
Toohey, M. and Sigl, M.: Volcanic stratospheric sulfur injections and aerosol optical depth from 500 BCE to 1900 CE, Earth Syst. Sci. Data, 9, 809–831, https://doi.org/10.5194/essd-9-809-2017, 2017. a, b, c, d
Toohey, M. and Sigl, M.: Volcanic stratospheric sulfur injections and aerosol
optical depth from 500 BCE to 1900 CE, version 3, World Data Center for
Climate (WDCC) at DKRZ [data set], https://doi.org/10.26050/WDCC/eVolv2k_v3, 2019. a
Toohey, M., Stevens, B., Schmidt, H., and Timmreck, C.: Easy Volcanic Aerosol (EVA v1.0): an idealized forcing generator for climate simulations, Geosci. Model Dev., 9, 4049–4070, https://doi.org/10.5194/gmd-9-4049-2016, 2016 (data available at: https://doi.org/10.5194/gmd-9-4049-2016-supplement). a, b, c, d, e
Trenberth, K. E.: The Definition of El Niño, B. Am.
Meteorol. Soc., 78, 2771–2777,
https://doi.org/10.1175/1520-0477(1997)078<2771:TDOENO>2.0.CO;2, 1997. a
Von Storch, H. and Zwiers, F. W.: Statistical analysis in climate research,
Cambridge University Press, ISBN 0521450713, 2002. a
Zambri, B. and Robock, A.: Winter warming and summer monsoon reduction after
volcanic eruptions in Coupled Model Intercomparison Project 5 (CMIP5)
simulations, Geophys. Res. Lett., 43, 10920–10928, https://doi.org/10.1002/2016GL070460,
2016. a
Zanchettin, D., Khodri, M., Timmreck, C., Toohey, M., Schmidt, A., Gerber, E. P., Hegerl, G., Robock, A., Pausata, F. S. R., Ball, W. T., Bauer, S. E., Bekki, S., Dhomse, S. S., LeGrande, A. N., Mann, G. W., Marshall, L., Mills, M., Marchand, M., Niemeier, U., Poulain, V., Rozanov, E., Rubino, A., Stenke, A., Tsigaridis, K., and Tummon, F.: The Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP): experimental design and forcing input data for CMIP6, Geosci. Model Dev., 9, 2701–2719, https://doi.org/10.5194/gmd-9-2701-2016, 2016. a
Short summary
Volcanic eruptions cool the earth by reducing the amount of sunlight reaching the surface. Paradoxically, it has been suggested that they may also warm the surface, but the evidence for this is scant. Here, we show that a small warming can be seen in a climate model for large-enough eruptions. However, even for eruptions much larger than those that have occurred in the past two millennia, post-eruption winters over Eurasia are indistinguishable from those occurring without a prior eruption.
Volcanic eruptions cool the earth by reducing the amount of sunlight reaching the surface....
Altmetrics
Final-revised paper
Preprint