Articles | Volume 21, issue 6
https://doi.org/10.5194/acp-21-4709-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-4709-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Pre-deliquescent water uptake in deposited nanoparticles observed with in situ ambient pressure X-ray photoelectron spectroscopy
Jack J. Lin
Nano and Molecular Systems Research Unit, University of Oulu, P.O. Box 3000, 90014 Oulu, Finland
Kamal Raj R
Nano and Molecular Systems Research Unit, University of Oulu, P.O. Box 3000, 90014 Oulu, Finland
Center for Atmospheric Research, University of Oulu, P.O. Box 4500, 90014 Oulu, Finland
Stella Wang
Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, California, 91125, USA
Esko Kokkonen
MAX IV Laboratory, Lund University, Box 118, 22100 Lund, Sweden
Mikko-Heikki Mikkelä
MAX IV Laboratory, Lund University, Box 118, 22100 Lund, Sweden
Samuli Urpelainen
CORRESPONDING AUTHOR
Nano and Molecular Systems Research Unit, University of Oulu, P.O. Box 3000, 90014 Oulu, Finland
Nano and Molecular Systems Research Unit, University of Oulu, P.O. Box 3000, 90014 Oulu, Finland
Center for Atmospheric Research, University of Oulu, P.O. Box 4500, 90014 Oulu, Finland
Related authors
Georgia Michailoudi, Jack J. Lin, Hayato Yuzawa, Masanari Nagasaka, Marko Huttula, Nobuhiro Kosugi, Theo Kurtén, Minna Patanen, and Nønne L. Prisle
Atmos. Chem. Phys., 21, 2881–2894, https://doi.org/10.5194/acp-21-2881-2021, https://doi.org/10.5194/acp-21-2881-2021, 2021
Short summary
Short summary
This study provides insight into hydration of two significant atmospheric compounds, glyoxal and methylglyoxal. Using synchrotron radiation excited X-ray absorption spectroscopy, we confirm that glyoxal is fully hydrated in water, and for the first time, we experimentally detect enol structures in aqueous methylglyoxal. Our results support the contribution of these compounds to secondary organic aerosol formation, known to have a large uncertainty in atmospheric models and climate predictions.
Aikaterini Bougiatioti, Athanasios Nenes, Jack J. Lin, Charles A. Brock, Joost A. de Gouw, Jin Liao, Ann M. Middlebrook, and André Welti
Atmos. Chem. Phys., 20, 12163–12176, https://doi.org/10.5194/acp-20-12163-2020, https://doi.org/10.5194/acp-20-12163-2020, 2020
Short summary
Short summary
The number concentration of droplets in clouds in the summertime in the southeastern United States is influenced by aerosol variations but limited by the strong competition for supersaturated water vapor. Concurrent variations in vertical velocity magnify the response of cloud droplet number to aerosol increases by up to a factor of 5. Omitting the covariance of vertical velocity with aerosol number may therefore bias estimates of the cloud albedo effect from aerosols.
Nønne L. Prisle, Jack J. Lin, Sara Purdue, Haisheng Lin, J. Carson Meredith, and Athanasios Nenes
Atmos. Chem. Phys., 19, 4741–4761, https://doi.org/10.5194/acp-19-4741-2019, https://doi.org/10.5194/acp-19-4741-2019, 2019
Short summary
Short summary
We measure surface activity and cloud-forming potential of pollenkitt, an organic mixture coating pollen grains. Cloud droplet formation is affected through both surface tension and bulk depletion, with a consistent particle size-dependent signature. We observe nonideal solution effects in pollenkitt mixtures with ammonium sulfate salt. Our results suggest sensitivity of general water interactions, including cloud formation by pollen and their fragments, to both atmospheric humidity and aging.
Carsten Warneke, Michael Trainer, Joost A. de Gouw, David D. Parrish, David W. Fahey, A. R. Ravishankara, Ann M. Middlebrook, Charles A. Brock, James M. Roberts, Steven S. Brown, Jonathan A. Neuman, Brian M. Lerner, Daniel Lack, Daniel Law, Gerhard Hübler, Iliana Pollack, Steven Sjostedt, Thomas B. Ryerson, Jessica B. Gilman, Jin Liao, John Holloway, Jeff Peischl, John B. Nowak, Kenneth C. Aikin, Kyung-Eun Min, Rebecca A. Washenfelder, Martin G. Graus, Mathew Richardson, Milos Z. Markovic, Nick L. Wagner, André Welti, Patrick R. Veres, Peter Edwards, Joshua P. Schwarz, Timothy Gordon, William P. Dube, Stuart A. McKeen, Jerome Brioude, Ravan Ahmadov, Aikaterini Bougiatioti, Jack J. Lin, Athanasios Nenes, Glenn M. Wolfe, Thomas F. Hanisco, Ben H. Lee, Felipe D. Lopez-Hilfiker, Joel A. Thornton, Frank N. Keutsch, Jennifer Kaiser, Jingqiu Mao, and Courtney D. Hatch
Atmos. Meas. Tech., 9, 3063–3093, https://doi.org/10.5194/amt-9-3063-2016, https://doi.org/10.5194/amt-9-3063-2016, 2016
Short summary
Short summary
In this paper we describe the experimental approach, the science goals and early results of the NOAA SENEX campaign, which was focused on studying the interactions between biogenic and anthropogenic emissions to form secondary pollutants.
During SENEX, the NOAA WP-3D aircraft conducted 20 research flights between 27 May and 10 July 2013 based out of Smyrna, TN. The SENEX flights included day- and nighttime flights in the Southeast as well as flights over areas with intense shale gas extraction.
Y. Shinozuka, A. D. Clarke, A. Nenes, A. Jefferson, R. Wood, C. S. McNaughton, J. Ström, P. Tunved, J. Redemann, K. L. Thornhill, R. H. Moore, T. L. Lathem, J. J. Lin, and Y. J. Yoon
Atmos. Chem. Phys., 15, 7585–7604, https://doi.org/10.5194/acp-15-7585-2015, https://doi.org/10.5194/acp-15-7585-2015, 2015
Gargi Sengupta, Minjie Zheng, and Nønne L. Prisle
EGUsphere, https://doi.org/10.5194/egusphere-2023-438, https://doi.org/10.5194/egusphere-2023-438, 2023
Short summary
Short summary
The effect of organic acid aerosol on sulfur chemistry and cloud properties was investigated in an atmospheric model. Organic acid dissociation was considered using both bulk and surface related properties. We found that organic acid dissociation leads to increased hydrogen ion concentrations and sulfate aerosol mass in aqueous aerosols, increasing cloud formation. This could be important in large scale climate models as many organic aerosol components are both acidic and surface-active.
Sampo Vepsäläinen, Silvia M. Calderón, and Nønne L. Prisle
EGUsphere, https://doi.org/10.5194/egusphere-2022-1188, https://doi.org/10.5194/egusphere-2022-1188, 2023
Short summary
Short summary
Atmospheric aerosols act as seeds for cloud formation. Many aerosols contain surface active material that accumulates at the surface of growing droplets. This can affect cloud droplet activation, but the broad significance of the effect and the best way to model it are still debated. We compare predictions of six models to surface activity of strongly surface active aerosol and find significant differences between the models, especially with large fractions of surfactant in the dry particles.
Sampo Vepsäläinen, Silvia M. Calderón, Jussi Malila, and Nønne L. Prisle
Atmos. Chem. Phys., 22, 2669–2687, https://doi.org/10.5194/acp-22-2669-2022, https://doi.org/10.5194/acp-22-2669-2022, 2022
Short summary
Short summary
Atmospheric aerosols act as seeds for cloud formation. Many aerosols contain surface active material that accumulates at the surface of growing droplets. This can affect cloud droplet activation, but the broad significance of the effect and the best way to model it are still debated. We compare predictions of six different model approaches to surface activity of organic aerosols and find significant differences between the models, especially with large fractions of organics in the dry particles.
Nønne L. Prisle
Atmos. Chem. Phys., 21, 16387–16411, https://doi.org/10.5194/acp-21-16387-2021, https://doi.org/10.5194/acp-21-16387-2021, 2021
Short summary
Short summary
A mass-based Gibbs adsorption model is presented to enable predictive Köhler calculations of droplet growth and activation with considerations of surface partitioning, surface tension, and non-ideal water activity for chemically complex and unresolved surface active aerosol mixtures, including actual atmospheric samples. The model is used to calculate cloud condensation nuclei (CCN) activity of aerosol particles comprising strongly surface-active model atmospheric humic-like substances (HULIS).
Georgia Michailoudi, Jack J. Lin, Hayato Yuzawa, Masanari Nagasaka, Marko Huttula, Nobuhiro Kosugi, Theo Kurtén, Minna Patanen, and Nønne L. Prisle
Atmos. Chem. Phys., 21, 2881–2894, https://doi.org/10.5194/acp-21-2881-2021, https://doi.org/10.5194/acp-21-2881-2021, 2021
Short summary
Short summary
This study provides insight into hydration of two significant atmospheric compounds, glyoxal and methylglyoxal. Using synchrotron radiation excited X-ray absorption spectroscopy, we confirm that glyoxal is fully hydrated in water, and for the first time, we experimentally detect enol structures in aqueous methylglyoxal. Our results support the contribution of these compounds to secondary organic aerosol formation, known to have a large uncertainty in atmospheric models and climate predictions.
Noora Hyttinen, Reyhaneh Heshmatnezhad, Jonas Elm, Theo Kurtén, and Nønne L. Prisle
Atmos. Chem. Phys., 20, 13131–13143, https://doi.org/10.5194/acp-20-13131-2020, https://doi.org/10.5194/acp-20-13131-2020, 2020
Short summary
Short summary
We present aqueous solubilities and activity coefficients of mono- and dicarboxylic acids (C1–C6 and C2–C8, respectively) estimated using the COSMOtherm program. In addition, we have calculated effective equilibrium constants of dimerization and hydration of the same acids in the condensed phase. We were also able to improve the agreement between experimental and estimated properties of monocarboxylic acids in aqueous solutions by including clustering reactions in COSMOtherm calculations.
Aikaterini Bougiatioti, Athanasios Nenes, Jack J. Lin, Charles A. Brock, Joost A. de Gouw, Jin Liao, Ann M. Middlebrook, and André Welti
Atmos. Chem. Phys., 20, 12163–12176, https://doi.org/10.5194/acp-20-12163-2020, https://doi.org/10.5194/acp-20-12163-2020, 2020
Short summary
Short summary
The number concentration of droplets in clouds in the summertime in the southeastern United States is influenced by aerosol variations but limited by the strong competition for supersaturated water vapor. Concurrent variations in vertical velocity magnify the response of cloud droplet number to aerosol increases by up to a factor of 5. Omitting the covariance of vertical velocity with aerosol number may therefore bias estimates of the cloud albedo effect from aerosols.
Noora Hyttinen, Jonas Elm, Jussi Malila, Silvia M. Calderón, and Nønne L. Prisle
Atmos. Chem. Phys., 20, 5679–5696, https://doi.org/10.5194/acp-20-5679-2020, https://doi.org/10.5194/acp-20-5679-2020, 2020
Short summary
Short summary
Organosulfates have been identified in atmospheric secondary organic aerosol (SOA). The thermodynamic properties of SOA constituents, such as organosulfates, affect the stability and atmospheric impact of the SOA. Here we present estimated solubility, activity, pKa, saturation vapor pressure and Henry's law solubility values for several atmospherically relevant monoterpene- and isoprene-derived organosulfate compounds. These properties can be used, for example, in aerosol process modeling.
Nønne L. Prisle, Jack J. Lin, Sara Purdue, Haisheng Lin, J. Carson Meredith, and Athanasios Nenes
Atmos. Chem. Phys., 19, 4741–4761, https://doi.org/10.5194/acp-19-4741-2019, https://doi.org/10.5194/acp-19-4741-2019, 2019
Short summary
Short summary
We measure surface activity and cloud-forming potential of pollenkitt, an organic mixture coating pollen grains. Cloud droplet formation is affected through both surface tension and bulk depletion, with a consistent particle size-dependent signature. We observe nonideal solution effects in pollenkitt mixtures with ammonium sulfate salt. Our results suggest sensitivity of general water interactions, including cloud formation by pollen and their fragments, to both atmospheric humidity and aging.
