Articles | Volume 22, issue 11
https://doi.org/10.5194/acp-22-7647-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-7647-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Regional impacts of black carbon morphologies on shortwave aerosol–radiation interactions: a comparative study between the US and China
State Environment Protection Key Laboratory of Satellite Remote Sensing, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China
State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230026, China
Zhengqiang Li
State Environment Protection Key Laboratory of Satellite Remote Sensing, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China
Chenchong Zhang
Center for Aerosol Science and Engineering, Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230026, China
Yongming Zhang
State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230026, China
Ying Zhang
State Environment Protection Key Laboratory of Satellite Remote Sensing, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China
Gabriele Curci
Department of Physical and Chemical Sciences, University of L'Aquila, L'Aquila, Italy
Center of Excellence in Telesensing of Environment and Model Prediction of Severe Events (CETEMPS), University of L'Aquila, L'Aquila (AQ), Italy
Rajan K. Chakrabarty
Center for Aerosol Science and Engineering, Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
McDonnell Center for the Space Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA
Related authors
Jie Luo, Miao Hu, Jibing Qiu, Kaitao Li, Hao He, Yuping Sun, and Xiulin Geng
EGUsphere, https://doi.org/10.5194/egusphere-2024-1155, https://doi.org/10.5194/egusphere-2024-1155, 2024
Preprint archived
Short summary
Short summary
In this work, we first calculate the scattering signal returned from partially-coated black carbon based on the SP2 measurement, and then the mixing states were retrieved using Mie theory, and the difference between the retrieved and "true" mixing states can be the uncertainties of the SP2 -Represent measurement. In addition, the effects on the direct radiative forcing are also evaluated.
Jie Luo, Dan Li, Yuanyuan Wang, Dandan Sun, Weizhen Hou, Jinghe Ren, Hailing Wu, Peng Zhou, and Jibing Qiu
Atmos. Chem. Phys., 24, 427–448, https://doi.org/10.5194/acp-24-427-2024, https://doi.org/10.5194/acp-24-427-2024, 2024
Short summary
Short summary
Remote sensing of brown carbon is very important for climate research, and current optical methods rely mainly on spectral properties for inversion. However, the influence of the microscopic properties of black carbon has rarely been considered by previous studies. This paper shows how the remote sensing of brown carbon is affected by the microphysical properties of black carbon and highlights the adaptability of remote sensing methods.
Jie Luo, Zhengqiang Li, Cheng Fan, Hua Xu, Ying Zhang, Weizhen Hou, Lili Qie, Haoran Gu, Mengyao Zhu, Yinna Li, and Kaitao Li
Atmos. Meas. Tech., 15, 2767–2789, https://doi.org/10.5194/amt-15-2767-2022, https://doi.org/10.5194/amt-15-2767-2022, 2022
Short summary
Short summary
A single model is difficult to represent various shapes of dust. We proposed a tunable model to represent dust with various shapes. Two tunable parameters were used to represent the effects of the erosion degree and binding forces from the mass center. Thus, the model can represent various dust shapes by adjusting the tunable parameters. Besides, the applicability of the spheroid model in calculating the optical properties and polarimetric characteristics is evaluated.
Jie Luo, Yongming Zhang, and Qixing Zhang
Geosci. Model Dev., 14, 2113–2126, https://doi.org/10.5194/gmd-14-2113-2021, https://doi.org/10.5194/gmd-14-2113-2021, 2021
Short summary
Short summary
In this work, we developed a numerical method to investigate the effects of black carbon (BC) morphology on the estimation of brown carbon (BrC) absorption using the absorption Ångström exponent (AAE) method. We found that BC morphologies have significant impacts on the estimated BrC absorptions. Moreover, we have demonstrated under what conditions the AAE methods can provide good or bad estimations and explored the reasons for why the good or bad estimations were caused.
Cheng Fan, Gerrit de Leeuw, Xiaoxi Yan, Jiantao Dong, Hanqing Kang, Chengwei Fang, Zhengqiang Li, and Ying Zhang
Atmos. Chem. Phys., 25, 11951–11973, https://doi.org/10.5194/acp-25-11951-2025, https://doi.org/10.5194/acp-25-11951-2025, 2025
Short summary
Short summary
This study describes the analysis of time series of the MODIS-derived aerosol optical depth (AOD) over China between 2010 and 2024. Emission reduction policies were effective with respect to reducing the AOD until 2018. Thereafter, the overall reduction until the end of the study was very small due to unfavorable meteorological factors cancelling favorable anthropogenic effects and resulting in an AOD increase during extended periods. The variations over different areas in China are discussed.
Ying Zhang, Yuanyuan Wei, Gerrit de Leeuw, Ouyang Liu, Yu Chen, Yang Lv, Yuanxun Zhang, and Zhengqiang Li
Atmos. Chem. Phys., 25, 10643–10660, https://doi.org/10.5194/acp-25-10643-2025, https://doi.org/10.5194/acp-25-10643-2025, 2025
Short summary
Short summary
Nitrogen dioxide (NO2) is a major pollutant that, at high concentrations, may affect human health. We evaluated the remote sensing column NO2 in relation to near-surface concentrations throughout the day and found that the prohibition of vertical transport in the morning and the mixing in the afternoon resulted in different relations between the near-surface (NS) and total column NO2 concentrations. These different relationships have consequences for the use of satellite remote sensing to estimate NS NO2 concentrations.
Cheng Chen, Xuefeng Lei, Zhenhai Liu, Haorang Gu, Oleg Dubovik, Pavel Litvinov, David Fuertes, Yujia Cao, Haixiao Yu, Guangfeng Xiang, Binghuan Meng, Zhenwei Qiu, Xiaobing Sun, Jin Hong, and Zhengqiang Li
Earth Syst. Sci. Data, 17, 3497–3519, https://doi.org/10.5194/essd-17-3497-2025, https://doi.org/10.5194/essd-17-3497-2025, 2025
Short summary
Short summary
Particulate Observing Scanning Polarization (POSP) on board the second GaoFen-5 (GF-5(02)) satellite is the first space-borne ultraviolet–visible–near-infrared–shortwave-infrared (UV–VIS–NIR–SWIR) multi-spectral cross-track scanning polarimeter. Due to its wide spectral range and polarimetric capabilities, POSP measurements provide rich information for aerosol and surface characterization. We present the detailed aerosol/surface products generated from POSP's first 18 months of operation, including spectral aerosol optical depth, aerosol-size-/absorption-related properties, surface black-sky and white-sky albedos, etc.
Huiyun Du, Jie Li, Xueshun Chen, Gabriele Curci, Fangqun Yu, Yele Sun, Xu Dao, Song Guo, Zhe Wang, Wenyi Yang, Lianfang Wei, and Zifa Wang
Atmos. Chem. Phys., 25, 5665–5681, https://doi.org/10.5194/acp-25-5665-2025, https://doi.org/10.5194/acp-25-5665-2025, 2025
Short summary
Short summary
Inadequate consideration of mixing states and coatings on black carbon (BC) hinders aerosol radiation forcing quantification. Core–shell mixing aligns well with observations, but partial internal mixing is a more realistic representation. We used a microphysics module to determine the fraction of embedded BC and coating aerosols, constraining the mixing state. This reduced absorption enhancement by 30 %–43 % in northern China, offering insights into BC's radiative effects.
