Articles | Volume 21, issue 10
https://doi.org/10.5194/acp-21-7451-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-7451-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Is our dynamical understanding of the circulation changes associated with the Antarctic ozone hole sensitive to the choice of reanalysis dataset?
Andrew Orr
CORRESPONDING AUTHOR
Atmosphere, Ice and Climate, British Antarctic Survey, Cambridge,
United Kingdom
Atmosphere, Ice and Climate, British Antarctic Survey, Cambridge,
United Kingdom
Patrick Martineau
Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan
Edwin P. Gerber
Courant Institute of Mathematical Sciences, New York University, New York, NY, United States
Gareth J. Marshall
Atmosphere, Ice and Climate, British Antarctic Survey, Cambridge,
United Kingdom
Thomas J. Bracegirdle
Atmosphere, Ice and Climate, British Antarctic Survey, Cambridge,
United Kingdom
Related authors
Hamish D. Pritchard, Edward C. King, David J. Goodger, Douglas Boyle, Daniel N. Goldberg, Beatriz Recinos, Andrew Orr, and Dhananjay Regmi
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-519, https://doi.org/10.5194/essd-2025-519, 2025
Preprint under review for ESSD
Short summary
Short summary
We present a new and uniquely extensive dataset of glacier thickness from the Khumbu Himal around Mount Everest that stretches for 119 km, doubling the extent of thickness measurements in High Mountain Asia. Such measurements are key inputs for models that estimate how much ice is stored on the whole mountain range scale and for models that predict how this ice reserve will change in future, and what impact this will have on water supply for the large populations living downstream.
Marc Girona-Mata, Andrew Orr, Martin Widmann, Daniel Bannister, Ghulam Hussain Dars, Scott Hosking, Jesse Norris, David Ocio, Tony Phillips, Jakob Steiner, and Richard E. Turner
Hydrol. Earth Syst. Sci., 29, 3073–3100, https://doi.org/10.5194/hess-29-3073-2025, https://doi.org/10.5194/hess-29-3073-2025, 2025
Short summary
Short summary
We introduce a novel method for improving daily precipitation maps in mountain regions and pilot it across three basins in the Hindu Kush Himalaya (HKH). The approach leverages climate model and weather station data, along with statistical or machine learning techniques. Our results show that this approach outperforms traditional methods, especially in remote ungauged areas, suggesting that it could be used to improve precipitation maps across much of the HKH, as well as other mountain regions.
Ella Gilbert, Denis Pishniak, José Abraham Torres, Andrew Orr, Michelle Maclennan, Nander Wever, and Kristiina Verro
The Cryosphere, 19, 597–618, https://doi.org/10.5194/tc-19-597-2025, https://doi.org/10.5194/tc-19-597-2025, 2025
Short summary
Short summary
We use three sophisticated climate models to examine extreme precipitation in a critical region of West Antarctica. We found that rainfall probably occurred during the two cases we examined and that it was generated by the interaction of air with steep topography. Our results show that kilometre-scale models are useful tools for exploring extreme precipitation in this region and that more observations of rainfall are needed.
Kenza Tazi, Andrew Orr, Javier Hernandez-González, Scott Hosking, and Richard E. Turner
Hydrol. Earth Syst. Sci., 28, 4903–4925, https://doi.org/10.5194/hess-28-4903-2024, https://doi.org/10.5194/hess-28-4903-2024, 2024
Short summary
Short summary
This work aims to improve the understanding of precipitation patterns in High-mountain Asia, a crucial water source for around 1.9 billion people. Through a novel machine learning method, we generate high-resolution precipitation predictions, including the likelihoods of floods and droughts. Compared to state-of-the-art methods, our method is simpler to implement and more suitable for small datasets. The method also shows accuracy comparable to or better than existing benchmark datasets.
Xavier J. Levine, Ryan S. Williams, Gareth Marshall, Andrew Orr, Lise Seland Graff, Dörthe Handorf, Alexey Karpechko, Raphael Köhler, René R. Wijngaard, Nadine Johnston, Hanna Lee, Lars Nieradzik, and Priscilla A. Mooney
Earth Syst. Dynam., 15, 1161–1177, https://doi.org/10.5194/esd-15-1161-2024, https://doi.org/10.5194/esd-15-1161-2024, 2024
Short summary
Short summary
While the most recent climate projections agree that the Arctic is warming, differences remain in how much and in other climate variables such as precipitation. This presents a challenge for stakeholders who need to develop mitigation and adaptation strategies. We tackle this problem by using the storyline approach to generate four plausible and actionable realisations of end-of-century climate change for the Arctic, spanning its most likely range of variability.
Nicolaj Hansen, Andrew Orr, Xun Zou, Fredrik Boberg, Thomas J. Bracegirdle, Ella Gilbert, Peter L. Langen, Matthew A. Lazzara, Ruth Mottram, Tony Phillips, Ruth Price, Sebastian B. Simonsen, and Stuart Webster
The Cryosphere, 18, 2897–2916, https://doi.org/10.5194/tc-18-2897-2024, https://doi.org/10.5194/tc-18-2897-2024, 2024
Short summary
Short summary
We investigated a melt event over the Ross Ice Shelf. We use regional climate models and a firn model to simulate the melt and compare the results with satellite data. We find that the firn model aligned well with observed melt days in certain parts of the ice shelf. The firn model had challenges accurately simulating the melt extent in the western sector. We identified potential reasons for these discrepancies, pointing to limitations in the models related to representing the cloud properties.
Jeremy Carter, Amber Leeson, Andrew Orr, Christoph Kittel, and J. Melchior van Wessem
The Cryosphere, 16, 3815–3841, https://doi.org/10.5194/tc-16-3815-2022, https://doi.org/10.5194/tc-16-3815-2022, 2022
Short summary
Short summary
Climate models provide valuable information for studying processes such as the collapse of ice shelves over Antarctica which impact estimates of sea level rise. This paper examines variability across climate simulations over Antarctica for fields including snowfall, temperature and melt. Significant systematic differences between outputs are found, occurring at both large and fine spatial scales across Antarctica. Results are important for future impact assessments and model development.
Nicolaj Hansen, Sebastian B. Simonsen, Fredrik Boberg, Christoph Kittel, Andrew Orr, Niels Souverijns, J. Melchior van Wessem, and Ruth Mottram
The Cryosphere, 16, 711–718, https://doi.org/10.5194/tc-16-711-2022, https://doi.org/10.5194/tc-16-711-2022, 2022
Short summary
Short summary
We investigate the impact of different ice masks when modelling surface mass balance over Antarctica. We used ice masks and data from five of the most used regional climate models and a common mask. We see large disagreement between the ice masks, which has a large impact on the surface mass balance, especially around the Antarctic Peninsula and some of the largest glaciers. We suggest a solution for creating a new, up-to-date, high-resolution ice mask that can be used in Antarctic modelling.