Michael Boy, Erik S. Thomson, Juan-C. Acosta Navarro, Olafur Arnalds, Ekaterina Batchvarova, Jaana Bäck, Frank Berninger, Merete Bilde, Zoé Brasseur, Pavla Dagsson-Waldhauserova, Dimitri Castarède, Maryam Dalirian, Gerrit de Leeuw, Monika Dragosics, Ella-Maria Duplissy, Jonathan Duplissy, Annica M. L. Ekman, Keyan Fang, Jean-Charles Gallet, Marianne Glasius, Sven-Erik Gryning, Henrik Grythe, Hans-Christen Hansson, Margareta Hansson, Elisabeth Isaksson, Trond Iversen, Ingibjorg Jonsdottir, Ville Kasurinen, Alf Kirkevåg, Atte Korhola, Radovan Krejci, Jon Egill Kristjansson, Hanna K. Lappalainen, Antti Lauri, Matti Leppäranta, Heikki Lihavainen, Risto Makkonen, Andreas Massling, Outi Meinander, E. Douglas Nilsson, Haraldur Olafsson, Jan B. C. Pettersson, Nønne L. Prisle, Ilona Riipinen, Pontus Roldin, Meri Ruppel, Matthew Salter, Maria Sand, Øyvind Seland, Heikki Seppä, Henrik Skov, Joana Soares, Andreas Stohl, Johan Ström, Jonas Svensson, Erik Swietlicki, Ksenia Tabakova, Throstur Thorsteinsson, Aki Virkkula, Gesa A. Weyhenmeyer, Yusheng Wu, Paul Zieger, and Markku Kulmala
Atmos. Chem. Phys., 19, 2015–2061, https://doi.org/10.5194/acp-19-2015-2019, https://doi.org/10.5194/acp-19-2015-2019, 2019
Short summary
Short summary
The Nordic Centre of Excellence CRAICC (Cryosphere–Atmosphere Interactions in a Changing Arctic Climate), funded by NordForsk in the years 2011–2016, is the largest joint Nordic research and innovation initiative to date and aimed to strengthen research and innovation regarding climate change issues in the Nordic region. The paper presents an overview of the main scientific topics investigated and provides a state-of-the-art comprehensive summary of what has been achieved in CRAICC.
Theo Kurtén, Noora Hyttinen, Emma Louise D'Ambro, Joel Thornton, and Nønne Lyng Prisle
Atmos. Chem. Phys., 18, 17589–17600, https://doi.org/10.5194/acp-18-17589-2018, https://doi.org/10.5194/acp-18-17589-2018, 2018
Short summary
Short summary
We use COSMO-RS to compute saturation vapor pressures for two products of isoprene photo-oxidation and compare the results to measurements. COSMO-RS is an attractive option for calculating properties of molecules, as it is based on quantum mechanics and requires few fitting parameters. However, we show that the default implementation of this method suffers from errors related to both conformational sampling and intramolecular hydrogen bonding. We propose solutions to these problems.
Juan Hong, Mikko Äijälä, Silja A. K. Häme, Liqing Hao, Jonathan Duplissy, Liine M. Heikkinen, Wei Nie, Jyri Mikkilä, Markku Kulmala, Nønne L. Prisle, Annele Virtanen, Mikael Ehn, Pauli Paasonen, Douglas R. Worsnop, Ilona Riipinen, Tuukka Petäjä, and Veli-Matti Kerminen
Atmos. Chem. Phys., 17, 4387–4399, https://doi.org/10.5194/acp-17-4387-2017, https://doi.org/10.5194/acp-17-4387-2017, 2017
Short summary
Short summary
Estimates of volatility of secondary organic aerosols was characterized in a boreal forest environment of Hyytiälä, southern Finland. This was done by interpreting field measurements using a volatility tandem differential mobility analyzer (VTDMA) with a kinetic evaporation model and by applying positive matrix factorization (PMF) to high-resolution aerosol mass spectrometer data. About 16 % of the variation can be explained by the linear regression between the results from these two methods.
Carsten Warneke, Michael Trainer, Joost A. de Gouw, David D. Parrish, David W. Fahey, A. R. Ravishankara, Ann M. Middlebrook, Charles A. Brock, James M. Roberts, Steven S. Brown, Jonathan A. Neuman, Brian M. Lerner, Daniel Lack, Daniel Law, Gerhard Hübler, Iliana Pollack, Steven Sjostedt, Thomas B. Ryerson, Jessica B. Gilman, Jin Liao, John Holloway, Jeff Peischl, John B. Nowak, Kenneth C. Aikin, Kyung-Eun Min, Rebecca A. Washenfelder, Martin G. Graus, Mathew Richardson, Milos Z. Markovic, Nick L. Wagner, André Welti, Patrick R. Veres, Peter Edwards, Joshua P. Schwarz, Timothy Gordon, William P. Dube, Stuart A. McKeen, Jerome Brioude, Ravan Ahmadov, Aikaterini Bougiatioti, Jack J. Lin, Athanasios Nenes, Glenn M. Wolfe, Thomas F. Hanisco, Ben H. Lee, Felipe D. Lopez-Hilfiker, Joel A. Thornton, Frank N. Keutsch, Jennifer Kaiser, Jingqiu Mao, and Courtney D. Hatch
Atmos. Meas. Tech., 9, 3063–3093, https://doi.org/10.5194/amt-9-3063-2016, https://doi.org/10.5194/amt-9-3063-2016, 2016
Short summary
Short summary
In this paper we describe the experimental approach, the science goals and early results of the NOAA SENEX campaign, which was focused on studying the interactions between biogenic and anthropogenic emissions to form secondary pollutants.
During SENEX, the NOAA WP-3D aircraft conducted 20 research flights between 27 May and 10 July 2013 based out of Smyrna, TN. The SENEX flights included day- and nighttime flights in the Southeast as well as flights over areas with intense shale gas extraction.
Bjarke Mølgaard, Jarno Vanhatalo, Pasi P. Aalto, Nønne L. Prisle, and Kaarle Hämeri
Atmos. Meas. Tech., 9, 741–751, https://doi.org/10.5194/amt-9-741-2016, https://doi.org/10.5194/amt-9-741-2016, 2016
Short summary
Short summary
We have improved the reliability of submicron aerosol particle size distributions measured in urban locations. This improvement was obtained by processing the data in a new way and avoiding a problematic assumption of a stationary aerosol during each size distribution measurement.
Y. Shinozuka, A. D. Clarke, A. Nenes, A. Jefferson, R. Wood, C. S. McNaughton, J. Ström, P. Tunved, J. Redemann, K. L. Thornhill, R. H. Moore, T. L. Lathem, J. J. Lin, and Y. J. Yoon
Atmos. Chem. Phys., 15, 7585–7604, https://doi.org/10.5194/acp-15-7585-2015, https://doi.org/10.5194/acp-15-7585-2015, 2015
H. Vuollekoski, M. Vogt, V. A. Sinclair, J. Duplissy, H. Järvinen, E.-M. Kyrö, R. Makkonen, T. Petäjä, N. L. Prisle, P. Räisänen, M. Sipilä, J. Ylhäisi, and M. Kulmala
Hydrol. Earth Syst. Sci., 19, 601–613, https://doi.org/10.5194/hess-19-601-2015, https://doi.org/10.5194/hess-19-601-2015, 2015
Short summary
Short summary
The global potential for collecting usable water from dew on an
artificial collector sheet was investigated by utilising 34 years of
meteorological reanalysis data as input to a dew formation model. Continental dew formation was found to be frequent and common, but daily yields were
mostly below 0.1mm.
M. Paramonov, P. P. Aalto, A. Asmi, N. Prisle, V.-M. Kerminen, M. Kulmala, and T. Petäjä
Atmos. Chem. Phys., 13, 10285–10301, https://doi.org/10.5194/acp-13-10285-2013, https://doi.org/10.5194/acp-13-10285-2013, 2013
N. L. Prisle, N. Ottosson, G. Öhrwall, J. Söderström, M. Dal Maso, and O. Björneholm
Atmos. Chem. Phys., 12, 12227–12242, https://doi.org/10.5194/acp-12-12227-2012, https://doi.org/10.5194/acp-12-12227-2012, 2012
Related subject area
Subject: Aerosols | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Photo-induced shrinking of aqueous glycine aerosol droplets
Sulfate formation via aerosol-phase SO2 oxidation by model biomass burning photosensitizers: 3,4-dimethoxybenzaldehyde, vanillin and syringaldehyde using single-particle mixing-state analysis
Yields and molecular composition of gas-phase and secondary organic aerosol from the photooxidation of the volatile consumer product benzyl alcohol: formation of highly oxygenated and hydroxy nitro-aromatic compounds
A combined gas- and particle-phase analysis of highly oxygenated organic molecules (HOMs) from α-pinene ozonolysis
Photoaging of Phenolic Secondary Organic Aerosol in the Aqueous Phase: Evolution of Chemical and Optical Properties and Effects of Oxidants
Comparison of aqueous secondary organic aerosol (aqSOA) product distributions from guaiacol oxidation by non-phenolic and phenolic methoxybenzaldehydes as photosensitizers in the absence and presence of ammonium nitrate
Technical note: Chemical composition and source identification of fluorescent components in atmospheric water-soluble brown carbon by excitation–emission matrix spectroscopy with parallel factor analysis – potential limitations and applications
Insoluble lipid film mediates transfer of soluble saccharides from the sea to the atmosphere: the role of hydrogen bonding
Simultaneous Formation of Sulfate and Nitrate via Co-uptake of SO2 and NO2 by Aqueous NaCl Droplets: Combined Effect of Nitrate Photolysis and Chlorine Chemistry
Measurement Report: Atmospheric aging of combustion-derived particles: impact on stable free radical concentration and its ability to produce reactive oxygen species in aqueous media
Magnetic fraction of the atmospheric dust in Kraków – physicochemical characteristics and possible environmental impact
Modeling daytime and nighttime secondary organic aerosol formation via multiphase reactions of biogenic hydrocarbons
SO2 enhances aerosol formation from anthropogenic volatile organic compound ozonolysis by producing sulfur-containing compounds
Isothermal evaporation of α-pinene secondary organic aerosol particles formed under low NOx and high NOx conditions
Chemical characterization of organic compounds involved in iodine-initiated new particle formation from coastal macroalgal emission
The Urmia playa as a source of airborne dust and ice-nucleating particles – Part 2: Unraveling the relationship between soil dust composition and ice nucleation activity
Winter brown carbon over six of China's megacities: light absorption, molecular characterization, and improved source apportionment revealed by multilayer perceptron neural network
Chamber investigation of the formation and transformation of secondary organic aerosol in mixtures of biogenic and anthropogenic volatile organic compounds
Not all types of secondary organic aerosol mix: two phases observed when mixing different secondary organic aerosol types
Comprehensive characterization of particulate intermediate-volatility and semi-volatile organic compounds (I/SVOCs) from heavy-duty diesel vehicles using two-dimensional gas chromatography time-of-flight mass spectrometry
Measurement report: Investigation of pH- and particle-size-dependent chemical and optical properties of water-soluble organic carbon: implications for its sources and aging processes
The influence of the addition of isoprene on the volatility of particles formed from the photo-oxidation of anthropogenic–biogenic mixtures
Significant formation of sulfate aerosols contributed by the heterogeneous drivers of dust surface
Chemical evolution of primary and secondary biomass burning aerosols during daytime and nighttime
Particle-phase processing of α-pinene NO3 secondary organic aerosol in the dark
Chemical characteristics and sources of PM2.5 in Hohhot, a semi-arid city in northern China: insight from the COVID-19 lockdown
The positive effect of formaldehyde on the photocatalytic renoxification of nitrate on TiO2 particles
Identification of highly oxygenated organic molecules and their role in aerosol formation in the reaction of limonene with nitrate radical
A comprehensive study on hygroscopic behaviour and nitrate depletion of NaNO3 and dicarboxylic acid mixtures: implications for nitrate depletion in tropospheric aerosols
Secondary organic aerosols from OH oxidation of cyclic volatile methyl siloxanes as an important Si source in the atmosphere
An intercomparison study of four different techniques for measuring the chemical composition of nanoparticles
Effects of OH radical and SO2 concentrations on photochemical reactions of mixed anthropogenic organic gases
Chemically distinct particle phase emissions from highly controlled pyrolysis of three wood types
Effects of the sample matrix on the photobleaching and photodegradation of toluene-derived secondary organic aerosol compounds
Functionality-based formation of secondary organic aerosol from m-xylene photooxidation
Chemical composition of secondary organic aerosol particles formed from mixtures of anthropogenic and biogenic precursors
A novel pathway of atmospheric sulfate formation through carbonate radicals
A sulfuric acid nucleation potential model for the atmosphere
Optical and chemical properties and oxidative potential of aqueous-phase products from OH and 3C∗-initiated photooxidation of eugenol
The relationship between PM2.5 and anticyclonic wave activity during summer over the United States
Iron from coal combustion particles dissolves much faster than mineral dust under simulated atmospheric acidic conditions
Cellulose in atmospheric particulate matter at rural and urban sites across France and Switzerland
Kinetics, SOA yields, and chemical composition of secondary organic aerosol from β-caryophyllene ozonolysis with and without nitrogen oxides between 213 and 313 K
Chemical transformation of α-pinene-derived organosulfate via heterogeneous OH oxidation: implications for sources and environmental fates of atmospheric organosulfates
Aqueous chemical bleaching of 4-nitrophenol brown carbon by hydroxyl radicals; products, mechanism, and light absorption
Secondary organic aerosol formation from camphene oxidation: measurements and modeling
Technical note: Real-time diagnosis of the hygroscopic growth micro-dynamics of nanoparticles with Fourier transform infrared spectroscopy
Single-particle Raman spectroscopy for studying physical and chemical processes of atmospheric particles
Are reactive oxygen species (ROS) a suitable metric to predict toxicity of carbonaceous aerosol particles?