Qiansi Tu, Frank Hase, Ying Zhang, Jiaxin Fang, Yanwu Jiang, Xiaofan Li, Matthias Schneider, Zhuolin Yang, Xin Zhang, and Zhengqiang Li
EGUsphere, https://doi.org/10.5194/egusphere-2025-966, https://doi.org/10.5194/egusphere-2025-966, 2025
Short summary
Short summary
Understanding GHG and air pollutant concentrations and emissions characteristics in the Qinghai-Tibetan Plateau cities remains limited. We present the first CO2, CH4 and CO column abundances using a portal FTIR spectrometer in Xining in 2024. Ground-based data exceeded satellite and model estimates, indicating higher local emissions. Significant CO discrepancies and a strong ∆XCO–∆XCO2 correlation under easterly winds highlight the value of portable FTIR for urban emission studies in the QTP.
Zhe Ji, Zhengqiang Li, Gerrit de Leeuw, Zihan Zhang, Yan Ma, Zheng Shi, Cheng Fan, and Qiao Yao
EGUsphere, https://doi.org/10.5194/egusphere-2025-91, https://doi.org/10.5194/egusphere-2025-91, 2025
Short summary
Short summary
The global AODs for the one of few single-angle polarimeters currently in orbit, Particulate Observing Scanning Polarimeter (POSP) has been proposed. We compared them with observations from the AERONET site and MODIS AOD products. From 19314 collocations, we find an overall high accuracy for the POSP AOD product, with correlation coefficients (R) of 0.914, R2 of 0.825, a root mean square error (RMSE) of 0.085, the fraction within in expected error (EE) of 78.5 %.
Mariya Petrenko, Ralph Kahn, Mian Chin, Susanne E. Bauer, Tommi Bergman, Huisheng Bian, Gabriele Curci, Ben Johnson, Johannes W. Kaiser, Zak Kipling, Harri Kokkola, Xiaohong Liu, Keren Mezuman, Tero Mielonen, Gunnar Myhre, Xiaohua Pan, Anna Protonotariou, Samuel Remy, Ragnhild Bieltvedt Skeie, Philip Stier, Toshihiko Takemura, Kostas Tsigaridis, Hailong Wang, Duncan Watson-Parris, and Kai Zhang
Atmos. Chem. Phys., 25, 1545–1567, https://doi.org/10.5194/acp-25-1545-2025, https://doi.org/10.5194/acp-25-1545-2025, 2025
Short summary
Short summary
We compared smoke plume simulations from 11 global models to each other and to satellite smoke amount observations aimed at constraining smoke source strength. In regions where plumes are thick and background aerosol is low, models and satellites compare well. However, the input emission inventory tends to underestimate in many places, and particle property and loss rate assumptions vary enormously among models, causing uncertainties that require systematic in situ measurements to resolve.
Chimurkar Navinya, Taveen Singh Kapoor, Gupta Anurag, Chandra Venkataraman, Harish C. Phuleria, and Rajan K. Chakrabarty
Atmos. Chem. Phys., 24, 13285–13297, https://doi.org/10.5194/acp-24-13285-2024, https://doi.org/10.5194/acp-24-13285-2024, 2024
Short summary
Short summary
Brown carbon (BrC) aerosols show an order-of-magnitude variation in their light absorption strength. Our understanding of BrC from real-world biomass burning remains limited, complicating the determination of its radiative impact. Our study reports absorption properties of BrC emitted from four major biomass burning sources using field measurements in India. It develops an absorption parameterization for BrC and examines the spatial variability in BrC's absorption strength across India.
Wenxin Zhao, Yu Zhao, Yu Zheng, Dong Chen, Jinyuan Xin, Kaitao Li, Huizheng Che, Zhengqiang Li, Mingrui Ma, and Yun Hang
Atmos. Chem. Phys., 24, 6593–6612, https://doi.org/10.5194/acp-24-6593-2024, https://doi.org/10.5194/acp-24-6593-2024, 2024
Short summary
Short summary
We evaluate the long-term (2000–2020) variabilities of aerosol absorption optical depth, black carbon emissions, and associated health risks in China with an integrated framework that combines multiple observations and modeling techniques. We demonstrate the remarkable emission abatement resulting from the implementation of national pollution controls and show how human activities affected the emissions with a spatiotemporal heterogeneity, thus supporting differentiated policy-making by region.
Kaixu Bai, Ke Li, Liuqing Shao, Xinran Li, Chaoshun Liu, Zhengqiang Li, Mingliang Ma, Di Han, Yibing Sun, Zhe Zheng, Ruijie Li, Ni-Bin Chang, and Jianping Guo
Earth Syst. Sci. Data, 16, 2425–2448, https://doi.org/10.5194/essd-16-2425-2024, https://doi.org/10.5194/essd-16-2425-2024, 2024
Short summary
Short summary
A global gap-free high-resolution air pollutant dataset (LGHAP v2) was generated to provide spatially contiguous AOD and PM2.5 concentration maps with daily 1 km resolution from 2000 to 2021. This gap-free dataset has good data accuracies compared to ground-based AOD and PM2.5 concentration observations, which is a reliable database to advance aerosol-related studies and trigger multidisciplinary applications for environmental management, health risk assessment, and climate change analysis.
Jie Luo, Miao Hu, Jibing Qiu, Kaitao Li, Hao He, Yuping Sun, and Xiulin Geng
EGUsphere, https://doi.org/10.5194/egusphere-2024-1155, https://doi.org/10.5194/egusphere-2024-1155, 2024
Preprint archived
Short summary
Short summary
In this work, we first calculate the scattering signal returned from partially-coated black carbon based on the SP2 measurement, and then the mixing states were retrieved using Mie theory, and the difference between the retrieved and "true" mixing states can be the uncertainties of the SP2 -Represent measurement. In addition, the effects on the direct radiative forcing are also evaluated.
Ouyang Liu, Zhengqiang Li, Yangyan Lin, Cheng Fan, Ying Zhang, Kaitao Li, Peng Zhang, Yuanyuan Wei, Tianzeng Chen, Jiantao Dong, and Gerrit de Leeuw
Atmos. Meas. Tech., 17, 377–395, https://doi.org/10.5194/amt-17-377-2024, https://doi.org/10.5194/amt-17-377-2024, 2024
Short summary
Short summary
Nitrogen dioxide (NO2) is a trace gas which is important for atmospheric chemistry and may affect human health. To understand processes leading to harmful concentrations, it is important to monitor NO2 concentrations near the surface and higher up. To this end, a Pandora instrument has been installed in Beijing. An overview of the first year of data shows the large variability on diurnal to seasonal timescales and how this is affected by wind speed and direction and chemistry.
Jie Luo, Dan Li, Yuanyuan Wang, Dandan Sun, Weizhen Hou, Jinghe Ren, Hailing Wu, Peng Zhou, and Jibing Qiu
Atmos. Chem. Phys., 24, 427–448, https://doi.org/10.5194/acp-24-427-2024, https://doi.org/10.5194/acp-24-427-2024, 2024
Short summary
Short summary
Remote sensing of brown carbon is very important for climate research, and current optical methods rely mainly on spectral properties for inversion. However, the influence of the microscopic properties of black carbon has rarely been considered by previous studies. This paper shows how the remote sensing of brown carbon is affected by the microphysical properties of black carbon and highlights the adaptability of remote sensing methods.
Payton Beeler and Rajan K. Chakrabarty
Atmos. Chem. Phys., 22, 14825–14836, https://doi.org/10.5194/acp-22-14825-2022, https://doi.org/10.5194/acp-22-14825-2022, 2022
Short summary
Short summary
Understanding and parameterizing the influences of black carbon (BC) particle morphology and compositional heterogeneity on its light absorption represent a fundamental problem. We develop scaling laws using a single unifying parameter that effectively encompasses large-scale diversity observed in BC light absorption on a per-particle basis. The laws help reconcile the disparities between field observations and model predictions. Our framework is packaged in an open-source Python application.