Ruth Mottram, Nicolaj Hansen, Christoph Kittel, J. Melchior van Wessem, Cécile Agosta, Charles Amory, Fredrik Boberg, Willem Jan van de Berg, Xavier Fettweis, Alexandra Gossart, Nicole P. M. van Lipzig, Erik van Meijgaard, Andrew Orr, Tony Phillips, Stuart Webster, Sebastian B. Simonsen, and Niels Souverijns
The Cryosphere, 15, 3751–3784, https://doi.org/10.5194/tc-15-3751-2021, https://doi.org/10.5194/tc-15-3751-2021, 2021
Short summary
Short summary
We compare the calculated surface mass budget (SMB) of Antarctica in five different regional climate models. On average ~ 2000 Gt of snow accumulates annually, but different models vary by ~ 10 %, a difference equivalent to ± 0.5 mm of global sea level rise. All models reproduce observed weather, but there are large differences in regional patterns of snowfall, especially in areas with very few observations, giving greater uncertainty in Antarctic mass budget than previously identified.
Andrew Orr, J. Scott Hosking, Aymeric Delon, Lars Hoffmann, Reinhold Spang, Tracy Moffat-Griffin, James Keeble, Nathan Luke Abraham, and Peter Braesicke
Atmos. Chem. Phys., 20, 12483–12497, https://doi.org/10.5194/acp-20-12483-2020, https://doi.org/10.5194/acp-20-12483-2020, 2020
Short summary
Short summary
Polar stratospheric clouds (PSCs) are clouds found in the Antarctic winter stratosphere and are implicated in the formation of the ozone hole. These clouds can sometimes be formed or enhanced by mountain waves, formed as air passes over hills or mountains. However, this important mechanism is missing in coarse-resolution climate models, limiting our ability to simulate ozone. This study examines an attempt to include the effects of mountain waves and their impact on PSCs and ozone.
Archie Cable, Thomas Caton Harrison, Elizabeth Kent, Richard Cornes, and Thomas Bracegirdle
EGUsphere, https://doi.org/10.5194/egusphere-2025-4321, https://doi.org/10.5194/egusphere-2025-4321, 2025
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Short summary
Winds around the Antarctic coast have global importance. With influences from competing drivers, their structure is complex so it is hard to understand how they will change in the future. We develop a simple measure that identifies key features in the coastal winds, including their northern extent. Using climate models, we analyse future projections of this boundary and find that it will shift polewards, shrinking the Antarctic coastal wind region.
Hamish D. Pritchard, Edward C. King, David J. Goodger, Douglas Boyle, Daniel N. Goldberg, Beatriz Recinos, Andrew Orr, and Dhananjay Regmi
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-519, https://doi.org/10.5194/essd-2025-519, 2025
Preprint under review for ESSD
Short summary
Short summary
We present a new and uniquely extensive dataset of glacier thickness from the Khumbu Himal around Mount Everest that stretches for 119 km, doubling the extent of thickness measurements in High Mountain Asia. Such measurements are key inputs for models that estimate how much ice is stored on the whole mountain range scale and for models that predict how this ice reserve will change in future, and what impact this will have on water supply for the large populations living downstream.
Marc Girona-Mata, Andrew Orr, Martin Widmann, Daniel Bannister, Ghulam Hussain Dars, Scott Hosking, Jesse Norris, David Ocio, Tony Phillips, Jakob Steiner, and Richard E. Turner
Hydrol. Earth Syst. Sci., 29, 3073–3100, https://doi.org/10.5194/hess-29-3073-2025, https://doi.org/10.5194/hess-29-3073-2025, 2025
Short summary
Short summary
We introduce a novel method for improving daily precipitation maps in mountain regions and pilot it across three basins in the Hindu Kush Himalaya (HKH). The approach leverages climate model and weather station data, along with statistical or machine learning techniques. Our results show that this approach outperforms traditional methods, especially in remote ungauged areas, suggesting that it could be used to improve precipitation maps across much of the HKH, as well as other mountain regions.
Aaron Match, Edwin P. Gerber, and Stephan Fueglistaler
Atmos. Chem. Phys., 25, 4349–4366, https://doi.org/10.5194/acp-25-4349-2025, https://doi.org/10.5194/acp-25-4349-2025, 2025
Short summary
Short summary
The ozone concentration in the tropical stratosphere peaks at 26 km, protecting life from harmful ultraviolet light without poisoning it. Climate models reproduce this peak, but textbook explanations yield errors of 10 km. Simplifying the well-understood sources and sinks of ozone, we develop a theory explaining that tropical ozone peaks where its dominant sink transitions from damping of atomic oxygen aloft (mainly via catalytic chemistry) to damping of ozone below (mainly via transport).
Gareth J. Marshall
The Cryosphere, 19, 663–683, https://doi.org/10.5194/tc-19-663-2025, https://doi.org/10.5194/tc-19-663-2025, 2025
Short summary
Short summary
Eurasian autumn snow cover (SC) can influence Northern Hemisphere weather in the following winter by affecting the Arctic Oscillation (AO) mode of atmospheric variability. Using data back to 1836, we show that there have been significant decreases in October and November SC. For the first time, we describe a robust relationship between September SC in northeastern Eurasia and the AO. In addition, the longer dataset reveals the temporal variability in previously identified SC–AO relationships.
Ella Gilbert, Denis Pishniak, José Abraham Torres, Andrew Orr, Michelle Maclennan, Nander Wever, and Kristiina Verro
The Cryosphere, 19, 597–618, https://doi.org/10.5194/tc-19-597-2025, https://doi.org/10.5194/tc-19-597-2025, 2025
Short summary
Short summary
We use three sophisticated climate models to examine extreme precipitation in a critical region of West Antarctica. We found that rainfall probably occurred during the two cases we examined and that it was generated by the interaction of air with steep topography. Our results show that kilometre-scale models are useful tools for exploring extreme precipitation in this region and that more observations of rainfall are needed.
Caroline R. Holmes, Thomas J. Bracegirdle, Paul R. Holland, Julienne Stroeve, and Jeremy Wilkinson
The Cryosphere, 18, 5641–5652, https://doi.org/10.5194/tc-18-5641-2024, https://doi.org/10.5194/tc-18-5641-2024, 2024
Short summary
Short summary
Until recently, satellite data showed an increase in Antarctic sea ice area since 1979, but climate models simulated a decrease over this period. This mismatch was one reason for low confidence in model projections of 21st-century sea ice loss. We show that following low Antarctic sea ice in 2022 and 2023, we can no longer conclude that modelled and observed trends differ. However, differences in the manner of the decline mean that model sea ice projections should still be viewed with caution.
Kenza Tazi, Andrew Orr, Javier Hernandez-González, Scott Hosking, and Richard E. Turner
Hydrol. Earth Syst. Sci., 28, 4903–4925, https://doi.org/10.5194/hess-28-4903-2024, https://doi.org/10.5194/hess-28-4903-2024, 2024
Short summary
Short summary
This work aims to improve the understanding of precipitation patterns in High-mountain Asia, a crucial water source for around 1.9 billion people. Through a novel machine learning method, we generate high-resolution precipitation predictions, including the likelihoods of floods and droughts. Compared to state-of-the-art methods, our method is simpler to implement and more suitable for small datasets. The method also shows accuracy comparable to or better than existing benchmark datasets.