Secondary organic aerosol and organic nitrogen yields from the nitrate radical (NO3) oxidation of alpha-pinene from various RO2 fates
Shinnosuke Ishizuka, Oliver Reich, Grégory David, and Ruth Signorell
Atmos. Chem. Phys., 23, 5393–5402, https://doi.org/10.5194/acp-23-5393-2023, https://doi.org/10.5194/acp-23-5393-2023, 2023
Short summary
Short summary
Photosensitizers play an important role in the photochemistry of atmospheric aerosols. Our study provides evidence that mesoscopic glycine clusters forming in aqueous droplets act as unconventional photosensitizers in the visible light spectrum. We observed the influence of these photoactive molecular aggregates in single optically trapped aqueous droplets. Such mesoscopic photosensitizers might be more important for aerosol photochemistry than previously anticipated.
Liyuan Zhou, Zhancong Liang, Beatrix Rosette Go Mabato, Rosemarie Ann Infante Cuevas, Rongzhi Tang, Mei Li, Chunlei Cheng, and Chak K. Chan
Atmos. Chem. Phys., 23, 5251–5261, https://doi.org/10.5194/acp-23-5251-2023, https://doi.org/10.5194/acp-23-5251-2023, 2023
Short summary
Short summary
This study reveals the sulfate formation in photosensitized particles from biomass burning under UV and SO2, of which the relative atmospheric importance in sulfate production was qualitatively compared to nitrate photolysis. On the basis of single-particle aerosol mass spectrometry measurements, the number percentage of sulfate-containing particles and relative peak area of sulfate in single-particle spectra exhibited a descending order of 3,4-dimethoxybenzaldehyde > vanillin > syringaldehyde.
Mohammed Jaoui, Kenneth S. Docherty, Michael Lewandowski, and Tadeusz E. Kleindienst
Atmos. Chem. Phys., 23, 4637–4661, https://doi.org/10.5194/acp-23-4637-2023, https://doi.org/10.5194/acp-23-4637-2023, 2023
Short summary
Short summary
VCPs are a class of chemicals widely used in industrial and consumer products (e.g., coatings, adhesives, inks, personal care products) and are an important component of total VOCs in urban atmospheres. This study provides SOA yields and detailed chemical analysis of the gas- and aerosol-phase products of the photooxidation of one of these VCPs, benzyl alcohol. These results will allow better links between characterized sources and their resulting criteria for pollutant formation.
Jian Zhao, Ella Häkkinen, Frans Graeffe, Jordan E. Krechmer, Manjula R. Canagaratna, Douglas R. Worsnop, Juha Kangasluoma, and Mikael Ehn
Atmos. Chem. Phys., 23, 3707–3730, https://doi.org/10.5194/acp-23-3707-2023, https://doi.org/10.5194/acp-23-3707-2023, 2023
Short summary
Short summary
Based on the combined measurements of gas- and particle-phase highly oxygenated organic molecules (HOMs) from α-pinene ozonolysis, enhancement of dimers in particles was observed. We conducted experiments wherein the dimer to monomer (D / M) ratios of HOMs in the gas phase were modified (adding CO / NO) to investigate the effects of the corresponding D / M ratios in the particles. These results are important for a better understanding of secondary organic aerosol formation in the atmosphere.
Wenqing Jiang, Christopher Niedek, Cort Anastasio, and Qi Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2023-443, https://doi.org/10.5194/egusphere-2023-443, 2023
Short summary
Short summary
Aqueous-phase aging can affect the composition and properties of secondary organic aerosol (SOA). Our photochemical aging experiments of phenolic aqSOA show that fragmentation and evaporation of volatile products dominate the aqSOA aging, leading to significant loss of aqSOA mass and photobleaching. Elevated oxidant concentration can accelerate the evolution of the aqSOA during photoaging.
Beatrix Rosette Go Mabato, Yong Jie Li, Dan Dan Huang, Yalin Wang, and Chak K. Chan
Atmos. Chem. Phys., 23, 2859–2875, https://doi.org/10.5194/acp-23-2859-2023, https://doi.org/10.5194/acp-23-2859-2023, 2023
Short summary
Short summary
We compared non-phenolic and phenolic methoxybenzaldehydes as photosensitizers for aqueous secondary organic aerosol (aqSOA) formation under cloud and fog conditions. We showed that the structural features of photosensitizers affect aqSOA formation. We also elucidated potential interactions between photosensitization and ammonium nitrate photolysis. Our findings are useful for evaluating the importance of photosensitized reactions on aqSOA formation, which could improve aqSOA predictive models.
Tao Cao, Meiju Li, Cuncun Xu, Jianzhong Song, Xingjun Fan, Jun Li, Wanglu Jia, and Ping'an Peng
Atmos. Chem. Phys., 23, 2613–2625, https://doi.org/10.5194/acp-23-2613-2023, https://doi.org/10.5194/acp-23-2613-2023, 2023
Short summary
Short summary
This work comprehensively investigated the fluorescence data of light-absorbing organic compounds, water-soluble organic matter in different types of aerosol samples, soil dust, and fulvic and humic acids using an excitation–emission matrix (EEM) method and parallel factor modeling. The results revealed which light-absorbing species can be detected by EEM and also provided important information for identifying the chemical composition and possible sources of these species in atmospheric samples.
Minglan Xu, Narcisse Tsona Tchinda, Jianlong Li, and Lin Du
Atmos. Chem. Phys., 23, 2235–2249, https://doi.org/10.5194/acp-23-2235-2023, https://doi.org/10.5194/acp-23-2235-2023, 2023
Short summary
Short summary
The promotion of soluble saccharides on sea spray aerosol (SSA) generation and the changes in particle morphology were observed. On the contrary, the coexistence of surface insoluble fatty acid film and soluble saccharides significantly inhibited the production of SSA. This is the first demonstration that hydrogen bonding mediated by surface-insoluble fatty acids contributes to saccharide transfer in seawater, providing a new mechanism for saccharide enrichment in SSA.
Ruifeng Zhang and Chak Keung Chan
EGUsphere, https://doi.org/10.5194/egusphere-2023-223, https://doi.org/10.5194/egusphere-2023-223, 2023
Short summary
Short summary
Research in sulfate and nitrate formation from co-uptake of NO2 and SO2, especially under irradiation, is rare. We studied the co-uptake of NO2 and SO2 by NaCl droplets under various conditions, including irradiation/dark and different RHs, using Raman spectroscopy/Flow cell and kinetic model simulation. A significant nitrate from NO2 hydrolysis can be photolyzed to generate OH radicals that can further react with chloride to produce reactive chlorine species and promote sulfate formation.
Heather L. Runberg and Brian J. Majestic
EGUsphere, https://doi.org/10.5194/egusphere-2023-4, https://doi.org/10.5194/egusphere-2023-4, 2023
Short summary
Short summary
Environmentally persistent free radicals (EPFR) are an emerging pollutant found in soot particles. Understanding how these change as they move through the atmosphere is important to human health. Here, soot was generated in the laboratory and exposed to simulated sunlight. The concentrations and characteristics of EPFR in the soot was measured and found to be unchanged. However, it was also found that the ability of soot to form hydroxyl radicals was stronger for fresh soot.
Jan M. Michalik, Wanda Wilczyńska-Michalik, Łukasz Gondek, Waldemar Tokarz, Jan Żukrowski, Marta Gajewska, and Marek Michalik
Atmos. Chem. Phys., 23, 1449–1464, https://doi.org/10.5194/acp-23-1449-2023, https://doi.org/10.5194/acp-23-1449-2023, 2023
Short summary
Short summary
The magnetic fraction of the aerosols in Kraków was collected and analysed using scanning and transmission electron microscopy with energy-dispersive spectrometry, X-ray diffraction, Mössbauer spectrometry, and magnetometry. It contains metallic Fe or Fe-rich alloy and Fe oxides. The occurrence of nanometre-scale Fe3O4 particles (predominantly of anthropogenic origin) is shown. Our results can help to determine the sources and transport of pollutants, potential harmful effects, etc.
Sanghee Han and Myoseon Jang
Atmos. Chem. Phys., 23, 1209–1226, https://doi.org/10.5194/acp-23-1209-2023, https://doi.org/10.5194/acp-23-1209-2023, 2023
Short summary
Short summary
The diurnal pattern in biogenic secondary organic aerosol (SOA) formation is simulated by using the UNIPAR model, which predicts SOA growth via multiphase reactions of hydrocarbons under varying NOx levels, aerosol acidity, humidity, and temperature. The simulation suggests that nighttime SOA formation, even in urban environments, where anthropogenic emission is high, is dominated by products from ozonolysis and NO3-initiated oxidation of biogenic hydrocarbons.
Zhaomin Yang, Kun Li, Narcisse T. Tsona, Xin Luo, and Lin Du
Atmos. Chem. Phys., 23, 417–430, https://doi.org/10.5194/acp-23-417-2023, https://doi.org/10.5194/acp-23-417-2023, 2023
Short summary
Short summary
SO2 significantly promotes particle formation during cyclooctene ozonolysis. Carboxylic acids and their dimers were major products in particles formed in the absence of SO2. SO2 can induce production of organosulfates with stronger particle formation ability than their precursors, leading to the enhancement in particle formation. Formation mechanisms and structures of organosulfates were proposed, which is helpful for better understanding how SO2 perturbs the formation and fate of particles.
Zijun Li, Angela Buchholz, Luis M. F. Barreira, Arttu Ylisirniö, Liqing Hao, Iida Pullinen, Siegfried Schobesberger, and Annele Virtanen
Atmos. Chem. Phys., 23, 203–220, https://doi.org/10.5194/acp-23-203-2023, https://doi.org/10.5194/acp-23-203-2023, 2023
Short summary
Short summary
Interaction between NOx and biogenic emissions can be important in suburban areas. Our study showed that the addition of NOx during α-pinene SOA formation produced considerable amounts of organic nitrates and affected the composition of non-nitrated organic compounds. The compositional difference consequently altered the primary type of aqueous-phase processes during the isothermal particle evaporation.
Yibei Wan, Xiangpeng Huang, Chong Xing, Qiongqiong Wang, Xinlei Ge, and Huan Yu
Atmos. Chem. Phys., 22, 15413–15423, https://doi.org/10.5194/acp-22-15413-2022, https://doi.org/10.5194/acp-22-15413-2022, 2022
Short summary
Short summary
The organic compounds involved in continental new particle formation have been investigated in depth in the last 2 decades. In contrast, no prior work has studied the exact chemical composition of organic compounds and their role in coastal new particle formation. We present a complementary study to the ongoing laboratory and field research on iodine nucleation in the coastal atmosphere. This study provided a more complete story of coastal I-NPF from low-tide macroalgal emission.