Qirui Zhong, Nick Schutgens, Guido van der Werf, Twan van Noije, Kostas Tsigaridis, Susanne E. Bauer, Tero Mielonen, Alf Kirkevåg, Øyvind Seland, Harri Kokkola, Ramiro Checa-Garcia, David Neubauer, Zak Kipling, Hitoshi Matsui, Paul Ginoux, Toshihiko Takemura, Philippe Le Sager, Samuel Rémy, Huisheng Bian, Mian Chin, Kai Zhang, Jialei Zhu, Svetlana G. Tsyro, Gabriele Curci, Anna Protonotariou, Ben Johnson, Joyce E. Penner, Nicolas Bellouin, Ragnhild B. Skeie, and Gunnar Myhre
Atmos. Chem. Phys., 22, 11009–11032, https://doi.org/10.5194/acp-22-11009-2022, https://doi.org/10.5194/acp-22-11009-2022, 2022
Short summary
Short summary
Aerosol optical depth (AOD) errors for biomass burning aerosol (BBA) are evaluated in 18 global models against satellite datasets. Notwithstanding biases in satellite products, they allow model evaluations. We observe large and diverse model biases due to errors in BBA. Further interpretations of AOD diversities suggest large biases exist in key processes for BBA which require better constraining. These results can contribute to further model improvement and development.
Joshin Kumar, Theo Paik, Nishit J. Shetty, Patrick Sheridan, Allison C. Aiken, Manvendra K. Dubey, and Rajan K. Chakrabarty
Atmos. Meas. Tech., 15, 4569–4583, https://doi.org/10.5194/amt-15-4569-2022, https://doi.org/10.5194/amt-15-4569-2022, 2022
Short summary
Short summary
Accurate long-term measurement of aerosol light absorption is vital for assessing direct aerosol radiative forcing. Light absorption by aerosols at the US Department of Energy long-term climate monitoring SGP site is measured using the Particle Soot Absorption Photometer (PSAP), which suffers from artifacts and biases difficult to quantify. Machine learning offers a promising path forward to correct for biases in the long-term absorption dataset at the SGP site and similar Class-I areas.
Jie Luo, Zhengqiang Li, Cheng Fan, Hua Xu, Ying Zhang, Weizhen Hou, Lili Qie, Haoran Gu, Mengyao Zhu, Yinna Li, and Kaitao Li
Atmos. Meas. Tech., 15, 2767–2789, https://doi.org/10.5194/amt-15-2767-2022, https://doi.org/10.5194/amt-15-2767-2022, 2022
Short summary
Short summary
A single model is difficult to represent various shapes of dust. We proposed a tunable model to represent dust with various shapes. Two tunable parameters were used to represent the effects of the erosion degree and binding forces from the mass center. Thus, the model can represent various dust shapes by adjusting the tunable parameters. Besides, the applicability of the spheroid model in calculating the optical properties and polarimetric characteristics is evaluated.
Kaixu Bai, Ke Li, Mingliang Ma, Kaitao Li, Zhengqiang Li, Jianping Guo, Ni-Bin Chang, Zhuo Tan, and Di Han
Earth Syst. Sci. Data, 14, 907–927, https://doi.org/10.5194/essd-14-907-2022, https://doi.org/10.5194/essd-14-907-2022, 2022
Short summary
Short summary
The Long-term Gap-free High-resolution Air Pollutant concentration dataset, providing gap-free aerosol optical depth (AOD) and PM2.5 and PM10 concentration with a daily 1 km resolution for 2000–2020 in China, is generated and made publicly available. This is the first long-term gap-free high-resolution aerosol dataset in China and has great potential to trigger multidisciplinary applications in Earth observations, climate change, public health, ecosystem assessment, and environment management.
Benjamin Sumlin, Edward Fortner, Andrew Lambe, Nishit J. Shetty, Conner Daube, Pai Liu, Francesca Majluf, Scott Herndon, and Rajan K. Chakrabarty
Atmos. Chem. Phys., 21, 11843–11856, https://doi.org/10.5194/acp-21-11843-2021, https://doi.org/10.5194/acp-21-11843-2021, 2021
Short summary
Short summary
We present a comparison of the changes to light absorption behavior and chemical composition of wildfire smoke particles from day- and nighttime oxidation processes and discuss the results within the context of previous laboratory findings.
Cheng Fan, Zhengqiang Li, Ying Li, Jiantao Dong, Ronald van der A, and Gerrit de Leeuw
Atmos. Chem. Phys., 21, 7723–7748, https://doi.org/10.5194/acp-21-7723-2021, https://doi.org/10.5194/acp-21-7723-2021, 2021
Short summary
Short summary
Emission control policy in China has resulted in the decrease of nitrogen dioxide concentrations, which however leveled off and stabilized in recent years, as shown from satellite data. The effects of the further emission reduction during the COVID-19 lockdown in 2020 resulted in an initial improvement of air quality, which, however, was offset by chemical and meteorological effects. The study shows the regional dependence over east China, and results have a wider application than China only.
Paolo Tuccella, Giovanni Pitari, Valentina Colaiuda, Edoardo Raparelli, and Gabriele Curci
Atmos. Chem. Phys., 21, 6875–6893, https://doi.org/10.5194/acp-21-6875-2021, https://doi.org/10.5194/acp-21-6875-2021, 2021
Short summary
Short summary
We calculate the radiation-absorbing aerosol quantity in snow with a global chemical and transport atmospheric model, validated with global observations. The perturbation to snow albedo and related climatic impact are assessed. The resulting average radiative flux change in snow is 0.068 W m−2. Black carbon is a major contributor (+0.033 W m−2), followed by dust (+0.012 W m−2) and brown carbon (+0.0066 W m−2). The impact is also characterized by significant seasonal and geographical variability.
Jie Luo, Yongming Zhang, and Qixing Zhang
Geosci. Model Dev., 14, 2113–2126, https://doi.org/10.5194/gmd-14-2113-2021, https://doi.org/10.5194/gmd-14-2113-2021, 2021
Short summary
Short summary
In this work, we developed a numerical method to investigate the effects of black carbon (BC) morphology on the estimation of brown carbon (BrC) absorption using the absorption Ångström exponent (AAE) method. We found that BC morphologies have significant impacts on the estimated BrC absorptions. Moreover, we have demonstrated under what conditions the AAE methods can provide good or bad estimations and explored the reasons for why the good or bad estimations were caused.
Wenyuan Chang, Ying Zhang, Zhengqiang Li, Jie Chen, and Kaitao Li
Atmos. Chem. Phys., 21, 4403–4430, https://doi.org/10.5194/acp-21-4403-2021, https://doi.org/10.5194/acp-21-4403-2021, 2021
Short summary
Short summary
Aerosol simulation in WRF-Chem often uses the MOSAIC aerosol mechanism. Still, we need variational data assimilation (DA) for the MOSAIC aerosols to blend aerosol optical measurements. This study provides a developed GSI variational DA system, with a tangent linear operator designed for multi-source and multi-wavelength aerosol optical measurements. We successfully applied the DA system in an aerosol field campaign to assimilate aerosol optical data in northwestern China.
Yang Zhang, Zhengqiang Li, Zhihong Liu, Yongqian Wang, Lili Qie, Yisong Xie, Weizhen Hou, and Lu Leng
Atmos. Meas. Tech., 14, 1655–1672, https://doi.org/10.5194/amt-14-1655-2021, https://doi.org/10.5194/amt-14-1655-2021, 2021
Short summary
Short summary
The aerosol fine-mode fraction (FMF) is an important parameter reflecting the content of man-made aerosols. This study carried out the retrieval of FMF in China based on multi-angle polarization data and validated the results. The results of this study can contribute to the FMF retrieval algorithm of multi-angle polarization sensors. At the same time, a high-precision FMF dataset of China was obtained, which can provide basic data for atmospheric environment research.