Colin G. Jones, Fanny Adloff, Ben B. B. Booth, Peter M. Cox, Veronika Eyring, Pierre Friedlingstein, Katja Frieler, Helene T. Hewitt, Hazel A. Jeffery, Sylvie Joussaume, Torben Koenigk, Bryan N. Lawrence, Eleanor O'Rourke, Malcolm J. Roberts, Benjamin M. Sanderson, Roland Séférian, Samuel Somot, Pier Luigi Vidale, Detlef van Vuuren, Mario Acosta, Mats Bentsen, Raffaele Bernardello, Richard Betts, Ed Blockley, Julien Boé, Tom Bracegirdle, Pascale Braconnot, Victor Brovkin, Carlo Buontempo, Francisco Doblas-Reyes, Markus Donat, Italo Epicoco, Pete Falloon, Sandro Fiore, Thomas Frölicher, Neven S. Fučkar, Matthew J. Gidden, Helge F. Goessling, Rune Grand Graversen, Silvio Gualdi, José M. Gutiérrez, Tatiana Ilyina, Daniela Jacob, Chris D. Jones, Martin Juckes, Elizabeth Kendon, Erik Kjellström, Reto Knutti, Jason Lowe, Matthew Mizielinski, Paola Nassisi, Michael Obersteiner, Pierre Regnier, Romain Roehrig, David Salas y Mélia, Carl-Friedrich Schleussner, Michael Schulz, Enrico Scoccimarro, Laurent Terray, Hannes Thiemann, Richard A. Wood, Shuting Yang, and Sönke Zaehle
Earth Syst. Dynam., 15, 1319–1351, https://doi.org/10.5194/esd-15-1319-2024, https://doi.org/10.5194/esd-15-1319-2024, 2024
Short summary
Short summary
We propose a number of priority areas for the international climate research community to address over the coming decade. Advances in these areas will both increase our understanding of past and future Earth system change, including the societal and environmental impacts of this change, and deliver significantly improved scientific support to international climate policy, such as future IPCC assessments and the UNFCCC Global Stocktake.
Aaron Match, Edwin P. Gerber, and Stephan Fueglistaler
Atmos. Chem. Phys., 24, 10305–10322, https://doi.org/10.5194/acp-24-10305-2024, https://doi.org/10.5194/acp-24-10305-2024, 2024
Short summary
Short summary
Earth's ozone layer absorbs incoming UV light, protecting life. Removing ozone aloft allows UV light to penetrate deeper, where it is known to produce new ozone, leading to "self-healing" that partially stabilizes total ozone. However, a photochemistry model shows that, above 40 km in the tropics, deeper-penetrating UV destroys ozone, destabilizing the total ozone. Photochemical theory reveals that this destabilizing regime occurs where overhead ozone is below a key threshold.
Xavier J. Levine, Ryan S. Williams, Gareth Marshall, Andrew Orr, Lise Seland Graff, Dörthe Handorf, Alexey Karpechko, Raphael Köhler, René R. Wijngaard, Nadine Johnston, Hanna Lee, Lars Nieradzik, and Priscilla A. Mooney
Earth Syst. Dynam., 15, 1161–1177, https://doi.org/10.5194/esd-15-1161-2024, https://doi.org/10.5194/esd-15-1161-2024, 2024
Short summary
Short summary
While the most recent climate projections agree that the Arctic is warming, differences remain in how much and in other climate variables such as precipitation. This presents a challenge for stakeholders who need to develop mitigation and adaptation strategies. We tackle this problem by using the storyline approach to generate four plausible and actionable realisations of end-of-century climate change for the Arctic, spanning its most likely range of variability.
Masatomo Fujiwara, Patrick Martineau, Jonathon S. Wright, Marta Abalos, Petr Šácha, Yoshio Kawatani, Sean M. Davis, Thomas Birner, and Beatriz M. Monge-Sanz
Atmos. Chem. Phys., 24, 7873–7898, https://doi.org/10.5194/acp-24-7873-2024, https://doi.org/10.5194/acp-24-7873-2024, 2024
Short summary
Short summary
A climatology of the major variables and terms of the transformed Eulerian-mean (TEM) momentum and thermodynamic equations from four global atmospheric reanalyses is evaluated. The spread among reanalysis TEM momentum balance terms is around 10 % in Northern Hemisphere winter and up to 50 % in Southern Hemisphere winter. The largest uncertainties in the thermodynamic equation (about 50 %) are in the vertical advection, which does not show a structure consistent with the differences in heating.
Nicolaj Hansen, Andrew Orr, Xun Zou, Fredrik Boberg, Thomas J. Bracegirdle, Ella Gilbert, Peter L. Langen, Matthew A. Lazzara, Ruth Mottram, Tony Phillips, Ruth Price, Sebastian B. Simonsen, and Stuart Webster
The Cryosphere, 18, 2897–2916, https://doi.org/10.5194/tc-18-2897-2024, https://doi.org/10.5194/tc-18-2897-2024, 2024
Short summary
Short summary
We investigated a melt event over the Ross Ice Shelf. We use regional climate models and a firn model to simulate the melt and compare the results with satellite data. We find that the firn model aligned well with observed melt days in certain parts of the ice shelf. The firn model had challenges accurately simulating the melt extent in the western sector. We identified potential reasons for these discrepancies, pointing to limitations in the models related to representing the cloud properties.
