Articles | Volume 21, issue 6
https://doi.org/10.5194/acp-21-5235-2021
https://doi.org/10.5194/acp-21-5235-2021
Research article
 | 
01 Apr 2021
Research article |  | 01 Apr 2021

COVID-19 lockdown-induced changes in NO2 levels across India observed by multi-satellite and surface observations

Akash Biswal, Vikas Singh, Shweta Singh, Amit P. Kesarkar, Khaiwal Ravindra, Ranjeet S. Sokhi, Martyn P. Chipperfield, Sandip S. Dhomse, Richard J. Pope, Tanbir Singh, and Suman Mor

Related authors

Spatially resolved hourly traffic emission over megacity Delhi using advanced traffic flow data
Akash Biswal, Vikas Singh, Leeza Malik, Geetam Tiwari, Khaiwal Ravindra, and Suman Mor
Earth Syst. Sci. Data, 15, 661–680, https://doi.org/10.5194/essd-15-661-2023,https://doi.org/10.5194/essd-15-661-2023, 2023
Short summary

Related subject area

Subject: Gases | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Vertical profiles of global tropospheric nitrogen dioxide (NO2) obtained by cloud slicing the TROPOspheric Monitoring Instrument (TROPOMI)
Rebekah P. Horner, Eloise A. Marais, Nana Wei, Robert G. Ryan, and Viral Shah
Atmos. Chem. Phys., 24, 13047–13064, https://doi.org/10.5194/acp-24-13047-2024,https://doi.org/10.5194/acp-24-13047-2024, 2024
Short summary
Opinion: Beyond global means – novel space-based approaches to indirectly constrain the concentrations of and trends and variations in the tropospheric hydroxyl radical (OH)
Bryan N. Duncan, Daniel C. Anderson, Arlene M. Fiore, Joanna Joiner, Nickolay A. Krotkov, Can Li, Dylan B. Millet, Julie M. Nicely, Luke D. Oman, Jason M. St. Clair, Joshua D. Shutter, Amir H. Souri, Sarah A. Strode, Brad Weir, Glenn M. Wolfe, Helen M. Worden, and Qindan Zhu
Atmos. Chem. Phys., 24, 13001–13023, https://doi.org/10.5194/acp-24-13001-2024,https://doi.org/10.5194/acp-24-13001-2024, 2024
Short summary
Satellite-observed relationships between land cover, burned area, and atmospheric composition over the southern Amazon
Emma Sands, Richard J. Pope, Ruth M. Doherty, Fiona M. O'Connor, Chris Wilson, and Hugh Pumphrey
Atmos. Chem. Phys., 24, 11081–11102, https://doi.org/10.5194/acp-24-11081-2024,https://doi.org/10.5194/acp-24-11081-2024, 2024
Short summary
Ammonia emission estimates using CrIS satellite observations over Europe
Jieying Ding, Ronald van der A, Henk Eskes, Enrico Dammers, Mark Shephard, Roy Wichink Kruit, Marc Guevara, and Leonor Tarrason
Atmos. Chem. Phys., 24, 10583–10599, https://doi.org/10.5194/acp-24-10583-2024,https://doi.org/10.5194/acp-24-10583-2024, 2024
Short summary
Insights into the long-term (2005–2021) spatiotemporal evolution of summer ozone production sensitivity in the Northern Hemisphere derived with the Ozone Monitoring Instrument (OMI)
Matthew S. Johnson, Sajeev Philip, Scott Meech, Rajesh Kumar, Meytar Sorek-Hamer, Yoichi P. Shiga, and Jia Jung
Atmos. Chem. Phys., 24, 10363–10384, https://doi.org/10.5194/acp-24-10363-2024,https://doi.org/10.5194/acp-24-10363-2024, 2024
Short summary

Cited articles

Alonso-Blanco, E., Castro, A., Calvo, A. I., Pont, V., Mallet, M., and Fraile, R.: Wildfire smoke plumes transport under a subsidence inversion: Climate and health implications in a distant urban area, Sci. Total Environ., 619, 988–1002 2018. 
Archer, C. L., Cervone, G., Golbazi, M., Al Fahel, N., and Hultquist, C.: Changes in air quality and human mobility in the USA during the COVID-19 pandemic, Bull. Atmospheric Sci. Technol., 1, 491–514, https://doi.org/10.1007/s42865-020-00019-0, 2020. 
Bauwens, M., Compernolle, S., Stavrakou, T., Müller, J.-F., Gent, J. van, Eskes, H., Levelt, P. F., A, R. van der, Veefkind, J. P., Vlietinck, J., Yu, H., and Zehner, C.: Impact of Coronavirus Outbreak on NO2 Pollution Assessed Using TROPOMI and OMI Observations, Geophys. Res. Lett., 47, e2020GL087978, https://doi.org/10.1029/2020GL087978, 2020. 
Bhuvan: Indian Geo-Platform of Indian Space Research Organisation, Thematic Services, available at: https://bhuvan.nrsc.gov.in, last access: 3 January 2020. 
Download
Short summary
Satellite and surface observations show a reduction in NO2 levels over India during the lockdown compared to business-as-usual years. A substantial reduction, proportional to the population, was observed over the urban areas. The changes in NO2 levels at the surface during the lockdown appear to be present in the satellite observations. However, TROPOMI showed a better correlation with surface NO2 and was more sensitive to the changes than OMI because of the finer resolution.
Altmetrics
Final-revised paper
Preprint