Qiaoyun Hu, Haofei Wang, Philippe Goloub, Zhengqiang Li, Igor Veselovskii, Thierry Podvin, Kaitao Li, and Mikhail Korenskiy
Atmos. Chem. Phys., 20, 13817–13834, https://doi.org/10.5194/acp-20-13817-2020, https://doi.org/10.5194/acp-20-13817-2020, 2020
Short summary
Short summary
This study presents the characteristics of Taklamakan dust particles derived from lidar measurements collected in the dust aerosol observation field campaign. It provides comprehensive parameters for Taklamakan dust properties and vertical distributions of Taklamakan dust. This paper also points out the importance of polluted dust which was frequently observed in the field campaign. The results contribute to improving knowledge about dust and reducing uncertainties in the climatic model.
Ying Zhang, Zhengqiang Li, Yu Chen, Gerrit de Leeuw, Chi Zhang, Yisong Xie, and Kaitao Li
Atmos. Chem. Phys., 20, 12795–12811, https://doi.org/10.5194/acp-20-12795-2020, https://doi.org/10.5194/acp-20-12795-2020, 2020
Short summary
Short summary
Observation of atmospheric aerosol components plays an important role in reducing uncertainty in climate assessment. In this study, an improved remote sensing method which can better distinguish scattering components is developed, and the aerosol components in the atmospheric column over China are retrieved based on the Sun–sky radiometer Observation NETwork (SONET). The component distribution shows there could be a sea salt component in northwest China from a paleomarine source in desert land.
Cited articles
Ackermann, I. J., Hass, H., Memmesheimer, M., Ebel, A., Binkowski, F. S., and
Shankar, U.: Modal aerosol dynamics model for Europe: Development and first
applications, Atmos. Environ., 32, 2981–2999, 1998. a
Adachi, K., Chung, S. H., and Buseck, P. R.: Shapes of soot aerosol particles
and implications for their effects on climate, J. Geophys.
Res.-Atmos., 115, D15206, https://doi.org/10.1029/2009JD012868, 2010. a, b, c, d
Adachi, K., Zaizen, Y., Kajino, M., and Igarashi, Y.: Mixing state of
regionally transported soot particles and the coating effect on their size
and shape at a mountain site in Japan, J. Geophys. Res.-Atmos., 119, 5386–5396, https://doi.org/10.1002/2013JD020880,
2014. a
Alexander, D. T., Crozier, P. A., and Anderson, J. R.: Brown carbon spheres in East Asian outflow and their optical properties, Science, 321, 833–836, 2008. a
Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T.,
DeAngelo, B. J., Flanner, M. G., Ghan, S., Karcher, B., Koch, D., Kinne, S.,
Kondo, Y., Quinn, P. K., Sarofim, M. C., Schultz, M. G., Schulz, M.,
Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S. K.,
Hopke, P. K., Jacobson, M. Z., Kaiser, J. W., Klimont, Z., Lohmann, U.,
Schwarz, J. P., Shindell, D., Storelvmo, T., Warren, S. G., and Zender,
C. S.: Bounding the role of black carbon in the climate system: A scientific
assessment, J. Geophys. Res.-Atmos., 118, 5380–5552,
https://doi.org/10.1002/jgrd.50171, 2013. a
Buras, R., Dowling, T., and Emde, C.: New secondary-scattering correction in
DISORT with increased efficiency for forward scattering, J.
Quant. Spectrosc. Ra. Transf., 112, 2028–2034, 2011. a
Buseck, S. E. and Buseck, P. R.: Absorbing phenomena (vol 288, pg 989, 2000),
Science, 289, 58–58,
2000. a
Chakrabarty, R. K., Moosmuller, H., Garro, M. A., Arnott, W. P., Walker, J.,
Susott, R. A., Babbitt, R. E., Wold, C. E., Lincoln, E. N., and Hao, W. M.:
Emissions from the laboratory combustion of wildland fuels: Particle
morphology and size, J. Geophys. Res.-Atmos., 111, D07204,
https://doi.org/10.1029/2005JD006659, 2006. a, b
Chakrabarty, R. K., Moosmüller, H., Arnott, W. P., Garro, M. A., Slowik,
J. G., Cross, E. S., Han, J.-H., Davidovits, P., Onasch, T. B., and Worsnop,
D. R.: Light scattering and absorption by fractal-like carbonaceous chain
aggregates: Comparison of theories and experiment, Appl. Opt., 46,
6990–7006, 2007. a
Chang, H.-C. and Charalampopoulos, T.: Determination of the wavelength
dependence of refractive indices of flame soot, P. Roy.
Soc. London A, 430,
577–591, 1990. a
Chen, C., Fan, X., Shaltout, T., Qiu, C., Ma, Y., Goldman, A., and Khalizov,
A. F.: An unexpected restructuring of combustion soot aggregates by
subnanometer coatings of polycyclic aromatic hydrocarbons, Geophys.
Res. Lett., 43, 11080–11088,
https://doi.org/10.1002/2016GL070877, 2016. a
Chin, M., Ginoux, P., Kinne, S., Torres, O., Holben, B. N., Duncan, B. N.,
Martin, R. V., Logan, J. A., Higurashi, A., and Nakajima, T.: Tropospheric
Aerosol Optical Thickness from the GOCART Model and Comparisons with
Satellite and Sun Photometer Measurements, J. Atmos.
Sci., 59, 461–483,
https://doi.org/10.1175/1520-0469(2002)059<0461:TAOTFT>2.0.CO;2, 2002. a
China, S., Mazzoleni, C., Gorkowski, K., Aiken, A. C., and Dubey, M. K.:
Morphology and mixing state of individual freshly emitted wildfire
carbonaceous particles, Nat. Commun., 4, 2122,
https://doi.org/10.1038/ncomms3122, 2013. a, b
Chung, C., Lee, K., and Mu'́uller, D.: Effect of internal mixture on black
carbon radiative forcing, Tellus B, 64,
10925, https://doi.org/10.3402/tellusb.v64i0.10925, 2012. a
Coz, E. and Leck, C.: Morphology and state of mixture of atmospheric soot
aggregates during the winter season over Southern Asia-a quantitative
approach, Tellus B, 63, 107–116, 2011. a
Cross, E. S., Slowik, J. G., Davidovits, P., Allan, J. D., Worsnop, D. R.,
Jayne, J. T., Lewis, D. K., Canagaratna, M., and Onasch, T. B.: Laboratory
and ambient particle density determinations using light scattering in
conjunction with aerosol mass spectrometry, Aerosol Sci. Technol.,
41, 343–359, 2007. a
Curci, G.: FlexAOD: A post-processing tool for Aerosol Optical Properties calculations, Italian Space Agency [code], http://pumpkin.aquila.infn.it/flexaod/, last access: 30 April 2022. a
Curci, G., Hogrefe, C., Bianconi, R., Im, U., Balzarini, A., Baró, R., Brunner, D., Forkel, R., Giordano, L., Hirtl, M., Honzak, L., Jiménez-Guerrero, P., Knote, C., Langer, M., Makar, P., Pirovano, G., Pérez, J., San José, R., Syrakov, D., Tuccella, P., Werhahn, J., Wolke, R., Žabkar, R., Zhang, J., and Galmarini, S.: Uncertainties of
simulated aerosol optical properties induced by assumptions on aerosol
physical and chemical properties: An AQMEII-2 perspective, Atmos.