Bjorn Stevens, Stefan Adami, Tariq Ali, Hartwig Anzt, Zafer Aslan, Sabine Attinger, Jaana Bäck, Johanna Baehr, Peter Bauer, Natacha Bernier, Bob Bishop, Hendryk Bockelmann, Sandrine Bony, Guy Brasseur, David N. Bresch, Sean Breyer, Gilbert Brunet, Pier Luigi Buttigieg, Junji Cao, Christelle Castet, Yafang Cheng, Ayantika Dey Choudhury, Deborah Coen, Susanne Crewell, Atish Dabholkar, Qing Dai, Francisco Doblas-Reyes, Dale Durran, Ayoub El Gaidi, Charlie Ewen, Eleftheria Exarchou, Veronika Eyring, Florencia Falkinhoff, David Farrell, Piers M. Forster, Ariane Frassoni, Claudia Frauen, Oliver Fuhrer, Shahzad Gani, Edwin Gerber, Debra Goldfarb, Jens Grieger, Nicolas Gruber, Wilco Hazeleger, Rolf Herken, Chris Hewitt, Torsten Hoefler, Huang-Hsiung Hsu, Daniela Jacob, Alexandra Jahn, Christian Jakob, Thomas Jung, Christopher Kadow, In-Sik Kang, Sarah Kang, Karthik Kashinath, Katharina Kleinen-von Königslöw, Daniel Klocke, Uta Kloenne, Milan Klöwer, Chihiro Kodama, Stefan Kollet, Tobias Kölling, Jenni Kontkanen, Steve Kopp, Michal Koran, Markku Kulmala, Hanna Lappalainen, Fakhria Latifi, Bryan Lawrence, June Yi Lee, Quentin Lejeun, Christian Lessig, Chao Li, Thomas Lippert, Jürg Luterbacher, Pekka Manninen, Jochem Marotzke, Satoshi Matsouoka, Charlotte Merchant, Peter Messmer, Gero Michel, Kristel Michielsen, Tomoki Miyakawa, Jens Müller, Ramsha Munir, Sandeep Narayanasetti, Ousmane Ndiaye, Carlos Nobre, Achim Oberg, Riko Oki, Tuba Özkan-Haller, Tim Palmer, Stan Posey, Andreas Prein, Odessa Primus, Mike Pritchard, Julie Pullen, Dian Putrasahan, Johannes Quaas, Krishnan Raghavan, Venkatachalam Ramaswamy, Markus Rapp, Florian Rauser, Markus Reichstein, Aromar Revi, Sonakshi Saluja, Masaki Satoh, Vera Schemann, Sebastian Schemm, Christina Schnadt Poberaj, Thomas Schulthess, Cath Senior, Jagadish Shukla, Manmeet Singh, Julia Slingo, Adam Sobel, Silvina Solman, Jenna Spitzer, Philip Stier, Thomas Stocker, Sarah Strock, Hang Su, Petteri Taalas, John Taylor, Susann Tegtmeier, Georg Teutsch, Adrian Tompkins, Uwe Ulbrich, Pier-Luigi Vidale, Chien-Ming Wu, Hao Xu, Najibullah Zaki, Laure Zanna, Tianjun Zhou, and Florian Ziemen
Earth Syst. Sci. Data, 16, 2113–2122, https://doi.org/10.5194/essd-16-2113-2024, https://doi.org/10.5194/essd-16-2113-2024, 2024
Short summary
Short summary
To manage Earth in the Anthropocene, new tools, new institutions, and new forms of international cooperation will be required. Earth Virtualization Engines is proposed as an international federation of centers of excellence to empower all people to respond to the immense and urgent challenges posed by climate change.
Qinggang Gao, Louise C. Sime, Alison J. McLaren, Thomas J. Bracegirdle, Emilie Capron, Rachael H. Rhodes, Hans Christian Steen-Larsen, Xiaoxu Shi, and Martin Werner
The Cryosphere, 18, 683–703, https://doi.org/10.5194/tc-18-683-2024, https://doi.org/10.5194/tc-18-683-2024, 2024
Short summary
Short summary
Antarctic precipitation is a crucial component of the climate system. Its spatio-temporal variability impacts sea level changes and the interpretation of water isotope measurements in ice cores. To better understand its climatic drivers, we developed water tracers in an atmospheric model to identify moisture source conditions from which precipitation originates. We find that mid-latitude surface winds exert an important control on moisture availability for Antarctic precipitation.
Patrick Martineau, Swadhin K. Behera, Masami Nonaka, Hisashi Nakamura, and Yu Kosaka
Weather Clim. Dynam., 5, 1–15, https://doi.org/10.5194/wcd-5-1-2024, https://doi.org/10.5194/wcd-5-1-2024, 2024
Short summary
Short summary
The representation of subweekly near-surface temperature variability trends over the Southern Hemisphere landmasses is compared across multiple atmospheric reanalyses. It is found that there is generally a good agreement concerning the positive trends affecting South Africa and Australia in the spring, and South America in the summer. A more efficient generation of subweekly temperature variance by horizontal temperature fluxes contributes to the observed rise.
Paul R. Holland, Gemma K. O'Connor, Thomas J. Bracegirdle, Pierre Dutrieux, Kaitlin A. Naughten, Eric J. Steig, David P. Schneider, Adrian Jenkins, and James A. Smith
The Cryosphere, 16, 5085–5105, https://doi.org/10.5194/tc-16-5085-2022, https://doi.org/10.5194/tc-16-5085-2022, 2022
Short summary
Short summary
The Antarctic Ice Sheet is losing ice, causing sea-level rise. However, it is not known whether human-induced climate change has contributed to this ice loss. In this study, we use evidence from climate models and palaeoclimate measurements (e.g. ice cores) to suggest that the ice loss was triggered by natural climate variations but is now sustained by human-forced climate change. This implies that future greenhouse-gas emissions may influence sea-level rise from Antarctica.
Thomas Caton Harrison, Stavroula Biri, Thomas J. Bracegirdle, John C. King, Elizabeth C. Kent, Étienne Vignon, and John Turner
Weather Clim. Dynam., 3, 1415–1437, https://doi.org/10.5194/wcd-3-1415-2022, https://doi.org/10.5194/wcd-3-1415-2022, 2022
Short summary
Short summary
Easterly winds encircle Antarctica, impacting sea ice and helping drive ocean currents which shield ice shelves from warmer waters. Reanalysis datasets give us our most complete picture of how these winds behave. In this paper we use satellite data, surface measurements and weather balloons to test how realistic recent reanalysis estimates are. The winds are generally accurate, especially in the most recent of the datasets, but important short-term variations are often misrepresented.
Jeremy Carter, Amber Leeson, Andrew Orr, Christoph Kittel, and J. Melchior van Wessem
The Cryosphere, 16, 3815–3841, https://doi.org/10.5194/tc-16-3815-2022, https://doi.org/10.5194/tc-16-3815-2022, 2022
Short summary
Short summary
Climate models provide valuable information for studying processes such as the collapse of ice shelves over Antarctica which impact estimates of sea level rise. This paper examines variability across climate simulations over Antarctica for fields including snowfall, temperature and melt. Significant systematic differences between outputs are found, occurring at both large and fine spatial scales across Antarctica. Results are important for future impact assessments and model development.
Nicolaj Hansen, Sebastian B. Simonsen, Fredrik Boberg, Christoph Kittel, Andrew Orr, Niels Souverijns, J. Melchior van Wessem, and Ruth Mottram
The Cryosphere, 16, 711–718, https://doi.org/10.5194/tc-16-711-2022, https://doi.org/10.5194/tc-16-711-2022, 2022
Short summary
Short summary
We investigate the impact of different ice masks when modelling surface mass balance over Antarctica. We used ice masks and data from five of the most used regional climate models and a common mask. We see large disagreement between the ice masks, which has a large impact on the surface mass balance, especially around the Antarctic Peninsula and some of the largest glaciers. We suggest a solution for creating a new, up-to-date, high-resolution ice mask that can be used in Antarctic modelling.
Ayako Yamamoto, Masami Nonaka, Patrick Martineau, Akira Yamazaki, Young-Oh Kwon, Hisashi Nakamura, and Bunmei Taguchi
Weather Clim. Dynam., 2, 819–840, https://doi.org/10.5194/wcd-2-819-2021, https://doi.org/10.5194/wcd-2-819-2021, 2021
Short summary
Short summary
While the key role of moist processes in blocking has recently been highlighted, their moisture sources remain unknown. Here, we investigate moisture sources for wintertime Euro-Atlantic blocks using a Lagrangian method. We show that the Gulf Stream, Kuroshio, and their extensions, along with the northeast of Hawaii, act as the primary moisture sources and springboards for particle ascent. We find that the evolution of the particle properties is sensitive to the moisture sources.