Nikou Hamzehpour, Claudia Marcolli, Kristian Klumpp, Debora Thöny, and Thomas Peter
Atmos. Chem. Phys., 22, 14931–14956, https://doi.org/10.5194/acp-22-14931-2022, https://doi.org/10.5194/acp-22-14931-2022, 2022
Short summary
Short summary
Dust aerosols from dried lakebeds contain mineral particles, as well as soluble salts and (bio-)organic compounds. Here, we investigate ice nucleation (IN) activity of dust samples from Lake Urmia playa, Iran. We find high IN activity of the untreated samples that decreases after organic matter removal but increases after removing soluble salts and carbonates, evidencing inhibiting effects of soluble salts and carbonates on the IN activity of organic matter and minerals, especially microcline.
Diwei Wang, Zhenxing Shen, Qian Zhang, Yali Lei, Tian Zhang, Shasha Huang, Jian Sun, Hongmei Xu, and Junji Cao
Atmos. Chem. Phys., 22, 14893–14904, https://doi.org/10.5194/acp-22-14893-2022, https://doi.org/10.5194/acp-22-14893-2022, 2022
Short summary
Short summary
The optical properties and molecular structure of atmospheric brown carbon (BrC) in winter of several megacities in China were analyzed, and the source contribution of brown carbon was improved by using positive matrix factorization coupled with a multilayer perceptron neural network. These results can provide a basis for the more effective control of BrC to reduce its impacts on regional climates and human health.
Aristeidis Voliotis, Mao Du, Yu Wang, Yunqi Shao, M. Rami Alfarra, Thomas J. Bannan, Dawei Hu, Kelly L. Pereira, Jaqueline F. Hamilton, Mattias Hallquist, Thomas F. Mentel, and Gordon McFiggans
Atmos. Chem. Phys., 22, 14147–14175, https://doi.org/10.5194/acp-22-14147-2022, https://doi.org/10.5194/acp-22-14147-2022, 2022
Short summary
Short summary
Mixing experiments are crucial and highly beneficial for our understanding of atmospheric chemical interactions. However, interpretation quickly becomes complex, and both the experimental design and evaluation need to be scrutinised carefully. Advanced online and offline compositional measurements can reveal substantial additional information to aid in the interpretation of yield data, including components uniquely found in mixtures and property changes in SOA formed from mixtures of VOCs.
Fabian Mahrt, Long Peng, Julia Zaks, Yuanzhou Huang, Paul E. Ohno, Natalie R. Smith, Florence K. A. Gregson, Yiming Qin, Celia L. Faiola, Scot T. Martin, Sergey A. Nizkorodov, Markus Ammann, and Allan K. Bertram
Atmos. Chem. Phys., 22, 13783–13796, https://doi.org/10.5194/acp-22-13783-2022, https://doi.org/10.5194/acp-22-13783-2022, 2022
Short summary
Short summary
The number of condensed phases in mixtures of different secondary organic aerosol (SOA) types determines their impact on air quality and climate. Here we observe the number of phases in individual particles that contain mixtures of two different types of SOA. We find that SOA mixtures can form one- or two-phase particles, depending on the difference in the average oxygen-to-carbon (O / C) ratios of the two SOA types that are internally mixed within individual particles.
Xiao He, Xuan Zheng, Shaojun Zhang, Xuan Wang, Ting Chen, Xiao Zhang, Guanghan Huang, Yihuan Cao, Liqiang He, Xubing Cao, Yuan Cheng, Shuxiao Wang, and Ye Wu
Atmos. Chem. Phys., 22, 13935–13947, https://doi.org/10.5194/acp-22-13935-2022, https://doi.org/10.5194/acp-22-13935-2022, 2022
Short summary
Short summary
With the use of two-dimensional gas chromatography time-of-flight mass spectrometry (GC × GC ToF-MS), we successfully give a comprehensive characterization of particulate intermediate-volatility and semi-volatile organic compounds (I/SVOCs) emitted from heavy-duty diesel vehicles. I/SVOCs are speciated, identified, and quantified based on the patterns of the mass spectrum, and the gas–particle partitioning is fully addressed.
Yuanyuan Qin, Juanjuan Qin, Xiaobo Wang, Kang Xiao, Ting Qi, Yuwei Gao, Xueming Zhou, Shaoxuan Shi, Jingnan Li, Jingsi Gao, Ziyin Zhang, Jihua Tan, Yang Zhang, and Rongzhi Chen
Atmos. Chem. Phys., 22, 13845–13859, https://doi.org/10.5194/acp-22-13845-2022, https://doi.org/10.5194/acp-22-13845-2022, 2022
Short summary
Short summary
Deep interrogation of water-soluble organic carbon (WSOC) in aerosols is critical and challenging considering its involvement in many key aerosol-associated chemical reactions. This work examined how the chemical structures (functional groups) and optical properties (UV/fluorescence properties) of WSOC were affected by pH and particle size. We found that the pH- and particle-size-dependent behaviors could be used to reveal the structures, sources, and aging of aerosol WSOC.
Aristeidis Voliotis, Mao Du, Yu Wang, Yunqi Shao, Thomas J. Bannan, Michael Flynn, Spyros N. Pandis, Carl J. Percival, M. Rami Alfarra, and Gordon McFiggans
Atmos. Chem. Phys., 22, 13677–13693, https://doi.org/10.5194/acp-22-13677-2022, https://doi.org/10.5194/acp-22-13677-2022, 2022
Short summary
Short summary
The addition of a low-yield precursor to the reactive mixture of aVOC and bVOC can increase or decrease the SOA volatility that is system-dependent. Therefore, the SOA volatility of the mixtures cannot always be predicted based on the additivity. In complex mixtures the formation of lower-volatility products likely outweighs the formation of products with higher volatility. The unique products of each mixture contribute significantly to the signal, suggesting interactions can be important.
Tao Wang, Yangyang Liu, Hanyun Cheng, Zhenzhen Wang, Hongbo Fu, Jianmin Chen, and Liwu Zhang
Atmos. Chem. Phys., 22, 13467–13493, https://doi.org/10.5194/acp-22-13467-2022, https://doi.org/10.5194/acp-22-13467-2022, 2022
Short summary
Short summary
This study compared the gas-phase, aqueous-phase, and heterogeneous SO2 oxidation pathways by combining laboratory work with a modelling study. The heterogeneous oxidation, particularly that induced by the dust surface drivers, presents positive implications for the removal of airborne SO2 and formation of sulfate aerosols. This work highlighted the atmospheric significance of heterogeneous oxidation and suggested a comparison model to evaluate the following heterogeneous laboratory research.
Amir Yazdani, Satoshi Takahama, John K. Kodros, Marco Paglione, Mauro Masiol, Stefania Squizzato, Kalliopi Florou, Christos Kaltsonoudis, Spiro D. Jorga, Spyros N. Pandis, and Athanasios Nenes
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-658, https://doi.org/10.5194/acp-2022-658, 2022
Revised manuscript accepted for ACP
Short summary
Short summary
Organic aerosols directly emitted from wood and pellet stove combustion are found to chemically transform (approximately 15–35 % by mass) under daytime aging conditions simulated in an environmental chamber. A new marker for lignin-like compounds is found to degrade at a different rate than previously identified biomass burning markers and can potentially provide indication of aging time in ambient samples.
David M. Bell, Cheng Wu, Amelie Bertrand, Emelie Graham, Janne Schoonbaert, Stamatios Giannoukos, Urs Baltensperger, Andre S. H. Prevot, Ilona Riipinen, Imad El Haddad, and Claudia Mohr
Atmos. Chem. Phys., 22, 13167–13182, https://doi.org/10.5194/acp-22-13167-2022, https://doi.org/10.5194/acp-22-13167-2022, 2022
Short summary
Short summary
A series of studies designed to investigate the evolution of organic aerosol were performed in an atmospheric simulation chamber, using a common oxidant found at night (NO3). The chemical composition steadily changed from its initial composition via different chemical reactions that were taking place inside of the aerosol particle. These results show that the composition of organic aerosol steadily changes during its lifetime in the atmosphere.
Haijun Zhou, Tao Liu, Bing Sun, Yongli Tian, Xingjun Zhou, Feng Hao, Xi Chun, Zhiqiang Wan, Peng Liu, Jingwen Wang, and Dagula Du
Atmos. Chem. Phys., 22, 12153–12166, https://doi.org/10.5194/acp-22-12153-2022, https://doi.org/10.5194/acp-22-12153-2022, 2022
Short summary
Short summary
A single year’s offline measurement was conducted in Hohhot to reveal the chemical characteristics and sources of PM2.5 in a semi-arid region. We believe that our study makes a significant contribution to the literature because relatively few studies have focused on the chemical composition and sources of PM2.5 with offline measurements. A knowledge gap exists concerning how chemical composition and sources respond to implemented control measures for aerosols, particularly in a semi-arid region.
Yuhan Liu, Xuejiao Wang, Jing Shang, Weiwei Xu, Mengshuang Sheng, and Chunxiang Ye
Atmos. Chem. Phys., 22, 11347–11358, https://doi.org/10.5194/acp-22-11347-2022, https://doi.org/10.5194/acp-22-11347-2022, 2022
Short summary
Short summary
In this study, the influence of HCHO on renoxification on nitrate-doped TiO2 particles is investigated by using an experimental chamber. Mass NOx release is suggested to follow the NO−3-NO3·-HNO3-NOx pathway, with HCHO involved in the transformation of NO3· to HNO3 through hydrogen abstraction. Our proposed reaction mechanism by which HCHO promotes photocatalytic renoxification is helpful for deeply understanding the atmospheric photochemical processes and nitrogen cycling.
Yindong Guo, Hongru Shen, Iida Pullinen, Hao Luo, Sungah Kang, Luc Vereecken, Hendrik Fuchs, Mattias Hallquist, Ismail-Hakki Acir, Ralf Tillmann, Franz Rohrer, Jürgen Wildt, Astrid Kiendler-Scharr, Andreas Wahner, Defeng Zhao, and Thomas F. Mentel
Atmos. Chem. Phys., 22, 11323–11346, https://doi.org/10.5194/acp-22-11323-2022, https://doi.org/10.5194/acp-22-11323-2022, 2022
Short summary
Short summary
The oxidation of limonene, a common volatile emitted by trees and chemical products, by NO3, a nighttime oxidant, forms many highly oxygenated organic molecules (HOM), including C10-30 compounds. Most of the HOM are second-generation organic nitrates, in which carbonyl-substituted C10 nitrates accounted for a major fraction. Their formation can be explained by chemistry of peroxy radicals. HOM, especially low-volatile ones, play an important role in nighttime new particle formation and growth.
Shuaishuai Ma, Qiong Li, and Yunhong Zhang
Atmos. Chem. Phys., 22, 10955–10970, https://doi.org/10.5194/acp-22-10955-2022, https://doi.org/10.5194/acp-22-10955-2022, 2022
Short summary
Short summary
The nitrate phase state can play a critical role in determining the occurrence and extent of nitrate depletion in internally mixed NaNO3–DCA particles, which may be instructive for relevant aerosol reaction systems. Besides, organic acids have a potential to deplete nitrate based on the comprehensive consideration of acidity, particle-phase state, droplet water activity, and HNO3 gas-phase diffusion.
Chong Han, Hongxing Yang, Kun Li, Patrick Lee, John Liggio, Amy Leithead, and Shao-Meng Li
Atmos. Chem. Phys., 22, 10827–10839, https://doi.org/10.5194/acp-22-10827-2022, https://doi.org/10.5194/acp-22-10827-2022, 2022
Short summary
Short summary
We presented yields and compositions of Si-containing SOAs generated from the reaction of cVMSs (D3–D6) with OH radicals. NOx played a negative role in cVMS SOA formation, while ammonium sulfate seeds enhanced D3–D5 SOA yields at short photochemical ages under high-NOx conditions. The aerosol mass spectra confirmed that the components of cVMS SOAs significantly relied on OH exposure. A global cVMS-derived SOA source strength was estimated in order to understand SOA formation potentials of cVMSs.