Environ., 115, 541–552, 2015. a
Curci, G., Alyuz, U., Barò, R., Bianconi, R., Bieser, J., Christensen, J. H., Colette, A., Farrow, A., Francis, X., Jiménez-Guerrero, P., Im, U., Liu, P., Manders, A., Palacios-Peña, L., Prank, M., Pozzoli, L., Sokhi, R., Solazzo, E., Tuccella, P., Unal, A., Vivanco, M. G., Hogrefe, C., and Galmarini, S.: Modelling black carbon absorption of solar radiation: combining external and internal mixing assumptions, Atmos. Chem. Phys., 19, 181–204, https://doi.org/10.5194/acp-19-181-2019, 2019. a
Danabasoglu, G., Lamarque, J.-F., Bacmeister, J., Bailey, D. A., DuVivier,
A. K., Edwards, J., Emmons, L. K., Fasullo, J., Garcia, R., Gettelman, A.,
Hannay, C., Holland, M. M., Large, W. G., Lauritzen, P. H., Lawrence, D. M.,
Lenaerts, J. T. M., Lindsay, K., Lipscomb, W. H., Mills, M. J., Neale, R.,
Oleson, K. W., Otto-Bliesner, B., Phillips, A. S., Sacks, W., Tilmes, S., van
Kampenhout, L., Vertenstein, M., Bertini, A., Dennis, J., Deser, C., Fischer,
C., Fox-Kemper, B., Kay, J. E., Kinnison, D., Kushner, P. J., Larson, V. E.,
Long, M. C., Mickelson, S., Moore, J. K., Nienhouse, E., Polvani, L., Rasch,
P. J., and Strand, W. G.: The Community Earth System Model Version 2 (CESM2),
J. Adv. Model. Earth Syst., 12, e2019MS001916,
https://doi.org/10.1029/2019MS001916, 2020. a
Dentener, F., Kinne, S., Bond, T., Boucher, O., Cofala, J., Generoso, S., Ginoux, P., Gong, S., Hoelzemann, J. J., Ito, A., Marelli, L., Penner, J. E., Putaud, J.-P., Textor, C., Schulz, M., van der Werf, G. R., and Wilson, J.: Emissions of primary aerosol and precursor gases in the years 2000 and 1750 prescribed data-sets for AeroCom, Atmos. Chem. Phys., 6, 4321–4344, https://doi.org/10.5194/acp-6-4321-2006, 2006. a
Eggersdorfer, M. L. and Pratsinis, S. E.: The structure of agglomerates
consisting of polydisperse particles, Aerosol Sci. Technol., 46,
347–353, 2012. a
Emmons, L. K., Walters, S., Hess, P. G., Lamarque, J.-F., Pfister, G. G., Fillmore, D., Granier, C., Guenther, A., Kinnison, D., Laepple, T., Orlando, J., Tie, X., Tyndall, G., Wiedinmyer, C., Baughcum, S. L., and Kloster, S.: Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4), Geosci. Model Dev., 3, 43–67, https://doi.org/10.5194/gmd-3-43-2010, 2010. a
Fast, J. D., Gustafson Jr., W. I., Easter, R. C., Zaveri, R. A., Barnard,
J. C., Chapman, E. G., Grell, G. A., and Peckham, S. E.: Evolution of ozone,
particulates, and aerosol direct radiative forcing in the vicinity of Houston
using a fully coupled meteorology-chemistry-aerosol model, J.
Geophys. Res.-Atmos., 111, D21305,
https://doi.org/10.1029/2005JD006721, 2006. a
Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G., Skamarock,
W. C., and Eder, B.: Fully coupled ”online” chemistry within the WRF model,
Atmos. Environ., 39, 6957–6975,
https://doi.org/10.1016/j.atmosenv.2005.04.027, 2005. a
Guenther, A., Zimmerman, P., and Wildermuth, M.: Natural volatile organic
compound emission rate estimates for US woodland landscapes, Atmos.
Environ., 28, 1197–1210, 1994. a
Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., and Geron, C.: Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature), Atmos. Chem. Phys., 6, 3181–3210, https://doi.org/10.5194/acp-6-3181-2006, 2006. a
He, C., Liou, K.-N., Takano, Y., Zhang, R., Levy Zamora, M., Yang, P., Li, Q., and Leung, L. R.: Variation of the radiative properties during black carbon aging: theoretical and experimental intercomparison, Atmos. Chem. Phys., 15, 11967–11980, https://doi.org/10.5194/acp-15-11967-2015, 2015. a
He, C., Li, Q., Liou, K.-N., Qi, L., Tao, S., and Schwarz, J. P.: Microphysics-based black carbon aging in a global CTM: constraints from HIPPO observations and implications for global black carbon budget, Atmos. Chem. Phys., 16, 3077–3098, https://doi.org/10.5194/acp-16-3077-2016, 2016. a
Heinson, W. R., Sorensen, C. M., and Chakrabarti, A.: Does Shape Anisotropy
Control the Fractal Dimension in Diffusion-Limited Cluster-Cluster
Aggregation?, Aerosol Sci. Technol., 44, i–iv,
https://doi.org/10.1080/02786826.2010.516032, 2010. a
Heinson, W. R., Liu, P., and Chakrabarty, R. K.: Fractal scaling of coated
soot aggregates, Aerosol Sci. Technol., 51, 12–19,
https://doi.org/10.1080/02786826.2016.1249786, 2017. a
Hess, M., Koepke, P., and Schult, I.: ”Optical Properties of Aerosols and
Clouds: The Software Package OPAC”, B. Am. Meteorol.
Soc., 79, 831–844, https://doi.org/10.1175/1520-0477(1998)079<0831:OPOAAC>2.0.CO;2,
1998. a, b
Highwood, E. J.: Suggested Refractive Indices and Aerosol Size Parameters for
Use in Radiative Effect Calculations and Satellite Retrievals,
ADIENT/APPRAISE CP2 Technical Report, DRAFT V2 (5 August 2009),
http://www.met.rdg.ac.uk/~adient/refractiveindices.html (last access: 3
January 2019), 2009. a
Kahnert, M.: Modelling the optical and radiative properties of freshly emitted light absorbing carbon within an atmospheric chemical transport model, Atmos. Chem. Phys., 10, 1403–1416, https://doi.org/10.5194/acp-10-1403-2010, 2010b. a
Kahnert, M. and Devasthale, A.: Black carbon fractal morphology and short-wave radiative impact: a modelling study, Atmos. Chem. Phys., 11, 11745–11759, https://doi.org/10.5194/acp-11-11745-2011, 2011. a, b, c
Kahnert, M. and Kanngießer, F.: Modelling optical properties of atmospheric
black carbon aerosols, J. Quant. Spectrosc. Ra.
Transf., 244, 106849, https://doi.org/10.1016/j.jqsrt.2020.106849,
2020. a
Köylü, Ü. and Faeth, G.: Structure of overfire soot in buoyant
turbulent diffusion flames at long residence times, Combust. Flame,
89, 140–156, https://doi.org/10.1016/0010-2180(92)90024-J, 1992. a
Lack, D. A. and Cappa, C. D.: Impact of brown and clear carbon on light absorption enhancement, single scatter albedo and absorption wavelength dependence of black carbon, Atmos. Chem. Phys., 10, 4207–4220, https://doi.org/10.5194/acp-10-4207-2010, 2010. a
Lamb, K. D., Perring, A. E., Samset, B., Peterson, D., Davis, S., Anderson,
B. E., Beyersdorf, A., Blake, D. R., Campuzano-Jost, P., Corr, C. A., Diskin,
G. S., Kondo, Y., Moteki, N., Nault, B. A., Oh, J., Park, M., Pusede, S. E.,
Simpson, I. J., Thornhill, K. L., Wisthaler, A., and Schwarz, J. P.:
Estimating Source Region Influences on Black Carbon Abundance, Microphysics,
and Radiative Effect Observed Over South Korea, J. Geophys.