Ruth Mottram, Nicolaj Hansen, Christoph Kittel, J. Melchior van Wessem, Cécile Agosta, Charles Amory, Fredrik Boberg, Willem Jan van de Berg, Xavier Fettweis, Alexandra Gossart, Nicole P. M. van Lipzig, Erik van Meijgaard, Andrew Orr, Tony Phillips, Stuart Webster, Sebastian B. Simonsen, and Niels Souverijns
The Cryosphere, 15, 3751–3784, https://doi.org/10.5194/tc-15-3751-2021, https://doi.org/10.5194/tc-15-3751-2021, 2021
Short summary
Short summary
We compare the calculated surface mass budget (SMB) of Antarctica in five different regional climate models. On average ~ 2000 Gt of snow accumulates annually, but different models vary by ~ 10 %, a difference equivalent to ± 0.5 mm of global sea level rise. All models reproduce observed weather, but there are large differences in regional patterns of snowfall, especially in areas with very few observations, giving greater uncertainty in Antarctic mass budget than previously identified.
Patrick Martineau, Hisashi Nakamura, and Yu Kosaka
Weather Clim. Dynam., 2, 395–412, https://doi.org/10.5194/wcd-2-395-2021, https://doi.org/10.5194/wcd-2-395-2021, 2021
Short summary
Short summary
To better understand the factors that impact the weather in North America, this study explores the influence of the El Niño–Southern Oscillation on wintertime surface air temperature variability using reanalysis data. Results show that La Niña enhances subseasonal variability over western North America by amplifying the baroclinic conversion of energy from the winter-mean circulation to subseasonal eddies. Changes in the structural properties of eddies are crucial for this amplification.
Andrew Orr, J. Scott Hosking, Aymeric Delon, Lars Hoffmann, Reinhold Spang, Tracy Moffat-Griffin, James Keeble, Nathan Luke Abraham, and Peter Braesicke
Atmos. Chem. Phys., 20, 12483–12497, https://doi.org/10.5194/acp-20-12483-2020, https://doi.org/10.5194/acp-20-12483-2020, 2020
Short summary
Short summary
Polar stratospheric clouds (PSCs) are clouds found in the Antarctic winter stratosphere and are implicated in the formation of the ozone hole. These clouds can sometimes be formed or enhanced by mountain waves, formed as air passes over hills or mountains. However, this important mechanism is missing in coarse-resolution climate models, limiting our ability to simulate ozone. This study examines an attempt to include the effects of mountain waves and their impact on PSCs and ozone.
Cited articles
Arblaster, J. M. and Meehl, G. A.: Contributions of external forcings to
Southern Annular Mode trends, J. Climate, 19, 2896–2905,
https://doi.org/10.1175/JCLI3774.1, 2006.
Banerjee, A., Fyfe, J. C., Polvani, L. M., Waugh, D., and Chang, K.-L.: A
pause in Southern Hemisphere circulation trends due to the Montreal
Protocol, Nature, 579, 544–548, https://doi.org/10.1038/s41586-020-2120-4, 2020.
Bengtsson, L., Arkin, P., Berrisford, P., Bougeault, P., Folland, C. K.,
Gordon, C., Haines, K., Hodges, K. I., Jones, P., Kallberg, P., Rayner, N.,
Simmons, A. J., Stammer, D., Thorne, P. W., Uppala, S., and Vose, R. S.: The
Need for a Dynamical Climate Reanalysis, B. Am. Meteorol. Soc., 88,
495–502, https://doi.org/10.1175/BAMS-88-4-495, 2007.
Black, R. X. and McDaniel, B. A.: Interannual variability in the Southern
Hemisphere circulation organized by stratospheric final warming events, J. Atmos. Sci., 64, 2968–2974, https://doi.org/10.1175/JAS3979.1, 2007.
Charron, M. and Manzini, E.: Gravity waves from fronts: Parameterization
and middle atmosphere response in a general circulation model, J. Atmos. Sci., 59, 923–941, https://doi.org/10.1175/1520-0469(2002)059<0923:GWFFPA>2.0.CO;2, 2002.
Chemke, R. and Polvani, L. M.: Linking midlatitudes eddy heat flux trends
and polar amplification, NPJ Clim. Atmos. Sci., 3, 8,
https://doi.org/10.1038/s41612-020-0111-7, 2020.
Chen, G. and Held, I. M.: Phase speed spectra and the recent poleward shift
of Southern Hemisphere surface westerlies, Geophys. Res. Lett., 34, L21805,
https://doi.org/10.1029/2007GL031200, 2007.
Chen, P. and Robinson, W. A.: Propagation of planetary waves between the
troposphere and stratosphere, J. Atmos. Sci., 49, 2533–2545,
https://doi.org/10.1175/1520-0469(1992)049<2533:POPWBT>2.0.CO;2, 1992.
Christiansen, B.: Stratospheric vacillations in a general circulation model,
J. Atmos. Sci., 56, 1858–1872, https://doi.org/10.1175/1520-0469(1999)056<1858:SVIAGC>2.0.CO;2, 1999.
Christiansen, B.: Downward propagation of zonal mean zonal wind anomalies
from the stratosphere to the troposphere: Model and reanalysis, J. Geophys.
Res.-Atmos., 106, 27307–27322, https://doi.org/10.1029/2000JD000214, 2001.
Davis, S. M., Hegglin, M. I., Fujiwara, M., Dragani, R., Harada, Y., Kobayashi, C., Long, C., Manney, G. L., Nash, E. R., Potter, G. L., Tegtmeier, S., Wang, T., Wargan, K., and Wright, J. S.: Assessment of upper tropospheric and stratospheric water vapor and ozone in reanalyses as part of S-RIP, Atmos. Chem. Phys., 17, 12743–12778, https://doi.org/10.5194/acp-17-12743-2017, 2017.
Deb, P., Orr, A., Bromwich, D. H., Nicholas, J. P., Turner, J., and Hosking,
J. S.: Summer drivers of atmospheric variability affecting ice shelf
thinning in the Amundsen Sea Embayment, West Antarctica, Geophys. Res.
Lett., 45, 4124–4133, https://doi.org/10.1029/2018GL077092, 2018.
Dong, X., Wang, Y., Hou, S., Ding, M., Yin, B., and Zhang, Y.: Robustness of
the recent global atmospheric reanalyses for Antarctic near-surface wind
speed climatology, J. Climate, 33, 4027–4043,
https://doi.org/10.1175/JCLI-D-19-0648.1, 2020.
Edmon, H. J., Hoskins, B. J., and McIntyre, M. E.: Eliassen-Palm Cross
Sections for the Troposphere, J. Atmos. Sci., 37, 2600–2616,
https://doi.org/10.1175/1520-0469(1980)037<2600:EPCSFT>2.0.CO;2, 1980.