Lucía Caudillo, Mihnea Surdu, Brandon Lopez, Mingyi Wang, Markus Thoma, Steffen Bräkling, Angela Buchholz, Mario Simon, Andrea C. Wagner, Tatjana Müller, Manuel Granzin, Martin Heinritzi, Antonio Amorim, David M. Bell, Zoé Brasseur, Lubna Dada, Jonathan Duplissy, Henning Finkenzeller, Xu-Cheng He, Houssni Lamkaddam, Naser G. A. Mahfouz, Vladimir Makhmutov, Hanna E. Manninen, Guillaume Marie, Ruby Marten, Roy L. Mauldin, Bernhard Mentler, Antti Onnela, Tuukka Petäjä, Joschka Pfeifer, Maxim Philippov, Ana A. Piedehierro, Birte Rörup, Wiebke Scholz, Jiali Shen, Dominik Stolzenburg, Christian Tauber, Ping Tian, António Tomé, Nsikanabasi Silas Umo, Dongyu S. Wang, Yonghong Wang, Stefan K. Weber, André Welti, Marcel Zauner-Wieczorek, Urs Baltensperger, Richard C. Flagan, Armin Hansel, Jasper Kirkby, Markku Kulmala, Katrianne Lehtipalo, Douglas R. Worsnop, Imad El Haddad, Neil M. Donahue, Alexander L. Vogel, Andreas Kürten, and Joachim Curtius
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-498, https://doi.org/10.5194/acp-2022-498, 2022
Revised manuscript accepted for ACP
Short summary
Short summary
In this study, we present an intercomparison study of four different techniques for measuring the chemical composition of nanoparticles. The intercomparison was performed based on the observed chemical composition, calculated volatility, and analysis of the thermograms. We found that the methods generally agree on the most important compounds that are found in the nanoparticles. However, they do see different parts of the organic spectrum. We suggest potential explanations for these differences.
Junling Li, Kun Li, Hao Zhang, Xin Zhang, Yuanyuan Ji, Wanghui Chu, Yuxue Kong, Yangxi Chu, Yanqin Ren, Yujie Zhang, Haijie Zhang, Rui Gao, Zhenhai Wu, Fang Bi, Xuan Chen, Xuezhong Wang, Weigang Wang, Hong Li, and Maofa Ge
Atmos. Chem. Phys., 22, 10489–10504, https://doi.org/10.5194/acp-22-10489-2022, https://doi.org/10.5194/acp-22-10489-2022, 2022
Short summary
Short summary
Ozone formation is enhanced by higher OH concentration and higher temperature but is influenced little by SO2. SO2 can largely enhance the particle formation. Organo-sulfates and organo-nitrates are detected in the formed particles, and the presence of SO2 can promote the formation of organo-sulfates. The results provide a scientific basis for systematically evaluating the effects of SO2, OH concentration, and temperature on the oxidation of mixed organic gases in the atmosphere.
Anita M. Avery, Mariam Fawaz, Leah R. Williams, Tami Bond, and Timothy B. Onasch
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-535, https://doi.org/10.5194/acp-2022-535, 2022
Revised manuscript accepted for ACP
Short summary
Short summary
Pyrolysis is the thermal decomposition of fuels like wood, which occurs during combustion or as an isolated process. During combustion, some pyrolysis products are emitted directly, while others are oxidized in the combustion process. This work describes the chemical composition of particle-phase pyrolysis products in order to inform both the uncombusted emissions from wild fires, and the fuel that participates in combustion.
Alexandra L. Klodt, Marley Adamek, Monica Dibley, Sergey A. Nizkorodov, and Rachel E. O'Brien
Atmos. Chem. Phys., 22, 10155–10171, https://doi.org/10.5194/acp-22-10155-2022, https://doi.org/10.5194/acp-22-10155-2022, 2022
Short summary
Short summary
We investigated photochemistry of a secondary organic aerosol under three different conditions: in a dilute aqueous solution mimicking cloud droplets, in a solution of concentrated ammonium sulfate mimicking deliquesced aerosol, and in an organic matrix mimicking dry organic aerosol. We find that rate and mechanisms of photochemistry depend sensitively on these conditions, suggesting that the same organic aerosol compounds will degrade at different rates depending on their local environment.
Yixin Li, Jiayun Zhao, Mario Gomez-Hernandez, Michael Lavallee, Natalie M. Johnson, and Renyi Zhang
Atmos. Chem. Phys., 22, 9843–9857, https://doi.org/10.5194/acp-22-9843-2022, https://doi.org/10.5194/acp-22-9843-2022, 2022
Short summary
Short summary
Here we elucidate the production of COOs and their roles in SOA and brown carbon formation from m-xylene oxidation by simultaneously monitoring the evolution of gas-phase products and aerosol properties in an environmental chamber. A kinetic framework is developed to predict SOA production from the concentrations and uptake coefficients for COOs. This functionality-based approach reproduces SOA formation from m-xylene oxidation well and is applicable to VOC oxidation for other species.
Yunqi Shao, Aristeidis Voliotis, Mao Du, Yu Wang, Kelly Pereira, Jacqueline Hamilton, M. Rami Alfarra, and Gordon McFiggans
Atmos. Chem. Phys., 22, 9799–9826, https://doi.org/10.5194/acp-22-9799-2022, https://doi.org/10.5194/acp-22-9799-2022, 2022
Short summary
Short summary
This study explored the chemical properties of secondary organic aerosol (SOA) that formed from photo-oxidation of single and mixed biogenic and anthropogenic precursors. We showed that SOA chemical properties in a mixed vapour system are mainly affected by the
higher-yield precursor's oxidation products and products from
cross-product formation. This study also identifies potential tracer compounds in a mixed vapour system that might be used in SOA source attribution in future ambient studies.
Yangyang Liu, Yue Deng, Jiarong Liu, Xiaozhong Fang, Tao Wang, Kejian Li, Kedong Gong, Aziz U. Bacha, Iqra Nabi, Qiuyue Ge, Xiuhui Zhang, Christian George, and Liwu Zhang
Atmos. Chem. Phys., 22, 9175–9197, https://doi.org/10.5194/acp-22-9175-2022, https://doi.org/10.5194/acp-22-9175-2022, 2022
Short summary
Short summary
Both CO2 and carbonate salt work as the precursor of carbonate radicals, which largely promotes sulfate formation during the daytime. This study provides the first indication that the carbonate radical not only plays a role as an intermediate in tropospheric anion chemistry but also as a strong oxidant for the surface processing of trace gas in the atmosphere. CO2, carbponate radicals, and sulfate receive attention from those looking at the environment, atmosphere, aerosol, and photochemistry.
Jack S. Johnson and Coty N. Jen
Atmos. Chem. Phys., 22, 8287–8297, https://doi.org/10.5194/acp-22-8287-2022, https://doi.org/10.5194/acp-22-8287-2022, 2022
Short summary
Short summary
Sulfuric acid nucleation forms particles in Earth's atmosphere that influence cloud formation and climate. This study introduces the Nucleation Potential Model, which simplifies the diverse reactions between sulfuric acid and numerous precursor gases to predict nucleation rates. Results show that the model is capable of estimating the potency and concentration of mixtures of precursor gases from laboratory and field observations and can be used to model nucleation across diverse environments.
Xudong Li, Ye Tao, Longwei Zhu, Shuaishuai Ma, Shipeng Luo, Zhuzi Zhao, Ning Sun, Xinlei Ge, and Zhaolian Ye
Atmos. Chem. Phys., 22, 7793–7814, https://doi.org/10.5194/acp-22-7793-2022, https://doi.org/10.5194/acp-22-7793-2022, 2022
Short summary
Short summary
This work has, for the first time, investigated the optical and chemical properties and oxidative potential of aqueous-phase photooxidation products of eugenol (a biomass-burning-emitted compound) and elucidated the interplay among these properties. Large mass yields exceeding 100 % were found, and the aqueous processing is a source of BrC (likely relevant with humic-like substances). We also show that aqueous processing can produce species that are more toxic than that of its precursor.
Ye Wang, Natalie Mahowald, Peter Hess, Wenxiu Sun, and Gang Chen
Atmos. Chem. Phys., 22, 7575–7592, https://doi.org/10.5194/acp-22-7575-2022, https://doi.org/10.5194/acp-22-7575-2022, 2022
Short summary
Short summary
PM2.5 is positively related to anticyclonic wave activity (AWA) changes close to the observing sites. Changes between current and future climates in AWA can explain up to 75 % of PM2.5 variability at some stations using a linear regression model. Our analysis indicates that higher PM2.5 concentrations occur when a positive AWA anomaly is prominent, which could be critical for understanding how pollutants respond to changing atmospheric circulation and for developing robust pollution projections.
Clarissa Baldo, Akinori Ito, Michael D. Krom, Weijun Li, Tim Jones, Nick Drake, Konstantin Ignatyev, Nicholas Davidson, and Zongbo Shi
Atmos. Chem. Phys., 22, 6045–6066, https://doi.org/10.5194/acp-22-6045-2022, https://doi.org/10.5194/acp-22-6045-2022, 2022
Short summary
Short summary
High ionic strength relevant to the aerosol-water enhanced proton-promoted dissolution of iron in coal fly ash (up to 7 times) but suppressed oxalate-promoted dissolution at low pH (< 3). Fe in coal fly ash dissolved up to 7 times faster than in Saharan dust at low pH. A global model with the updated dissolution rates of iron in coal fly ash suggested a larger contribution of pyrogenic dissolved Fe over regions with a strong impact from fossil fuel combustions.
Adam Brighty, Véronique Jacob, Gaëlle Uzu, Lucille Borlaza, Sébastien Conil, Christoph Hueglin, Stuart K. Grange, Olivier Favez, Cécile Trébuchon, and Jean-Luc Jaffrezo
Atmos. Chem. Phys., 22, 6021–6043, https://doi.org/10.5194/acp-22-6021-2022, https://doi.org/10.5194/acp-22-6021-2022, 2022
Short summary
Short summary
With an revised analytical method and long-term sampling strategy, we have been able to elucidate much more information about atmospheric plant debris, a poorly understood class of particulate matter. We found weaker seasonal patterns at urban locations compared to rural locations and significant interannual variability in concentrations between previous years and 2020, during the COVID-19 pandemic. This suggests a possible man-made influence on plant debris concentration and source strength.
Linyu Gao, Junwei Song, Claudia Mohr, Wei Huang, Magdalena Vallon, Feng Jiang, Thomas Leisner, and Harald Saathoff
Atmos. Chem. Phys., 22, 6001–6020, https://doi.org/10.5194/acp-22-6001-2022, https://doi.org/10.5194/acp-22-6001-2022, 2022
Short summary
Short summary
We study secondary organic aerosol (SOA) from β-caryophyllene (BCP) ozonolysis with and without nitrogen oxides over 213–313 K in the simulation chamber. The yields and the rate constants were determined at 243–313 K. Chemical compositions varied at different temperatures, indicating a strong impact on the BCP ozonolysis pathways. This work helps to better understand the SOA from BCP ozonolysis for conditions representative of the real atmosphere from the boundary layer to the upper troposphere.
Rongshuang Xu, Sze In Madeleine Ng, Wing Sze Chow, Yee Ka Wong, Yuchen Wang, Donger Lai, Zhongping Yao, Pui-Kin So, Jian Zhen Yu, and Man Nin Chan
Atmos. Chem. Phys., 22, 5685–5700, https://doi.org/10.5194/acp-22-5685-2022, https://doi.org/10.5194/acp-22-5685-2022, 2022
Short summary
Short summary
To date, while over a hundred organosulfates (OSs) have been detected in atmospheric aerosols, many of them are still unidentified, with unknown precursors and formation processes. We found the heterogeneous OH oxidation of an α-pinene-derived organosulfate (C10H17O5SNa, αpOS-249, αpOS-249) can proceed at an efficient rate and transform into more oxygenated OSs, which have been commonly detected in atmospheric aerosols and α-pinene-derived SOA in chamber studies.
Bartłomiej Witkowski, Priyanka Jain, and Tomasz Gierczak
Atmos. Chem. Phys., 22, 5651–5663, https://doi.org/10.5194/acp-22-5651-2022, https://doi.org/10.5194/acp-22-5651-2022, 2022
Short summary
Short summary
This article describes a comprehensive investigation of the aqueous oxidation of 4-nitrophenol (4NP) by hydroxyl radicals (OH). The reaction was carried out in a laboratory photoreactor. We report the formation of key intermediates under different pH conditions and the evolution of the light absorption of the reaction solution. The results provide new insights into the formation and removal (chemical bleaching) of light-absorbing organic aerosols (atmospheric brown carbon).
Qi Li, Jia Jiang, Isaac K. Afreh, Kelley C. Barsanti, and David R. Cocker III
Atmos. Chem. Phys., 22, 3131–3147, https://doi.org/10.5194/acp-22-3131-2022, https://doi.org/10.5194/acp-22-3131-2022, 2022
Short summary
Short summary
Chamber-derived secondary organic aerosol (SOA) yields from camphene are reported for the first time. The role of peroxy radicals (RO2) was investigated using chemically detailed box models. We observed higher SOA yields (up to 64 %) in the experiments with added NOx than without due to the formation of highly oxygenated organic molecules (HOMs) when
NOx is present. This work can improve the representation of camphene in air quality models and provide insights into other monoterpene studies.