Res.-Atmos., 123, 13527–13548, https://doi.org/10.1029/2018JD029257, 2018. a
Lee, K. O., Cole, R., Sekar, R., Choi, M. Y., Kang, J. S., Bae, C. S., and
Shin, H. D.: Morphological investigation of the microstructure, dimensions,
and fractal geometry of diesel particulates, Proc. Combust.
Inst., 29, 647–653, https://doi.org/10.1016/S1540-7489(02)80083-9, 2002. a
Li, J., Anderson, J. R., and Buseck, P. R.: TEM study of aerosol particles from
clean and polluted marine boundary layers over the North Atlantic, J.
Geophys. Res.-Atmos., 108, 4189,
https://doi.org/10.1029/2002JD002106, 2003. a
Li, M., Zhang, Q., Streets, D. G., He, K. B., Cheng, Y. F., Emmons, L. K., Huo, H., Kang, S. C., Lu, Z., Shao, M., Su, H., Yu, X., and Zhang, Y.: Mapping Asian anthropogenic emissions of non-methane volatile organic compounds to multiple chemical mechanisms, Atmos. Chem. Phys., 14, 5617–5638, https://doi.org/10.5194/acp-14-5617-2014, 2014. a
Li, M., Zhang, Q., Kurokawa, J.-I., Woo, J.-H., He, K., Lu, Z., Ohara, T., Song, Y., Streets, D. G., Carmichael, G. R., Cheng, Y., Hong, C., Huo, H., Jiang, X., Kang, S., Liu, F., Su, H., and Zheng, B.: MIX: a mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP, Atmos. Chem. Phys., 17, 935–963, https://doi.org/10.5194/acp-17-935-2017, 2017. a, b
Liu, C., Yin, Y., Hu, F., Jin, H., and Sorensen, C. M.: The Effects of Monomer
Size Distribution on the Radiative Properties of Black Carbon Aggregates,
Aerosol Sci. Technol., 49, 928–940,
https://doi.org/10.1080/02786826.2015.1085953, 2015. a
Liu, C., Chung, C. E., Yin, Y., and Schnaiter, M.: The absorption Ångström exponent of black carbon: from numerical aspects, Atmos. Chem. Phys., 18, 6259–6273, https://doi.org/10.5194/acp-18-6259-2018, 2018. a, b
Liu, D., Whitehead, J., Alfarra, M. R., Reyes-Villegas, E., Spracklen, D. V.,
Reddington, C., Kong, S., Williams, P., Ting, Y.-C., Haslett, S., Taylor, J.,
Flynn, M. J., Morgan, W., McFiggans, G., Coe, H., and Allan, J.: Black-carbon
absorption enhancement in the atmosphere determined by particle mixing state,
Nat. Geosci., 10, 184–188, https://doi.org/10.1038/ngeo2901, 2017. a, b
Liu, F., Zhang, Q., Tong, D., Zheng, B., Li, M., Huo, H., and He, K. B.: High-resolution inventory of technologies, activities, and emissions of coal-fired power plants in China from 1990 to 2010, Atmos. Chem. Phys., 15, 13299–13317, https://doi.org/10.5194/acp-15-13299-2015, 2015. a
Liu, L. and Mishchenko, M. I.: Effects of aggregation on scattering and
radiative properties of soot aerosols, J. Geophys.
Res.-Atmos., 110, D11211, https://doi.org/10.1029/2004JD005649,
2005. a, b, c, d
Lu, Q., Liu, C., Zhao, D., Zeng, C., Li, J., Lu, C., Wang, J., and Zhu, B.:
Atmospheric heating rate due to black carbon aerosols: Uncertainties and
impact factors, Atmos. Res., 240, 104891,
https://doi.org/10.1016/j.atmosres.2020.104891, 2020. a, b, c
Luo, J.: Look_up_tables.zip, figshare [data set],
https://figshare.com/articles/dataset/Look_up_tables_zip/13096241, last access: 30 April 2022. a
Luo, J., Zhang, Y., Wang, F., Wang, J., and Zhang, Q.: Applying machine
learning to estimate the optical properties of black carbon fractal
aggregates, J. Quant. Spectrosc. Ra. Transf.,
215, 1–8, https://doi.org/10.1016/j.jqsrt.2018.05.002,
2018a. a
Luo, J., Zhang, Y., Wang, F., and Zhang, Q.: Effects of brown coatings on the absorption enhancement of black carbon: a numerical investigation, Atmos. Chem. Phys., 18, 16897–16914, https://doi.org/10.5194/acp-18-16897-2018, 2018b. a
Luo, J., Zhang, Y., and Zhang, Q.: A model study of aggregates composed of
spherical soot monomers with an acentric carbon shell, J.
Quant. Spectrosc. Ra. Transf., 205, 184–195,
https://doi.org/10.1016/j.jqsrt.2017.10.024, 2018c. a
Luo, J., Zhang, Y. M., Zhang, Q. X., Wang, F., Liu, J., and Wang, J. J.:
Sensitivity analysis of morphology on radiative properties of soot
aerosols, Opt. Express, 26, A420–A432, 2018d. a
Luo, J., Zhang, Q., Luo, J., Liu, J., Huo, Y., and Zhang, Y.: Optical Modeling
of Black Carbon With Different Coating Materials: The Effect of Coating
Configurations, J. Geophys. Res.-Atmos., 124,
13230–13253, https://doi.org/10.1029/2019JD031701, 2019. a, b
Luo, J., Zhang, Q., Zhang, C., Zhang, Y., and Chakrabarty, R. K.: The fractal
characteristics of atmospheric coated soot: Implication for morphological
analysis, J. Aerosol Sci., 157, 105804,
https://doi.org/10.1016/j.jaerosci.2021.105804, 2021a. a
Luo, J., Zhang, Q., Zhang, Y., and Li, Z.: Radiative Properties of
Non-spherical Black Carbon Aerosols, pp. 69–124, Springer International
Publishing, Cham, https://doi.org/10.1007/978-3-030-87683-8_3, 2021b. a
Luo, J., Zhang, Y., and Zhang, Q.: Effects of black carbon morphology on brown carbon absorption estimation: from numerical aspects, Geosci. Model Dev., 14, 2113–2126, https://doi.org/10.5194/gmd-14-2113-2021, 2021c. a
Mackowski, D. W.: MSTM Version 3.0: April 2013, MSTM [code], available at:
http://www.eng.auburn.edu/~dmckwski/scatcodes/ (last access:
30 April 2022), 2013. a
Mackowski, D. W. and Mishchenko, M. I.: Calculation of the T matrix and the
scattering matrix for ensembles of spheres, J. Opt. Soc.
Am. A, 13, 2266–2278, 1996. a
Mackowski, D. W. and Mishchenko, M. I.: A multiple sphere T-matrix Fortran
code for use on parallel computer clusters, J. Quant.
Spectrosc. Ra. Transf., 112, 2182–2192, 2011. a
Martin, R. V., Jacob, D. J., Yantosca, R. M., Chin, M., and Ginoux, P.: Global
and regional decreases in tropospheric oxidants from photochemical effects of
aerosols, J. Geophys. Res.-Atmos., 108, 4097, https://doi.org/10.1029/2002JD002622, 2003. a
Mayer, B. and Kylling, A.: Technical note: The libRadtran software package for radiative transfer calculations – description and examples of use, Atmos. Chem. Phys., 5, 1855–1877, https://doi.org/10.5194/acp-5-1855-2005, 2005. a, b
Mayer, B., Emde, C., Gasteiger, J., and Kylling, A.: libRadtran, libRadtran [code], http://www.libradtran.org/doku.php, last access: 30 April 2022.