Fujiwara, M., Wright, J. S., Manney, G. L., Gray, L. J., Anstey, J., Birner, T., Davis, S., Gerber, E. P., Harvey, V. L., Hegglin, M. I., Homeyer, C. R., Knox, J. A., Krüger, K., Lambert, A., Long, C. S., Martineau, P., Molod, A., Monge-Sanz, B. M., Santee, M. L., Tegtmeier, S., Chabrillat, S., Tan, D. G. H., Jackson, D. R., Polavarapu, S., Compo, G. P., Dragani, R., Ebisuzaki, W., Harada, Y., Kobayashi, C., McCarty, W., Onogi, K., Pawson, S., Simmons, A., Wargan, K., Whitaker, J. S., and Zou, C.-Z.: Introduction to the SPARC Reanalysis Intercomparison Project (S-RIP) and overview of the reanalysis systems, Atmos. Chem. Phys., 17, 1417–1452, https://doi.org/10.5194/acp-17-1417-2017, 2017.
Gelaro, R., McCarty, W., Suarez, M. J., Todling, R., Molod, A., Takacs, L.,
Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K.,
Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da Silva, A. M., Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D.,
Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M.,
Schubert, S. D., Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective
Analysis for Research and Applications, Version 2 (MERRA-2), J. Climate, 30,
5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017.
Gerber, E. P. and Martineau, P.: Quantifying the variability of the annular modes: reanalysis uncertainty vs. sampling uncertainty, Atmos. Chem. Phys., 18, 17099–17117, https://doi.org/10.5194/acp-18-17099-2018, 2018.
Gerber, E. P. and Vallis, G. K.: Eddy-zonal flow interactions and the
persistence of the zonal index, J. Atmos. Sci., 64, 3296–3311,
https://doi.org/10.1175/JAS4006.1, 2007.
Gerber, E. P., Martineau, P., Ayarzaguena, B., Barriopedro, D., Bracegirdle,
T. J., Butler, A. H., Calvo, N., Hardiman, S. C., Hitchcock, P., Iza, M.,
Langematz, U., Lua, H., Marshall, G., Orr, A., Palmeiro, F. M., Son, S.-W.,
and Taguchi, M.: Extratropical Stratosphere-troposphere Coupling, in:
Stratosphere-troposphere Processes and their Role in Climate (SPARC) Reanalysis Intercomparison Project (S-RIP), edited by: Fujiwara, M., Manney, G. L., Gray, L., and Wright, J. S., SPARC, Oberpfaffenhofen Germany, in press, 2021.
Gillett, N. P., Kell, T. D., and Jones, P. D.: Regional climate impacts of
the Southern Annular Mode, Geophys. Res. Lett., 33, L23704,
https://doi.org/10.1029/2006GL027721, 2006.
Harnik, N., Perlwitz, J., and Shaw, T. A.: Observed decadal changes in
downward wave coupling between the stratosphere and the troposphere in the
Southern Hemisphere, J. Climate, 24, 4558–4569, https://doi.org/10.1175/2011JCLI4118.1,
2011.
Hartmann, D. L. and Lo, F.: Wave-driven zonal flow vacillation in the
Southern Hemisphere, J. Atmos. Sci., 55, 1303–1315,
https://doi.org/10.1175/1520-0469(1998)055<1303:WDZFVI>2.0.CO;2, 1998.
Hartmann, D. L., Wallace, J. M., Limpasuvan, V., Thompson, D. W. J., and
Holton, J. R.: Can ozone depletion and global warming interact to produce
rapid climate change?, P. Natl. Acad. Sci. USA, 97, 1412–1417,
https://doi.org/10.1073/pnas.97.4.1412, 2000.
Held, I. M. and Phillipps, P. J.: Sensitivity of the eddy momentum
flux to meridional resolution in atmospheric GCMs, J. Climate, 6, 499–507,
https://doi.org/10.1175/1520-0442(1993)006<0499:SOTEMF>2.0.CO;2, 1993.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horanyi, A.,
Munoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons,
A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati,
G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Holm, E., Janiskova, M., Keely,
S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum,
I., Vamborg, F., Villaume, S., and Thepaut, J.-N.: The ERA5 global
reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Hoffmann, L., Grimsdell, A. W., and Alexander, M. J.: Stratospheric gravity waves at Southern Hemisphere orographic hotspots: 2003–2014 AIRS/Aqua observations, Atmos. Chem. Phys., 16, 9381–9397, https://doi.org/10.5194/acp-16-9381-2016, 2016.
Hu, D., Tian, W., Xie, F., Wang, C., and Zhang, J.: Impacts of stratospheric
ozone depletion and recovery on wave propagation in the boreal winter
stratosphere, J. Geophys. Res.-Atmos., 120, 8299–8317, https://doi.org/10.1002/2014JD022855, 2015.
Huck, P. E., Tilmes, S., Bodeker, G. E., Randel, W. J., McDonald, A. J., and
Nakajima, H.: An improved measure of ozone depletion in the Antarctic
stratosphere, J. Geophys. Res.-Atmos., 112, D11104, https://doi.org/10.1029/2006JD007860, 2007.
Iglesias-Suarez, F., Young, P. J., and Wild, O.: Stratospheric ozone change and related climate impacts over 1850–2100 as modelled by the ACCMIP ensemble, Atmos. Chem. Phys., 16, 343–363, https://doi.org/10.5194/acp-16-343-2016, 2016.
Keeble, J., Braesicke, P., Abraham, N. L., Roscoe, H. K., and Pyle, J. A.: The impact of polar stratospheric ozone loss on Southern Hemisphere stratospheric circulation and climate, Atmos. Chem. Phys., 14, 13705–13717, https://doi.org/10.5194/acp-14-13705-2014, 2014.
Kistler, R., Collins, W., Saha, S., White, G., Woollen, J., Kalnay, E.,
Chelliah, M., Ebisuzaki, W., Kanamitsu, M., Kousky, V., van den Dool, H.,
Jenne, R., and Fiorino, M.: The NCEP–NCAR 50 year reanalysis: monthly means
CD-ROM and documentation, B. Am. Meteorol. Soc., 82, 247–267, 2001.
Kobayashi, S., Matricardi, M., Dee, D., and Uppala, S.: Toward a consistent
reanalysis of the upper stratosphere based on radiance measurements from SSU
and AMSU-A, Q. J. Roy. Meteor. Soc., 135, 2086–2099, https://doi.org/10.1002/qj.514, 2009.
Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., Onogi,
K., Kamahori, H., Kobayashi, C., Endo, H., Miyaoka, K., and Takahashi, K.:
2015: The JRA-55 Reanalysis: General Specifications and Basic
Characteristics, J. Meteorol. Soc. Jpn., 93, 5–48,
https://doi.org/10.2151/jmsj.2015-001, 2015.
Kodera, K. and Kuroda, Y.: Dynamical response to the solar cycle, J.
Geophys. Res.-Atmos., 107, 4749, https://doi.org/10.1029/2002JD002224, 2002.