Xiuli Wei, Haosheng Dai, Huaqiao Gui, Jiaoshi Zhang, Yin Cheng, Jie Wang, Yixin Yang, Youwen Sun, and Jianguo Liu
Atmos. Chem. Phys., 22, 3097–3109, https://doi.org/10.5194/acp-22-3097-2022, https://doi.org/10.5194/acp-22-3097-2022, 2022
Short summary
Short summary
We demonstrated the usage of the Fourier transform infrared (FTIR) spectroscopic technique to characterize in real time the hygroscopic growth properties of nanoparticles and their phase transition micro-dynamics at the molecular level. We first realize real-time measurements of water content and dry nanoparticle mass to characterize hygroscopic growth factors. We then identify in real time the hydration interactions and the dynamic hygroscopic growth process of the functional groups.
Zhancong Liang, Yangxi Chu, Masao Gen, and Chak K. Chan
Atmos. Chem. Phys., 22, 3017–3044, https://doi.org/10.5194/acp-22-3017-2022, https://doi.org/10.5194/acp-22-3017-2022, 2022
Short summary
Short summary
The properties and fate of individual airborne particles can be significantly different, leading to distinct environmental impacts (e.g., climate and human health). While many instruments only analyze an ensemble of these particles, single-particle Raman spectroscopy enables unambiguous characterization of individual particles. This paper comprehensively reviews the applications of such a technique in studying atmospheric particles, especially for their physicochemical processing.
Zhi-Hui Zhang, Elena Hartner, Battist Utinger, Benjamin Gfeller, Andreas Paul, Martin Sklorz, Hendryk Czech, Bin Xia Yang, Xin Yi Su, Gert Jakobi, Jürgen Orasche, Jürgen Schnelle-Kreis, Seongho Jeong, Thomas Gröger, Michal Pardo, Thorsten Hohaus, Thomas Adam, Astrid Kiendler-Scharr, Yinon Rudich, Ralf Zimmermann, and Markus Kalberer
Atmos. Chem. Phys., 22, 1793–1809, https://doi.org/10.5194/acp-22-1793-2022, https://doi.org/10.5194/acp-22-1793-2022, 2022
Short summary
Short summary
Using a novel setup, we comprehensively characterized the formation of particle-bound reactive oxygen species (ROS) in anthropogenic and biogenic secondary organic aerosols (SOAs). We found that more than 90 % of all ROS components in both SOA types have a short lifetime. Our results also show that photochemical aging promotes particle-bound ROS production and enhances the oxidative potential of the aerosols. We found consistent results between chemical-based and biological-based ROS analyses.
Kelvin H. Bates, Guy J. P. Burke, James D. Cope, and Tran B. Nguyen
Atmos. Chem. Phys., 22, 1467–1482, https://doi.org/10.5194/acp-22-1467-2022, https://doi.org/10.5194/acp-22-1467-2022, 2022
Short summary
Short summary
The main nighttime sink of α-pinene, a hydrocarbon abundantly emitted by plants, is reaction with NO3 to form nitrooxy peroxy radicals (nRO2). Using uniquely designed chamber experiments, we show that this reaction is a major source of organic aerosol when nRO2 reacts with other nRO2 and forms a nitrooxy hydroperoxide when nRO2 reacts with HO2. Under ambient conditions these pathways are key loss processes of atmospheric reactive nitrogen in areas with mixed biogenic and anthropogenic influence.
Cited articles
Ammann, M., Artiglia, L., and Bartels-Rausch, T.: X-Ray Excited Electron
Spectroscopy to Study Gas–Liquid Interfaces of Atmospheric
Relevance, in: Physical Chemistry of Gas-Liquid Interfaces,
Elsevier, Amsterdam, Netherlands, 135–166, 2018. a
Antonsson, E., Patanen, M., Nicolas, C., Neville, J. J., Benkoula, S., Goel,
A., and Miron, C.: Complete Bromide Surface Segregation in Mixed
NaCl NaBrAerosols Grown from Droplets, Phys. Rev. X, 5, 011025, https://doi.org/10.1103/PhysRevX.5.011025
2015. a
Archer, J., Walker, J., Gregson, F. K. A., Hardy, D. A., and Reid, J. P.:
Drying Kinetics and Particle Formation from Dilute Colloidal Suspensions in Aerosol Droplets, Langmuir, 26, 12481–12493, 2020. a
Ault, A. P. and Axson, J. L.: Atmospheric Aerosol Chemistry: Spectroscopic and Microscopic Advances, Anal. Chem., 89, 430–452, 2016. a
Barr, T. L. and Seal, S.: Nature of the use of adventitious carbon as a
binding energy standard, J. Vacuum Sci. Technol. A, 13, 1239–1246, 1995. a
Beard, B. C.: Fresh Cleaved Single Crystal NaCl, XPS spectra, Mg Source,
Surf. Sci. Spectra, 2, 128–132, 1993. a
Benjamin, I.: Chemical Reaction Dynamics at Liquid Interfaces: A Computational Approach, Prog. React. Kinet. Mec., 27, 87–126, 2019. a
Bhattarai, H., Saikawa, E., Wan, X., Zhu, H., Ram, K., Gao, S., Kang, S.,
Zhang, Q., Zhang, Y., Wu, G., Wang, X., Kawamura, K., Fu, P., and Cong, Z.:
Levoglucosan as a tracer of biomass burning: Recent progress and
perspectives, Atmos. Res., 220, 20–33, 2019. a
Bilde, M. and Svenningsson, B.: CCN activation of slightly soluble organics:
the importance of small amounts of inorganic salt and particle phase, Tellus B, 56, 128–134, 2004. a
Braun, C. and Krieger, U. K.: Two-dimensional angular light-scattering in
aqueous NaCl single aerosol particles during deliquescence and
efflorescence, Opt. Express, 8, 314–318, 2001. a
Braun, R. A., Dadashazar, H., MacDonald, A. B., Aldhaif, A. M., Maudlin, L. C., Crosbie, E., Aghdam, M. A., Hossein Mardi, A., and Sorooshian, A.: Impact of Wildfire Emissions on Chloride and Bromide Depletion in Marine Aerosol Particles, Environ. Sci. Technol., 51, 9013–9021, 2017. a
Cheng, R. J., Blanchard, D. C., and Cipriano, R. J.: The formation of hollow
sea-salt particles from the evaporation of drops of seawater, Atmos.
Res., 22, 15–25, 1988. a
Cheng, W., Weng, L.-T., Li, Y., Lau, A., Chan, C. K., and Chan, C.-M.: Surface Chemical Composition of Size-Fractionated Urban Walkway Aerosols Determined by X-Ray Photoelectron Spectroscopy, Aerosol Sci. Tech., 47,
1118–1124, 2013. a
Cosman, L. M., Knopf, D. A., and Bertram, A. K.: N2O5 Reactive
Uptake on Aqueous Sulfuric Acid Solutions Coated with Branched and
Straight-Chain Insoluble Organic Surfactants, J. Phys.
Chem. A, 112, 2386–2396, 2008. a
Cwiertny, D. M., Young, M. A., and Grassian, V. H.: Chemistry and
Photochemistry of Mineral Dust Aerosol, Annu. Rev. Phys. Chem.,
59, 27–51, 2008. a
Dai, Q., Hu, J., and Salmeron, M.: Adsorption of Water on NaCl (100)
Surfaces: Role of Atomic Steps, J. Phys. Chem. B, 101,
1994–1998, 1997. a
Darr, J. P., Davis, S. Q., Kohno, Y., McKenna, K., and Morales, P.:
Morphological effects on the hygroscopic properties of sodium
chloride–sodium sulfate aerosols, J. Aerosol Sci.,
77, 158–167, 2014. a
Decesari, S., Facchini, M. C., Fuzzi, S., and Tagliavini, E.: Characterization of water-soluble organic compounds in atmospheric aerosol: A new approach, J. Geophys. Res., 105, 1481–1489, 2000. a
Decesari, S., Facchini, M. C., Matta, E., Lettini, F., Mircea, M., Fuzzi, S.,
Tagliavini, E., and Putaud, J. P.: Chemical features and seasonal variation of fine aerosol water-soluble organic compounds in the Po Valley, Italy, Atmos. Environ., 35, 3691–3699, 2001. a
Dick-Pérez, M. and Windus, T. L.: Computational Study of the Malonic Acid Tautomerization Products in Highly Concentrated Particles, J.
Phys. Chem. A, 121, 2259–2264, 2017. a
Djikaev, Y. S. and Ruckenstein, E.: Formation and evolution of aqueous organic aerosols via concurrent condensation and chemical aging, Adv. Colloid Interfac., 265, 45–67, 2019. a
Donaldson, D. J. and Valsaraj, K. T.: Adsorption and Reaction of Trace
Gas-Phase Organic Compounds on Atmospheric Water Film Surfaces: A Critical
Review, Environ. Sci. Technol., 44, 865–873, 2010. a
Emfietzoglou, D. and Moscovitch, M.: Inelastic collision characteristics of
electrons in liquid water, Nucl. Instrum. Meth. B, 193, 71–78,
2002. a
Enami, S., Hoffmann, M. R., and Colussi, A. J.: Proton Availability at the
Air/Water Interface, J. Phys. Chem. Lett., 1, 1599–1604, 2010. a
Estillore, A. D., Morris, H. S., Or, V. W., Lee, H. D., Alves, M. R., Marciano,
M. A., Laskina, O., Qin, Z., Tivanski, A. V., and Grassian, V. H.: Linking
hygroscopicity and the surface microstructure of model inorganic salts,
simple and complex carbohydrates, and authentic sea spray aerosol particles, Phys. Chem. Chem. Phys., 19, 21101–21111, 2017. a
Fan, H., Wenyika Masaya, T., and Goulay, F.: Effect of
surface–bulk partitioning on the heterogeneous oxidation of
aqueous saccharide aerosols, Phys. Chem. Chem. Phys., 21,
2992–3001, 2019. a
Ferreira Jr., J. M., Trindade, G. F., Tshulu, R., Watts, J. F., and Baker,
M. A.: Introduction to a series of dicarboxylic acids analyzed by x-ray
photoelectron spectroscopy, Surf. Sci. Spectra, 24, 011001, https://doi.org/10.1116/1.4983448, 2017a. a, b, c
Gen, M. and Chan, C. K.: Electrospray surface-enhanced Raman spectroscopy (ES-SERS) for probing surface chemical compositions of atmospherically relevant particles, Atmos. Chem. Phys., 17, 14025–14037, https://doi.org/10.5194/acp-17-14025-2017, 2017. a
Gen, M., Kunihisa, R., Matsuki, A., and Chan, C. K.: Electrospray
surface-enhanced Raman spectroscopy (ES-SERS) for studying organic coatings
of atmospheric aerosol particles, Aerosol Sci. Tech., 53,
760–770, 2019. a
George, I. J. and Abbatt, J. P. D.: Heterogeneous oxidation of atmospheric
aerosolparticles by gas-phase radicals, Nat. Chem., 2,
713–722, 2010. a
Ghosal, S. and Hemminger, J. C.: Surface Adsorbed Water on NaCl and Its Effect on Nitric Acid Reactivity with NaCl Powders, J. Phys.