Mikhailov, E., Vlasenko, S., Podgorny, I., Ramanathan, V., and Corrigan, C.:
Optical properties of soot–water drop agglomerates: An experimental study,
J. Geophys. Res.-Atmos., 111, D07209, https://doi.org/10.1029/2005JD006389, 2006. a
Mishchenko, M. I., Dlugach, J. M., Yanovitskij, E. G., and Zakharova, N. T.:
Bidirectional reflectance of flat, optically thick particulate layers: an
efficient radiative transfer solution and applications to snow and soil
surfaces, J. Quant. Spectrosc. Ra. Transf., 63,
409–432, 1999. a
Mishchenko, M. I., Travis, L. D., and Lacis, A. A.: Scattering, absorption,
and emission of light by small particles, Cambridge University Press, Cambridge, 1–359, ISBN 9780521782524, 2002. a
Mishchenko, M. I., Dlugach, J. M., and Liu, L.: Linear depolarization of lidar
returns by aged smoke particles, Appl. Opt., 55, 9968–9973,
2016a. a
Mishchenko, M. I., Dlugach, J. M., Yurkin, M. A., Bi, L., Cairns, B., Liu, L.,
Panetta, R. L., Travis, L. D., Yang, P., and Zakharova, N. T.:
First-principles modeling of electromagnetic scattering by discrete and
discretely heterogeneous random media, Phys. Rep., 632, 1–75,
https://doi.org/10.1016/j.physrep.2016.04.002, 2016b. a
Moosmüller, H., Chakrabarty, R., and Arnott, W.: Aerosol light absorption
and its measurement: A review, J. Quant. Spectrosc.
Ra. Transf., 110, 844–878, 2009. a
Nakao, S., Tang, P., Tang, X., Clark, C. H., Qi, L., Seo, E., Asa-Awuku, A.,
and Cocker III, D.: Density and elemental ratios of secondary organic
aerosol: Application of a density prediction method, Atmos.
Environ., 68, 273–277, 2013. a
Rajesh, T. and Ramachandran, S.: Black carbon aerosols over urban and high
altitude remote regions: Characteristics and radiative implications,
Atmos. Environ., 194, 110–122, 2018. a
Reddington, C. L., McMeeking, G., Mann, G. W., Coe, H., Frontoso, M. G., Liu, D., Flynn, M., Spracklen, D. V., and Carslaw, K. S.: The mass and number size distributions of black carbon aerosol over Europe, Atmos. Chem. Phys., 13, 4917–4939, https://doi.org/10.5194/acp-13-4917-2013, 2013. a
Saleh, R., Marks, M., Heo, J., Adams, P. J., Donahue, N. M., and Robinson,
A. L.: Contribution of brown carbon and lensing to the direct radiative
effect of carbonaceous aerosols from biomass and biofuel burning emissions,
J. Geophys. Res.-Atmos., 120, 10285–10296,
https://doi.org/10.1002/2015JD023697, 2015. a, b
Schwarz, J. P., Gao, R. S., Spackman, J. R., Watts, L. A., Thomson, D. S., Fahey, D. W., Ryerson, T. B., Peischl, J., Holloway, J. S., Trainer, M., Frost, G. J., Baynard, T., Lack, D. A., de Gouw, J. A., Warneke, C., and Del Negro, L. A.: Measurement of the
mixing state, mass, and optical size of individual black carbon particles in
urban and biomass burning emissions, Geophys. Res. Lett., 35, L13810, https://doi.org/10.1029/2008GL033968, 2008. a
Seinfeld, J. H., Erdakos, G. B., Asher, W. E., and Pankow, J. F.: Modeling the
formation of secondary organic aerosol (SOA). 2. The predicted effects of
relative humidity on aerosol formation in the α-pinene-,
β-pinene-, sabinene-, Δ3-carene-, and cyclohexene-ozone
systems, Environ. Sci. Technol., 35, 1806–1817, 2001. a
Shaheen, K., Shah, Z., Suo, H. L., Liu, M., Ma, L., Alam, K., Gul, A., Cui, J.,
Li, C. Y., Wang, Y., Khan, S. A., and Khan, S. B.: Aerosol clustering in an
urban environment of Beijing during (2005-2017), Atmos. Environ.,
213, 534–547, https://doi.org/10.1016/j.atmosenv.2019.06.027, 2019. a
Shin, S.-K., Tesche, M., Müller, D., and Noh, Y.: Technical note: Absorption aerosol optical depth components from AERONET observations of mixed dust plumes, Atmos. Meas. Tech., 12, 607–618, https://doi.org/10.5194/amt-12-607-2019, 2019a. a
Shin, S.-K., Tesche, M., Noh, Y., and Müller, D.: Aerosol-type classification based on AERONET version 3 inversion products, Atmos. Meas. Tech., 12, 3789–3803, https://doi.org/10.5194/amt-12-3789-2019, 2019b. a
Sorensen, C.: The mobility of fractal aggregates: a review, Aerosol Sci. Technol., 45, 765–779, 2011. a
Stamnes, K., Tsay, S.-C., Wiscombe, W., and Jayaweera, K.: Numerically stable
algorithm for discrete-ordinate-method radiative transfer in multiple
scattering and emitting layered media, Appl. Opt., 27, 2502–2509, 1988. a
Stockwell, W. R., Middleton, P., Chang, J. S., and Tang, X.: The second
generation regional acid deposition model chemical mechanism for regional air
quality modeling, J. Geophys. Res.-Atmos., 95,
16343–16367, https://doi.org/10.1029/JD095iD10p16343, 1990. a
Streets, D. G., Gupta, S., Waldhoff, S. T., Wang, M. Q., Bond, T. C., and
Yiyun, B.: Black carbon emissions in China, Atmos. Environ., 35,
4281–4296, https://doi.org/10.1016/S1352-2310(01)00179-0, 2001. a
Streets, D. G., Wu, Y., and Chin, M.: Two-decadal aerosol trends as a likely
explanation of the global dimming/brightening transition, Geophys.