Lawless, A. S.: A note on the analysis error associated with 3D-FGAT,
Q. J. Roy. Meteor. Soc., 136, 1094–1098, https://doi.org/10.1002/qj.619, 2010.
Lawrence, Z. D., Manney, G. L., Minschwaner, K., Santee, M. L., and Lambert, A.: Comparisons of polar processing diagnostics from 34 years of the ERA-Interim and MERRA reanalyses, Atmos. Chem. Phys., 15, 3873–3892, https://doi.org/10.5194/acp-15-3873-2015, 2015.
Limpasuvan, V., Thompson, D. W. J., and Hartmann, D. L.: The life cycle of
the Northern Hemisphere sudden stratospheric warmings, J. Climate, 17,
2548–2596, https://doi.org/10.1175/1520-0442(2004)017<2584:TLCOTN>2.0.CO;2, 2004.
Long, C. S., Fujiwara, M., Davis, S., Mitchell, D. M., and Wright, C. J.: Climatology and interannual variability of dynamic variables in multiple reanalyses evaluated by the SPARC Reanalysis Intercomparison Project (S-RIP), Atmos. Chem. Phys., 17, 14593–14629, https://doi.org/10.5194/acp-17-14593-2017, 2017.
Lorenz, D. J. and Hartmann, D. L.: Eddy-zonal flow feedback in the Southern
Hemisphere, J. Atmos. Sci., 58, 3312–3327,
https://doi.org/10.1175/1520-0469(2001)058<3312:EZFFIT>2.0.CO;2, 2001.
Lott, F. and Miller, M. J.: A new subgrid-scale orographic drag
parametrization: Its formulation and testing, Q. J. Roy. Meteor. Soc.,
123, 101–127, https://doi.org/10.1002/qj.49712353704, 1997.
Lu, H., Bracegirdle, T. J., Phillips, T., and Turner, J.: A Comparative
Study of Wave Forcing Derived from the ERA-40 and ERA-Interim Reanalysis
Datasets, J. Climate, 28, 2291–2311, https://doi.org/10.1175/JCLI-D-14-00356.1, 2015.
Manney, G. L., Allen, D. R., Kruger, K., Naujokat, B., San-Tee, M. L.,
Sabots, J. L., Pawson, S., Swinbank, R., Randall, C. E., Simmons, A. J., and
Long, C.: Diagnostic comparison of meteorological analyses during the 2002
Antarctic winter, Mon. Weather Rev., 133, 1261–1278, https://doi.org/10.1175/MWR2926.1,
2005.
Marshall, G. J.: Trends in the Southern Annular Mode from Observations and
Reanalyses, J. Climate, 16, 4134–4143,
https://doi.org/10.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2, 2003.
Marshall, G. J., Orr, A., van Lipzig, N. P. M., and King, J. C.: The impact
of a changing Southern Hemisphere annular mode on Antarctic Peninsula summer
temperatures, J. Climate, 19, 5388–5404, https://doi.org/10.1175/JCLI3844.1, 2006.
Marshall, G. J., Orr, A., and Turner, J.: A predominant reversal in the
relationship between the SAM and East Antarctic temperatures during the 21st
Century, J. Climate, 26, 5196–5204, https://doi.org/10.1175/JCLI-D-12-00671.1, 2013.
Martineau, P.: S-RIP: Zonal-mean dynamical variables of global atmospheric
reanalyses on pressure levels, Centre for Environmental Data Analysis [dataset], https://doi.org/10.5285/b241a7f536a244749662360bd7839312, 2017.
Martineau, P., Son, S.-W., and Taguchi, M.: Dynamical consistency of
reanalysis datasets in the extratropical stratosphere, J. Climate, 29,
3057–3074, https://doi.org/10.1175/JCLI-D-15-0469.1, 2016.
Martineau, P., Chen, G., Son, S.-W., and Kim, J.: Lower-Stratospheric
Control of the Frequency of Sudden Stratospheric Warming Events, J. Geophys.
Res.-Atmos., 123, 3051–3070, https://doi.org/10.1002/2017JD027648, 2018a.
Martineau, P., Son, S.-W., Taguchi, M., and Butler, A. H.: A comparison of the momentum budget in reanalysis datasets during sudden stratospheric warming events, Atmos. Chem. Phys., 18, 7169–7187, https://doi.org/10.5194/acp-18-7169-2018, 2018b.
Martineau, P., Wright, J. S., Zhu, N., and Fujiwara, M.: Zonal-mean data set of global atmospheric reanalyses on pressure levels, Earth Syst. Sci. Data, 10, 1925–1941, https://doi.org/10.5194/essd-10-1925-2018, 2018c.
Matsuno, T.: Vertical propagation of stationary planetary waves in the
winter Northern Hemisphere, J. Atmos. Sci., 27, 871–883,
https://doi.org/10.1175/1520-0469(1970)027<0871:VPOSPW>2.0.CO;2, 1970.
McLandress, C., Jonsson, A. I., Plummer, D. A., Reader, M. C., Scinocca, J.
F., and Shepherd, T. G.: Separating the Dynamical Effects of Climate Change and Ozone Depletion, Part I: Southern Hemisphere stratosphere, J. Climate, 23, 5002–5020, https://doi.org/10.1175/2010JCLI3586.1, 2010.
McLandress, C., Shepherd, T. G., Scinocca, J. F., Plummer, D. A., Sigmond,
M., Jonsson, A. I., and Reader, M. C.: Separating the Dynamical Effects of
Climate Change and Ozone Depletion, Part II: Southern Hemisphere
Troposphere, J. Climate, 24, 1850–1868, https://doi.org/10.1175/2010JCLI3958.1, 2011.
Orr, A., Cresswell, D., Marshall, G. J., Hunt, J. C. R., Sommeria, J., Wang,
C. G., and Light, M.: A “low-level” explanation for the recent large warming trend over the western Antarctic Peninsula involving blocked winds and changes in zonal circulation, Geophys. Res. Lett., 31, L06204,
https://doi.org/10.1029/2003GL019160, 2004.
Orr, A., Marshall, G., Hunt, J. C. R., Sommeria, J., Wang, C., van Lipzig, N., Cresswell, D., and King, J. C.: Characteristics of airflow over
the Antarctic Peninsula and its response to recent strengthening of westerly
circumpolar winds, J. Atmos. Sci., 65, 1396–1413, https://doi.org/10.1175/2007JAS2498.1,
2008.
Orr, A., Bechtold, P., Scinocca, J., Ern, M., and Janiskova, M.: Improved
middle atmosphere climate and forecasts in the ECMWF model through a
non-orographic gravity wave drag parametrization, J. Climate, 23, 5905–5926,
https://doi.org/10.1175/2010JCLI3490.1, 2010.
Orr, A., Bracegirdle, T. J., Hoskings, J. S., Jung, T., Haigh, J.
D., Phillips, T., and Feng, W.: Possible dynamical mechanisms for Southern
Hemisphere climate change due to the ozone hole, J. Atmos. Sci., 69,
2917–2932, https://doi.org/10.1175/JAS-D-11-0210.1, 2012.