Chem. B, 108, 14102–14108, 2004. a
Greczynski, G. and Hultman, L.: Reliable determination of chemical state in
x-ray photoelectron spectroscopy based on sample-work-function referencing to
adventitious carbon: Resolving the myth of apparent constant binding energy
of the C 1s peak, Appl. Surf. Sci., 451, 99–103, 2018. a
Hautala, L., Jänkälä, K., Löytynoja, T., Mikkelä, M. H.,
Prisle, N., Tchaplyguine, M., and Huttula, M.: Experimental observation of
structural phase transition in CsBr clusters, Phys. Rev. B, 95,
045402, https://doi.org/10.1103/PhysRevB.95.045402, 2017a. a
Hori, M., Ohta, S., Murao, N., and Yamagata, S.: Activation capability of
water soluble organic substances as CCN, J. Aerosol Sci., 34,
419–448, 2003. a
Huang, D., Wang, J., Xia, H., Zhang, Y., Bao, F., Li, M., Chen, C., and Zhao,
J.: Enhanced Photochemical Volatile Organic Compounds Release from Fatty
Acids by Surface-Enriched Fe(III), Environ. Sci. Technol., 54, 13448–13457, https://doi.org/10.1021/acs.est.0c03793, 2020. a
Huang, Y., Barraza, K. M., of, C. K. T. J., and 2018: Probing the OH
oxidation of pinonic acid at the air–water interface using
Field-Induced Droplet Ionization Mass Spectrometry (FIDI-MS), J. Phys. Chem. A, 122, 6445–6456, 2018. a
Jacobs, M. I., Davies, J. F., Lee, L., Davis, R. D., Houle, F., and Wilson,
K. R.: Exploring Chemistry in Microcompartments Using Guided Droplet
Collisions in a Branched Quadrupole Trap Coupled to a Single Droplet, Paper
Spray Mass Spectrometer, Anal. Chem., 89, 12511–12519, 2017. a
Kanakidou, M., Seinfeld, J. H., Pandis, S. N., Barnes, I., Dentener, F. J., Facchini, M. C., Van Dingenen, R., Ervens, B., Nenes, A., Nielsen, C. J., Swietlicki, E., Putaud, J. P., Balkanski, Y., Fuzzi, S., Horth, J., Moortgat, G. K., Winterhalter, R., Myhre, C. E. L., Tsigaridis, K., Vignati, E., Stephanou, E. G., and Wilson, J.: Organic aerosol and global climate modelling: a review, Atmos. Chem. Phys., 5, 1053–1123, https://doi.org/10.5194/acp-5-1053-2005, 2005. a
Kaya, S., Kendelewicz, T., Porsgaard, S., Salmeron, M. B., Brown Jr., G. E.,
and Nilsson, A.: Autocatalytic Surface Hydroxylation of MgO(100) Terrace
Sites Observed under Ambient Conditions, J. Phys. Chem. C, 115, 12864–12872, 2011. a
Keene, W. C., Khalil, M. A. K., Erickson III, D. J., McCulloch, A., Graedel,
T. E., Lobert, J. M., Aucott, M. L., Gong, S. L., Harper, D. B., Kleiman, G.,
Midgley, P., Moore, R. M., Seuzaret, C., Sturges, W. T., Benkovitz, C. M.,
Koropalov, V., Barrie, L. A., and Li, Y. F.: Composite global emissions of
reactive chlorine from anthropogenic and natural sources: Reactive Chlorine
Emissions Inventory, J. Geophys. Res., 104, 8429–8440, 1999. a
Kerminen, V.-M., Teinilä, K., Hillamo, R., and Pakkanen, T.: Substitution of chloride in sea-salt particles by inorganic and organic anions, J. Aerosol Sci., 29, 929–942, 1998. a
Khwaja, H. A.: Atmospheric concentrations of carboxylic acids and related
compounds at a semiurban site, Atmos. Environ., 29, 127–139, 1995. a
Knopf, D. A. and Forrester, S. M.: Freezing of Water and Aqueous NaCl Droplets Coated by Organic Monolayers as a Function of Surfactant Properties and Water Activity, J. Phys. Chem. A, 115, 5579–5591, 2011. a
Kong, X., Castarède, D., Boucly, A., Artiglia, L., Ammann, M.,
Bartels-Rausch, T., Thomson, E. S., and Pettersson, J. B. C.: Reversibly
Physisorbed and Chemisorbed Water on Carboxylic Salt Surfaces Under
Atmospheric Conditions, J. Phys. Chem. C, 124, 5263–5269, 2020. a
Kukk, E., Snell, G., Bozek, J. D., Cheng, W.-T., and Berrah, N.: Vibrational
structure and partial rates of resonant Auger decay of the N 1s→2π core excitations in nitric
oxide, Phys. Rev. A, 63, 062702, https://doi.org/10.1103/PhysRevA.63.062702, 2001. a
Kukk, E., Ueda, K., Hergenhahn, U., Liu, X. J., Prümper, G., Yoshida, H.,
Tamenori, Y., Makochekanwa, C., Tanaka, T., Kitajima, M., and Tanaka, H.:
Violation of the Franck-Condon Principle due to Recoil Effects in High
Energy Molecular Core-Level Photoionization, Phys. Rev. Lett., 95,
133001, https://doi.org/10.1103/PhysRevLett.95.133001, 2005. a
Kwamena, N. O. A., Buajarern, J., and Reid, J. P.: Equilibrium Morphology of
Mixed Organic/Inorganic/Aqueous Aerosol Droplets: Investigating the Effect of Relative Humidity and Surfactants, J. Phys. Chem. A, 114,
5787–5795, 2010. a
Lampimäki, M., Schreiber, S., Zelenay, V., Křepelová, A., Birrer, M., Axnanda, S., Mao, B., Liu, Z., Bluhm, H., and Ammann, M.: Exploring the
Environmental Photochemistry on the TiO 2(110) Surface in Situ by Near
Ambient Pressure X-ray Photoelectron Spectroscopy, J. Phys. Chem. C, 119, 7076–7085, 2015. a
Lannon Jr., J. M. and Meng, Q.: Analysis of a Poly(oxymethylene) Polymer by
XPS, Surf. Sci. Spectra, 6, 99–102, 1999. a
Laskin, A., Moffet, R. C., Gilles, M. K., Fast, J. D., Zaveri, R. A., Wang, B., Nigge, P., and Shutthanandan, J.: Tropospheric chemistry of internally mixed sea salt and organic particles: Surprising reactivity of NaCl with weak organic acids, J. Geophys. Res., 117, D15302, https://doi.org/10.1029/2012JD017743, 2012. a
Lee, J. K., Samanta, D., Nam, H. G., and Zare, R. N.: Micrometer-Sized Water
Droplets Induce Spontaneous Reduction, J. Am. Chem. Soc., 141, 10585–10589, 2019. a
Lv, G. and Sun, X.: The role of air-water interface in the SO3 hydration
reaction, Atmos. Environ., 230, 117514, https://doi.org/10.1016/j.atmosenv.2020.117514, 2020. a
Mallick, S. and Kumar, P.: OH ⋅ + HCl Reaction at the Surface of a
Water Droplet: An Ab Initio Molecular Dynamical Study, J.
Phys. Chem. B, 124, 2465–2472, 2020. a
Marsh, B. M., Iyer, K., and Cooks, R. G.: Reaction Acceleration in
Electrospray Droplets: Size, Distance, and Surfactant Effects, J.
Am. Soc. Mass Spectr., 30, 1–9, 2019. a
McNeill, V. F.: Aqueous Organic Chemistry in the Atmosphere: Sources and
Chemical Processing of Organic Aerosols, Environ. Sci. Technol., 49, 1237–1244, 2015. a
Miñambres, L., Méndez, E., Sánchez, M. N., Castaño, F., and Basterretxea, F. J.: The effect of low solubility organic acids on the hygroscopicity of sodium halide aerosols, Atmos. Chem. Phys., 14, 11409–11425, https://doi.org/10.5194/acp-14-11409-2014, 2014. a
Mozurkewich, M.: Mechanisms for the release of halogens from sea-salt
particles by free radical reactions, J. Geophys. Res.-Atmos., 100,
14199–14207, 1995. a
Muñoz, A., Oller, J. C., Blanco, F., Gorfinkiel, J. D., Limão-Vieira,
P., and García, G.: Electron-scattering cross sections and stopping
powers in H2O, Phys. Rev. A, 76, 052707, https://doi.org/10.1103/PhysRevA.76.052707, 2007. a
Murphy, D. M., Froyd, K. D., Bian, H., Brock, C. A., Dibb, J. E., DiGangi, J. P., Diskin, G., Dollner, M., Kupc, A., Scheuer, E. M., Schill, G. P., Weinzierl, B., Williamson, C. J., and Yu, P.: The distribution of sea-salt aerosol in the global troposphere, Atmos. Chem. Phys., 19, 4093–4104, https://doi.org/10.5194/acp-19-4093-2019, 2019. a
Nguyen, T. K. V., Zhang, Q., Jimenez, J. L., Pike, M., and Carlton, A. G.:
Liquid Water: Ubiquitous Contributor to Aerosol Mass, Environ. Sci. Technol. Lett., 3, 257–263, https://doi.org/10.1021/acs.estlett.6b00167, 2016. a
Ouf, F. X., Parent, P., Laffon, C., Marhaba, I., Ferry, D., Marcillaud, B.,
Antonsson, E., Benkoula, S., Liu, X. J., Nicolas, C., Robert, E., Patanen,
M., Barreda, F. A., Sublemontier, O., Coppalle, A., Yon, J., Miserque, F.,
Mostefaoui, T., Regier, T. Z., Mitchell, J. B. A., and Miron, C.: First
in-flight synchrotron X-ray absorption and photoemission study of carbon soot
nanoparticles, Sci. Rep.-UK, 6, 36495, https://doi.org/10.1038/srep36495, 2016. a
Ovadnevaite, J., Zuend, A., Laaksonen, A., Sanchez, K. J., Roberts, G.,
Ceburnis, D., Decesari, S., Rinaldi, M., Hodas, N., Facchini, M. C.,
Seinfeld, J. H., and O'Dowd, C.: Surface tension prevails
over solute effect in organic-influenced cloud droplet activation, Nature,
546, 637–641, 2017. a
Pak, C. Y., Li, W., and Steve Tse, Y.-L.: Free Energy and Dynamics of
Organic-Coated Water Droplet Coalescence, J. Phys. Chem. C, 124, 8749–8757, 2020. a
Park, S.-C., Burden, D. K., and Nathanson, G. M.: Surfactant Control of Gas
Transport and Reactions at the Surface of Sulfuric Acid, Accounts
Chem. Res., 42, 379–387, 2009. a
Parsons, M. T., Mak, J., Lipetz, S. R., and Bertram, A. K.: Deliquescence of
malonic, succinic, glutaric, and adipic acid particles, J.
Geophys. Res., 109, D06212, https://doi.org/10.1029/2003JD004075, 2004. a
Patel, D. I., Shah, D., Bahr, S., Dietrich, P., Meyer, M., Thißen, A., and Linford, M. R.: Water vapor, by near-ambient pressure XPS, Surf. Sci. Spectra, 26, 014026, https://doi.org/10.1116/1.5111634, 2019. a
Perkins, R. J., Vazquez de Vasquez, M. G., Beasley, E. E., Hill, T. C. J.,
Stone, E. A., Allen, H. C., and DeMott, P. J.: Relating Structure and Ice
Nucleation of Mixed Surfactant Systems Relevant to Sea Spray Aerosol,
J. Phys. Chem. A, 124, 8806–8821, https://doi.org/10.1021/acs.jpca.0c05849, 2020. a
Peters, S. J. and Ewing, G. E.: Water on Salt: An Infrared Study of Adsorbed H2O on NaCl(100) under Ambient Conditions, J. Phys.