Res. Lett., 33, L15806, https://doi.org/10.1029/2006GL026471,
2006. a
Sun, J., Wang, Z., Zhou, W., Xie, C., Wu, C., Chen, C., Han, T., Wang, Q., Li, Z., Li, J., Fu, P., Wang, Z., and Sun, Y.: Measurement report: Long-term changes in black carbon and aerosol optical properties from 2012 to 2020 in Beijing, China, Atmos. Chem. Phys., 22, 561–575, https://doi.org/10.5194/acp-22-561-2022, 2022. a, b
Takemura, T., Nozawa, T., Emori, S., Nakajima, T. Y., and Nakajima, T.:
Simulation of climate response to aerosol direct and indirect effects with
aerosol transport-radiation model, J. Geophys. Res.-Atmos., 110, D02202, https://doi.org/10.1029/2004JD005029, 2005. a
Takemura, T., Egashira, M., Matsuzawa, K., Ichijo, H., O'ishi, R., and Abe-Ouchi, A.: A simulation of the global distribution and radiative forcing of soil dust aerosols at the Last Glacial Maximum, Atmos. Chem. Phys., 9, 3061–3073, https://doi.org/10.5194/acp-9-3061-2009, 2009. a
Teng, S., Liu, C., Schnaiter, M., Chakrabarty, R. K., and Liu, F.: Accounting for the effects of nonideal minor structures on the optical properties of black carbon aerosols, Atmos. Chem. Phys., 19, 2917–2931, https://doi.org/10.5194/acp-19-2917-2019, 2019. a
Tuccella, P., Curci, G., Pitari, G., Lee, S., and Jo, D. S.: Direct Radiative
Effect of Absorbing Aerosols: Sensitivity to Mixing State, Brown Carbon, and
Soil Dust Refractive Index and Shape, J. Geophys. Res.-Atmos., 125, e2019JD030967,
https://doi.org/10.1029/2019JD030967,
2020. a, b
EPA: United States Environmental Protection Agency, EPA [data set], https://www.epa.gov/outdoor-air-quality-data/download-daily-data, last access: 30 April 2022. a
Wang, J.: Air quality historical data query, [code], https://www.aqistudy.cn/historydata/, last access: 30 April 2022. a
Wang, X., Heald, C. L., Ridley, D. A., Schwarz, J. P., Spackman, J. R., Perring, A. E., Coe, H., Liu, D., and Clarke, A. D.: Exploiting simultaneous observational constraints on mass and absorption to estimate the global direct radiative forcing of black carbon and brown carbon, Atmos. Chem. Phys., 14, 10989–11010, https://doi.org/10.5194/acp-14-10989-2014, 2014. a
Wang, Y., Li, W., Huang, J., Liu, L., Pang, Y., He, C., Liu, F., Liu, D., Bi,
L., Zhang, X., and Shi, Z.: Nonlinear Enhancement of Radiative Absorption by
Black Carbon in Response to Particle Mixing Structure, Geophys. Res.
Lett., 48, e2021GL096437, https://doi.org/10.1029/2021GL096437, 2021a. a, b
Wang, Y., Pang, Y., Huang, J., Bi, L., Che, H., Zhang, X., and Li, W.:
Constructing Shapes and Mixing Structures of Black Carbon Particles With
Applications to Optical Calculations, J. Geophys. Res.-Atmos., 126, e2021JD034620,
https://doi.org/10.1029/2021JD034620,
2021b. a
Wang, Y., Pang, Y., Huang, J., Bi, L., Che, H., Zhang, X., and Li, W.:
Constructing shapes and mixing structures of black carbon particles with
applications to optical calculations, J.f Geophys. Res.-Atmos., 126, e2021JD034620, https://doi.org/10.1029/2021JD034620, 2021c. a
Wentzel, M., Gorzawski, H., Naumann, K.-H., Saathoff, H., and Weinbruch, S.:
Transmission electron microscopical and aerosol dynamical characterization
of soot aerosols, J. Aerosol Sci., 34, 1347–1370,
https://doi.org/10.1016/S0021-8502(03)00360-4, 2003. a
Wiedinmyer, C., Akagi, S. K., Yokelson, R. J., Emmons, L. K., Al-Saadi, J. A., Orlando, J. J., and Soja, A. J.: The Fire INventory from NCAR (FINN): a high resolution global model to estimate the emissions from open burning, Geosci. Model Dev., 4, 625–641, https://doi.org/10.5194/gmd-4-625-2011, 2011. a
Wild, O., Zhu, X., and Prather, M. J.: Fast-J: Accurate simulation of in-and
below-cloud photolysis in tropospheric chemical models, J.
Atmos. Chem., 37, 245–282, 2000. a
Wong, K. Y.: Weather Research and Forecasting model coupled to Chemistry (WRF-Chem), WRF-Chem Support [code], https://ruc.noaa.gov/wrf/wrf-chem/, last access: 30 April 2022. a
Wu, Y., Cheng, T. H., Zheng, L. J., and Chen, H.: A Study of Optical
Properties of Soot Aggregates Composed of Poly-Disperse Monomers Using the
Superposition T-Matrix Method, Aerosol Sci. Technol., 49, 941–949, 2015. a
Yin, J. Y. and Liu, L. H.: Influence of complex component and particle
polydispersity on radiative properties of soot aggregate in atmosphere,
J. Quant. Spectrosc. Ra. Transf., 111, 2115–2126, 2010. a
Yu, P. F., Toon, O. B., Bardeen, C. G., Zhu, Y. Q., Rosenlof, K. H., Portmann,
R. W., Thornberry, T. D., Gao, R. S., Davis, S. M., Wolf, E. T., de Gouw, J.,
Peterson, D. A., Fromm, M. D., and Robock, A.: Black carbon lofts wildfire
smoke high into the stratosphere to form a persistent plume, Science, 365,
587–590, 2019. a
Yuan, Q., Xu, J., Wang, Y., Zhang, X., Pang, Y., Liu, L., Bi, L., Kang, S., and
Li, W.: Mixing state and fractal dimension of soot particles at a remote site
in the southeastern Tibetan plateau, Environ. Sci. Technol., 53,
8227–8234, 2019. a
Zaveri, R. A. and Peters, L. K.: A new lumped structure photochemical
mechanism for large-scale applications, J. Geophys. Res.-Atmos., 104, 30387–30415, https://doi.org/10.1029/1999JD900876, 1999. a, b
Zaveri, R. A., Easter, R. C., Fast, J. D., and Peters, L. K.: Model for
Simulating Aerosol Interactions and Chemistry (MOSAIC), J.
Geophys. Res.-Atmos., 113, D13204, https://doi.org/10.1029/2007JD008782, 2008. a
Zhang, Q., Streets, D. G., Carmichael, G. R., He, K. B., Huo, H., Kannari, A., Klimont, Z., Park, I. S., Reddy, S., Fu, J. S., Chen, D., Duan, L., Lei, Y., Wang, L. T., and Yao, Z. L.: Asian emissions in 2006 for the NASA INTEX-B mission, Atmos. Chem. Phys., 9, 5131–5153, https://doi.org/10.5194/acp-9-5131-2009, 2009. a
Zhang, X., Mao, M., Yin, Y., and Wang, B.: Numerical Investigation on
Absorption Enhancement of Black Carbon Aerosols Partially Coated With
Nonabsorbing Organics, J. Geophys. Res.-Atmos., 123,
1297–1308, https://doi.org/10.1002/2017JD027833, 2018. a
Zhang, X. Y., Wang, Y. Q., Niu, T., Zhang, X. C., Gong, S. L., Zhang, Y. M., and Sun, J. Y.: Atmospheric aerosol compositions in China: spatial/temporal variability, chemical signature, regional haze distribution and comparisons with global aerosols, Atmos. Chem. Phys., 12, 779–799, https://doi.org/10.5194/acp-12-779-2012, 2012. a
Zhuang, B., Li, S., Wang, T., Liu, J., Chen, H., Chen, P., Li, M., and Xie, M.:
Interaction between the black carbon aerosol warming effect and East Asian
monsoon using RegCM4, J. Climate, 31, 9367–9388, 2018. a
Zhuang, B. L., Chen, H. M., Li, S., Wang, T. J., Liu, J., Zhang, L. J., Liu,
H. N., Xie, M., Chen, P. L., Li, M. M., and Zhao, M.: The direct effects of
black carbon aerosols from different source sectors in East Asia in summer,
Clim. Dynam., 53, 5293–5310, https://doi.org/10.1007/s00382-019-04863-5, 2019. a, b, c
Short summary
The fractal black carbon was applied to re-evaluate the regional impacts of morphologies on aerosol–radiation interactions (ARIs), and the effects were compared between the US and China. The regional-mean clear-sky ARI is significantly affected by the BC morphology, and relative differences of 17.1 % and 38.7 % between the fractal model with a Df of 1.8 and the spherical model were observed in eastern China and the northwest US, respectively.
The fractal black carbon was applied to re-evaluate the regional impacts of morphologies on...
Altmetrics
Final-revised paper
Preprint