Orr, A., Bracegirdle, T. J., Hosking, J. S., Feng, W., Roscoe, H. K., and
Haigh, J. D.: Strong dynamical modulation of the cooling of the polar
stratosphere associated with the Antarctic ozone hole, J. Climate, 26,
662–668, https://doi.org/10.1175/JCLI-D-12-00480.1, 2013.
Palmer, T. N.: Aspects of stratospheric sudden warmings studied from a
transformed Eulerian-mean viewpoint, J. Geophys. Res.-Oceans, 86, 9679–9687,
https://doi.org/10.1029/JC086iC10p09679, 1981.
Plumb, R. A.: Planetary waves and the extratropical winter stratosphere, in: The Stratosphere: Dynamics, Transport and Chemistry, edited by: Polvani, L. M., Sobel, A. H., and Waugh, D. W., 23–41, AGU, Washington, D.C., USA, 2010.
Polvani, L. M., Waugh, D. W., Correa, G. J. P., and Son, S.-W.:
Stratospheric ozone depletion: The main driver of twentieth-century
atmospheric circulation changes in the Southern Hemisphere, J. Climate, 24,
795–812, https://doi.org/10.1175/2010JCLI3772.1, 2011.
Randel, W. J. and Wu, F.: Cooling of the Arctic and Antarctic polar
stratospheres due to ozone depletion, J. Climate, 12, 1467–1479,
https://doi.org/10.1175/1520-0442(1999)012<1467:COTAAA>2.0.CO;2, 1999.
Robinson, W. A.: Does eddy feedback sustain variability in the zonal index?, J. Atmos. Sci., 53, 3556–3569, https://doi.org/10.1175/1520-0469(1996)053<3556:DEFSVI>2.0.CO;2, 1996.
Robinson, W. A.: A baroclinic mechanism for the eddy feedback on the zonal
index, J. Atmos. Sci., 57, 415–422, https://doi.org/10.1175/1520-0469(2000)057<0415:ABMFTE>2.0.CO;2, 2000.
Saha, S., Moorthi, S., Pan, H.-L., Wu, X., Wang, J., Nadiga, S., Tripp, P.,
Kistler, R., Woollen, J., Behringer, D., Liu, H., Stokes, D., Grumbine, R.,
Gayno, G., Wang, J., Hou, Y.-T., Chuang, H.-Y., Juang, H.-M. H., Sela, J.,
Iredell, M., Treadon, R., Kleist, D., Van Delst, P., Keyser, D., Derber, J.,
Ek, M., Meng, J., Wei, H., Yang, R., Lord, S., van den Dool, H., Kumar, A.,
Wang, W., Long, C., Chelliah, M., Xue, Y., Huang, B., Schemm, J.-K.,
Ebisuzaki, W., Lin, R., Xie, P., Chen, M., Zhou, S., Higgins, W., Zou,
C.-Z., Liu, Q., Chen, Y., Han, Y., Cucurull, L., Reynolds, R. W., Rutledge,
G., and Goldberg, M.: The NCEP Climate Forecast System Reanalysis, B. Am. Meteorol. Soc., 91, 1015–1057, https://doi.org/10.1175/2010BAMS3001.1, 2010.
Saha, S., Moorthi, S., Xingren, W., Jiande, W., Nadiga, S., Tripp, P.,
Behringer, D., Hou, Y.-T., Chuang, H.-Y., Iredell, M., Ek, M., Meng, J.,
Yang, R., Mendez, M. P., van den Dool, H., Zhang, Q., Wang, W., Chen, M.,
and Becker, E.: The NCEP climate forecast system version 2, J. Climate, 27,
2185–2208, https://doi.org/10.1175/JCLI-D-12-00823.1, 2014.
Scott, R. K. and Polvani, L. M.: Internal Variability of the Winter
Stratosphere, Part I: Time-Independent Forcing, J. Atmos. Sci., 63,
2758–2776, https://doi.org/10.1175/JAS3797.1, 2006.
Shaw, T. A., Perlwitz, J., Harnik, N., Newman, P. A., and Pawson, S.: The
impact of stratospheric ozone changes on downward wave coupling in the
Southern Hemisphere, J. Climate, 24, 4210–4229, https://doi.org/10.1175/2011JCLI4170.1,
2011.
Simmons, A., Soci, C., Nicholas, J., Bell, B., Berrisford, P., Dragani, R.,
Flemming, J., Haimberger, L., Healy, S., Hersbach, H., Horanyi, A., Inness,
A., Munoz-Sabater, J., Radu, R., and Schepers, D.: Global stratospheric
temperature bias and other stratospheric aspects of ERA5 and ERA5.1, ECMWF
Technical Memoranda, No. 859, ECMWF, https://doi.org/10.21957/rcxqfmg0, 2020.
Smith, K. L. and Scott, R. K.: The role of planetary waves in the
tropospheric jet response to stratospheric cooling, Geophys. Res. Lett., 43, 2904–2911,
https://doi.org/10.1002/2016GL067849, 2016.
Solomon, S., Ivy, D. J., Kinnison, D., Mills, M. J., Neely III, R. R., and
Schmidt, A.: Emergence of healing in the Antarctic ozone layer, Science,
353, 269–274, https://doi.org/10.1126/science.aae0061, 2016.
Song, Y. and Robinson, W. A.: Dynamical mechanisms for stratospheric
influences on the troposphere, J. Atmos. Sci., 61, 1711–1725,
https://doi.org/10.1175/1520-0469(2004)061<1711:DMFSIO>2.0.CO;2, 2004.
Sterl, A.: On the (In)Homogeneity of Reanalysis Products, J. Climate, 17,
3866–3873, https://doi.org/10.1175/1520-0442(2004)017<3866:OTIORP>2.0.CO;2, 2004.
Thompson, D. W. J. and Solomon, S.: Interpretation of recent Southern
Hemisphere climate change, Science, 296, 895–899,
https://doi.org/10.1126/science.1069270, 2002.
Thompson, D. W. J., Solomon, S., Kushner, P. J., England, M. H., Grise, K.
M., and Karoly, D. J.: Signatures of the Antarctic ozone hole in Southern
Hemisphere surface climate change, Nat. Geosci., 4, 741–749,
https://doi.org/10.1038/ngeo1296, 2011.
Vallis, G. K.: Atmospheric and oceanic fluid dynamics, Cambridge University Press, Cambridge, UK, 2017.
van Lipzig, N. P. M., Marshall, G. J., Orr, A., and King, J. C.: The
relationship between the southern hemisphere annular mode and Antarctic
Peninsula summer temperatures: Analysis of a high-resolution model, J. Climate, 21, 1649–1668, https://doi.org/10.1175/2007JCLI1695.1, 2008.
Short summary
Reanalysis datasets combine observations and weather forecast simulations to create our best estimate of the state of the atmosphere and are important for climate monitoring. Differences in the technical details of these products mean that they may give different results. This study therefore examined how changes associated with the so-called Antarctic ozone hole are represented, which is one of the most important climate changes in recent decades, and showed that they were broadly consistent.
Reanalysis datasets combine observations and weather forecast simulations to create our best...
Altmetrics
Final-revised paper
Preprint