Chem. B, 101, 10880–10886, 1997a. a
Petters, S. S., Hilditch, T. G., Tomaz, S., Miles, R. E. H., Reid, J. P., and
Turpin, B. J.: Volatility Change during Droplet Evaporation of Pyruvic
Acid, ACS Earth Space Chem., 4, 741–749, 2020. a
Pope, F. D., Dennis-Smither, B. J., Griffiths, P. T., Clegg, S. L., and Cox,
R. A.: Studies of Single Aerosol Particles Containing Malonic Acid, Glutaric
Acid, and Their Mixtures with Sodium Chloride. I. Hygroscopic Growth, The
J. Phys. Chem. A, 114, 5335–5341, 2010. a
Preger, C., Overgaard, N. C., Messing, M. E., and Magnusson, M. H.: Predicting the deposition spot radius and the nanoparticle concentration distribution in an electrostatic precipitator, Aerosol Sci. Tech., 1, 1–11, 2020. a
Prenni, A. J., DeMott, P. J., Kreidenweis, S. M., Sherman, D. E., Russell,
L. M., and Ming, Y.: The Effects of Low Molecular Weight Dicarboxylic Acids on Cloud Formation, J. Phys. Chem. A, 105, 11240–11248, 2001. a
Prisle, N. L., Engelhart, G. J., Bilde, M., and Donahue, N. M.: Humidity
influence on gas-particle phase partitioning of α-pinene + O3
secondary organic aerosol, Geophys. Res. Lett., 37, L01802,
2010a. a
Prisle, N. L., Raatikainen, T., Laaksonen, A., and Bilde, M.: Surfactants in cloud droplet activation: mixed organic-inorganic particles, Atmos. Chem. Phys., 10, 5663–5683, https://doi.org/10.5194/acp-10-5663-2010, 2010b. a, b
Prisle, N. L., Ottosson, N., Öhrwall, G., Söderström, J., Dal Maso, M., and Björneholm, O.: Surface/bulk partitioning and acid/base speciation of aqueous decanoate: direct observations and atmospheric implications, Atmos. Chem. Phys., 12, 12227–12242, https://doi.org/10.5194/acp-12-12227-2012, 2012. a, b, c
Prisle, N. L.: X-ray photoelectron spectra for the study “Pre-deliquescent water uptake in deposited nanoparticles observed with in situ ambient pressure X-ray photoelectron spectroscopy” by Lin et al. (2021) (Version 1.0.0) [Data set], Zenodo, https://doi.org/10.5281/zenodo.4624072, 2021. a
Rissman, T. A., Varutbangkul, V., Surratt, J. D., Topping, D. O., McFiggans, G., Flagan, R. C., and Seinfeld, J. H.: Cloud condensation nucleus (CCN) behavior of organic aerosol particles generated by atomization of water and methanol solutions, Atmos. Chem. Phys., 7, 2949–2971, https://doi.org/10.5194/acp-7-2949-2007, 2007. a
Rood, M. J., Shaw, M. A., Larson, T. V., and Covert, D. S.: Ubiquitous nature of ambient metastable aerosol, Nature, 337, 537–539, 1989. a
Rossi, M. J.: Heterogeneous Reactions on Salts, Chem. Rev., 103,
4823–4882, 2003. a
Roy, S., Diveky, M. E., and Signorell, R.: Mass Accommodation Coefficients of Water on Organics from Complementary Photoacoustic and Light Scattering
Measurements on Laser-Trapped Droplets, J. Phys. Chem. C, 124, 2481–2489, 2020. a
Salmeron, M. and Schlögl, R.: Ambient pressure photoelectron spectroscopy: A new tool for surface science and nanotechnology, Surf. Sci. Rep., 63, 169–199, 2008. a
Sareen, N., Schwier, A. N., Lathem, T. L., Nenes, A., and McNeill, V. F.:
Surfactants from the gas phase may promote cloud droplet formation,
P. Natl. Acad. Sci. USA, 110, 2723–2728, 2013. a
Scaramboni, C., Urban, R. C., Lima-Souza, M., Nogueira, R. F. P., Cardoso,
A. A., Allen, A. G., and Campos, M. L. A. M.: Total sugars in atmospheric
aerosols: An alternative tracer for biomass burning, Atmos.
Environ., 100, 185–192, 2015. a
Schnadt, J., Knudsen, J., Andersen, J. N., Siegbahn, H., Pietzsch, A., Hennies, F., Johansson, N., Mårtensson, N., Öhrwall, G., Bahr, S., Mahl, S., and Schaff, O.: The new ambient-pressure X-ray photoelectron spectroscopy instrument at MAX-lab, J. Synchrotron Rad., 19, 701–704
https://doi.org/10.1107/S0909049512032700, 2012. a
Shakya, K. M., Liu, S., Takahama, S., Russell, L. M., Keutsch, F. N., Galloway, M. M., Shilling, J. E., Hiranuma, N., Song, C., Kim, H., Paulson, S. E., Pfaffenberger, L., Barmet, P., Slowik, J., Prévôt, A. S. H., Dommen, J. and Baltensperger, U.: Similarities in STXM-NEXAFS Spectra of Atmospheric Particles and Oecondary Organic Aerosol Generated from Glyoxal, α-Pinene, Isoprene, 1,2,4-Trimethylbenzene, and d-Limonene, Aerosol Sci. Tech., 47, 543–555, https://doi.org/10.1080/02786826.2013.772950, 2013. a
Shi, Q., Zhang, W., Ji, Y., Wang, J., Qin, D., Chen, J., Gao, Y., Li, G., and
An, T.: Enhanced uptake of glyoxal at the acidic nanoparticle interface:
implications for secondary organic aerosol formation, Environ. Sci. Nano, 7, 1126–1135, 2020. a
Shulman, M. L., Jacobson, M. C., Charlson, R. J., Synovec, R. E., and Young,
T. E.: Dissolution behavior and surface tension effects of organic compounds in nucleating cloud droplets, Geophys. Res. Lett., 23, 277–280,
1996. a
Simpson, W. R., von Glasow, R., Riedel, K., Anderson, P., Ariya, P., Bottenheim, J., Burrows, J., Carpenter, L. J., Frieß, U., Goodsite, M. E., Heard, D., Hutterli, M., Jacobi, H.-W., Kaleschke, L., Neff, B., Plane, J., Platt, U., Richter, A., Roscoe, H., Sander, R., Shepson, P., Sodeau, J., Steffen, A., Wagner, T., and Wolff, E.: Halogens and their role in polar boundary-layer ozone depletion, Atmos. Chem. Phys., 7, 4375–4418, https://doi.org/10.5194/acp-7-4375-2007, 2007. a
SPECS Surface Nano Analysis GmbH: Calculated Transmission for PHOIBOS NAP
150 R2, available at: https://www.specs-group.com/fileadmin/user_upload/products/technical-note/TNote-PHOIBOS_150_NAP_Calculated_Transmission_function.pdf,
last access: 18 April 2020. a
Starr, D. E., Liu, Z., Hävecker, M., Knop-Gericke, A., and Bluhm, H.:
Investigation of solid/vapor interfaces using ambient pressure X-ray
photoelectron spectroscopy, Chem. Soc. Rev., 42, 5833–5857, 2013. a
Tang, I. N. and Munkelwitz, H. R.: Composition and temperature dependence of
the deliquescence properties of hygroscopic aerosols, Atmos.
Environ. A-Gen, 27, 467–473, 1993. a
Tang, M., Chan, C. K., Li, Y. J., Su, H., Ma, Q., Wu, Z., Zhang, G., Wang, Z., Ge, M., Hu, M., He, H., and Wang, X.: A review of experimental techniques for aerosol hygroscopicity studies, Atmos. Chem. Phys., 19, 12631–12686, https://doi.org/10.5194/acp-19-12631-2019, 2019. a, b, c
Toribio, A. R., Prisle, N. L., and Wexler, A. S.: Statistical Mechanics of
Multilayer Sorption: Surface Concentration Modeling and XPS Measurement, J. Phys. Chem. Lett., 9, 1461–1464, 2018. a
Urpelainen, S., Såthe, C., Grizolli, W., Agåker, M., Head, A. R.,
Andersson, M., Huang, S.-W., Jensen, B. N., Wallén, E., Tarawneh, H.,
Sankari, R., Nyholm, R., Lindberg, M., Sjöblom, P., Johansson, N.,
Reinecke, B. N., Arman, M. A., Merte, L. R., Knudsen, J., Schnadt, J.,
Andersen, J. N., and Hennies, F.: The SPECIES beamline at the MAX IV
Laboratory: a facility for soft X-ray RIXS and APXPS, J. Synchrotron Radiat., 24, 344–353, 2017. a
Verdaguer, A., Sacha, G. M., Luna, M., Ogletree, D. F., and Salmeron, M.:
Initial stages of water adsorption on NaCl(100) studied by scanning
polarization force microscopy, J. Chem. Phys., 123,
124703, https://doi.org/10.1063/1.1996568, 2005. a
Verdaguer, A., Segura, J. J., Fraxedas, J., Bluhm, H., and Salmeron, M.:
Correlation between Charge State of Insulating NaCl Surfaces and Ionic
Mobility Induced by Water Adsorption: A Combined Ambient Pressure X-ray
Photoelectron Spectroscopy and Scanning Force Microscopy Study, J.
Phys. Chem. C, 112, 16898–16901, 2008. a, b, c, d, e, f, g, h, i, j
Vogt, R., Crutzen, P. J., and Sander, R.: A mechanism for halogen release from sea-salt aerosol in the remote marine boundary layer, Nature, 383, 327–330, 1996. a
Walz, M. M., Caleman, C., Werner, J., Ekholm, V., Lundberg, D., Prisle, N. L.,
Öhrwall, G., and Björneholm, O.: Surface behavior of amphiphiles in
aqueous solution: a comparison between different pentanol isomers, Phys. Chem. Chem. Phys., 17, 14036–14044, 2015. a
Walz, M. M., Werner, J., Ekholm, V., Prisle, N. L., Öhrwall, G., and
Björneholm, O.: Alcohols at the aqueous surface: chain length and isomer effects, Phys. Chem. Chem. Phys., 18, 6648–6656, 2016. a
Wang, X., Jacob, D. J., Eastham, S. D., Sulprizio, M. P., Zhu, L., Chen, Q., Alexander, B., Sherwen, T., Evans, M. J., Lee, B. H., Haskins, J. D., Lopez-Hilfiker, F. D., Thornton, J. A., Huey, G. L., and Liao, H.: The role of chlorine in global tropospheric chemistry, Atmos. Chem. Phys., 19, 3981–4003, https://doi.org/10.5194/acp-19-3981-2019, 2019 a, b
Wang, Z., King, S. M., Freney, E., Rosenoern, T., Smith, M. L., Chen, Q.,
Kuwata, M., Lewis, E. R., Pöschl, U., Wang, W., Buseck, P. R., and
Martin, S. T.: The Dynamic Shape Factor of Sodium Chloride Nanoparticles as Regulated by Drying Rate, Aerosol Sci. Tech., 44, 939–953,
2010. a
Weis, D. D. and Ewing, G. E.: Water content and morphology of sodium chloride aerosol particles, J. Geophys. Res.-Atmos., 104,
21275–21285, 1999. a
Werner, F., Ditas, F., Siebert, H., Simmel, M., Wehner, B., Pilewskie, P.,
Schmeissner, T., Shaw, R. A., Hartmann, S., Wex, H., Roberts, G. C., and
Wendisch, M.: Twomey effect observed from collocated microphysical and
remote sensing measurements over shallow cumulus, J. Geophys. Res.-Atmos., 119, 1534–1545, 2014. a
Winter, B.: Liquid microjet for photoelectron spectroscopy, Nucl. Instrum. Meth. A, 601, 139–150, 2009. a
Wise, M. E., Martin, S. T., Russell, L. M., and Buseck, P. R.: Water Uptake by NaCl Particles Prior to Deliquescence and the Phase Rule, Aerosol Sci. Tech., 42, 281–294, 2008. a
Yeh, J. J. and Lindau, I.: Atomic subshell photoionization cross sections and asymmetry parameters: 1 ≤ Z ≤ 103, Atom. Data Nucl. Data, 32, 1–155, 1985.
a
Yu, L. E., Shulman, M. L., Kopperud, R., and Hildemann, L. M.:
Characterization of Organic Compounds Collected during Southeastern Aerosol and Visibility Study: Water-Soluble Organic Species, Environ. Sci.
Technol., 39, 707–715, 2005. a
Zhang, R., Gen, M., Huang, D., Li, Y., and Chan, C. K.: Enhanced Sulfate
Production by Nitrate Photolysis in the Presence of Halide Ions in
Atmospheric Particles, Environ. Sci. Technol., 54, 3831–3839, 2020. a
Zhang, Y., Apsokardu, M. J., Kerecman, D. E., Achtenhagen, M., and Johnston, M. V.: Reaction Kinetics of Organic Aerosol Studied by Droplet Assisted Ionization: Enhanced Reactivity in Droplets Relative to Bulk Solution, J. Am. Soc. Mass Spectr., 32, 46–54, https://doi.org/10.1021/jasms.0c00057, 2021. a
Zhong, J., Li, H., Kumar, M., Liu, J., Liu, L., Zhang, X., Zeng, X. C., and
Francisco, J. S.: Mechanistic Insight into the Reaction of Organic Acids
with SO3 at the Air–Water Interface, Angew. Chem.-Int. Edit., 58,
8351–8355, 2019. a
Short summary
We used surface-sensitive X-ray photoelectron spectroscopy (XPS) to study laboratory-generated nanoparticles of atmospheric interest at 0–16 % relative humidity. XPS gives direct information about changes in the chemical state from the binding energies of probed elements. Our results indicate water adsorption and associated chemical changes at the particle surfaces well below deliquescence, with distinct features for different particle components and implications for atmospheric chemistry.
We used surface-sensitive X-ray photoelectron spectroscopy (XPS) to study laboratory-generated...
Altmetrics
Final-revised paper
Preprint