Articles | Volume 21, issue 1
https://doi.org/10.5194/acp-21-393-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-393-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Measurement report: Changing characteristics of atmospheric CH4 in the Tibetan Plateau: records from 1994 to 2019 at the Mount Waliguan station
Shuo Liu
State Key Laboratory of Urban and Regional Ecology, Research Center
for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
College of Environmental and Resource Sciences, Zhejiang University of Technology, Hangzhou, China
Shuangxi Fang
CORRESPONDING AUTHOR
College of Environmental and Resource Sciences, Zhejiang University of Technology, Hangzhou, China
Peng Liu
Mt. Waliguan background station, China Meteorological Administration (CMA), Qinghai, China
Miao Liang
Meteorological Observation Center (MOC), China Meteorological
Administration (CMA), Beijing, China
Minrui Guo
College of Global Change and Earth System Science, Beijing Normal
University, Beijing, China
Zhaozhong Feng
CORRESPONDING AUTHOR
State Key Laboratory of Urban and Regional Ecology, Research Center
for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
Key Laboratory of Agrometeorology of Jiangsu Province, Institute of
Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, China
Related authors
Jiaxin Li, Kunpeng Zang, Yi Lin, Yuanyuan Chen, Shuo Liu, Shanshan Qiu, Kai Jiang, Xuemei Qing, Haoyu Xiong, Haixiang Hong, Shuangxi Fang, Honghui Xu, and Yujun Jiang
Atmos. Meas. Tech., 16, 4757–4768, https://doi.org/10.5194/amt-16-4757-2023, https://doi.org/10.5194/amt-16-4757-2023, 2023
Short summary
Short summary
Based on observed data of CO2 and CH4 and meteorological parameters over the Yellow Sea in November 2012 and June 2013, a data process and quality control method was optimized and established to filter the data influenced by multiple factors. Spatial and seasonal variations in CO2 and CH4 mixing ratios were mainly controlled by the East Asian Monsoon, while the influence of air–sea exchange was slight.
Zhonghua He, Ling Gao, Miao Liang, and Zhao-Cheng Zeng
Atmos. Meas. Tech., 17, 2937–2956, https://doi.org/10.5194/amt-17-2937-2024, https://doi.org/10.5194/amt-17-2937-2024, 2024
Short summary
Short summary
Using Gaofen-5B satellite data, this study detected 93 methane plume events from 32 coal mines in Shanxi, China, with emission rates spanning from 761.78 ± 185.00 to 12729.12 ± 4658.13 kg h-1, showing significant variability among sources. This study highlights Gaofen-5B’s capacity for monitoring large methane point sources, offering valuable support in reducing greenhouse gas emissions.
Jiaxin Li, Kunpeng Zang, Yi Lin, Yuanyuan Chen, Shuo Liu, Shanshan Qiu, Kai Jiang, Xuemei Qing, Haoyu Xiong, Haixiang Hong, Shuangxi Fang, Honghui Xu, and Yujun Jiang
Atmos. Meas. Tech., 16, 4757–4768, https://doi.org/10.5194/amt-16-4757-2023, https://doi.org/10.5194/amt-16-4757-2023, 2023
Short summary
Short summary
Based on observed data of CO2 and CH4 and meteorological parameters over the Yellow Sea in November 2012 and June 2013, a data process and quality control method was optimized and established to filter the data influenced by multiple factors. Spatial and seasonal variations in CO2 and CH4 mixing ratios were mainly controlled by the East Asian Monsoon, while the influence of air–sea exchange was slight.
S. X. Fang, P. P. Tans, M. Steinbacher, L. X. Zhou, and T. Luan
Atmos. Meas. Tech., 8, 5301–5313, https://doi.org/10.5194/amt-8-5301-2015, https://doi.org/10.5194/amt-8-5301-2015, 2015
Short summary
Short summary
The identification of atmospheric CO2 observation data which are minimally influenced by very local emissions/removals is essential for trend analysis and for the estimation of regional sources and sinks. We compared four data filtering regimes based on the observation records at Lin'an station in China, and found that the use of meteorological parameters was the most favorable. This conclusion will aid regional data selection at the Lin'an station.
X. W. Fu, H. Zhang, C.-J. Lin, X. B. Feng, L. X. Zhou, and S. X. Fang
Atmos. Chem. Phys., 15, 1013–1028, https://doi.org/10.5194/acp-15-1013-2015, https://doi.org/10.5194/acp-15-1013-2015, 2015
Short summary
Short summary
This paper is the first to report correlation slopes of GEM/CO, GEM/CO2, GEM/CH4, CH4/CO, CH4/CO2, and CO/CO2 for mainland China, South Asia, the Indochinese Peninsula, and Central Asia, and applied the values to estimate GEM emissions in the four source regions. The estimated Hg0 emissions for mainland China, South Asia, the Indochinese Peninsula, and Central Asia using GEM/CO and GEM/CO2 correlation slopes are in the ranges of 1071-1187, 340-470, 125, and 54-90t, respectively.
S. X. Fang, L. X. Zhou, P. P. Tans, P. Ciais, M. Steinbacher, L. Xu, and T. Luan
Atmos. Chem. Phys., 14, 2541–2554, https://doi.org/10.5194/acp-14-2541-2014, https://doi.org/10.5194/acp-14-2541-2014, 2014
Related subject area
Subject: Gases | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Shipping and algae emissions have a major impact on ambient air mixing ratios of non-methane hydrocarbons (NMHCs) and methanethiol on Utö Island in the Baltic Sea
Contribution of cooking emissions to the urban volatile organic compounds in Las Vegas, NV
Reanalysis of NOAA H2 observations: implications for the H2 budget
A large role of missing volatile organic compound reactivity from anthropogenic emissions in ozone pollution regulation
Measurement report: Insights into the chemical composition and origin of molecular clusters and potential precursor molecules present in the free troposphere over the southern Indian Ocean: observations from the Maïdo Observatory (2150 m a.s.l., Réunion)
Production of oxygenated volatile organic compounds from the ozonolysis of coastal seawater
Comment on “Transport of substantial stratospheric ozone to the surface by a dying typhoon and shallow convection” by Chen et al. (2022)
Observations of cyanogen bromide (BrCN) in the global troposphere and their relation to polar surface O3 destruction
Individual coal mine methane emissions constrained by eddy covariance measurements: low bias and missing sources
Measurement report: Observations of ground-level ozone concentration gradients perpendicular to the Lake Ontario shoreline
Measurement report: The Palau Atmospheric Observatory and its ozonesonde record – continuous monitoring of tropospheric composition and dynamics in the tropical western Pacific
Quantifying SO2 oxidation pathways to atmospheric sulfate using stable sulfur and oxygen isotopes: laboratory simulation and field observation
Influences of downward transport and photochemistry on surface ozone over East Antarctica during austral summer: in situ observations and model simulations
Emission characteristics of reactive organic gases from industrial volatile chemical products (VCPs) in China
Iodine oxoacids and their roles in sub-3 nm particle growth in polluted urban environments
Intensive photochemical oxidation in the marine atmosphere: evidence from direct radical measurements
Diurnal variations in oxygen and nitrogen isotopes of atmospheric nitrogen dioxide and nitrate: implications for tracing NOx oxidation pathways and emission sources
Measurement report: Enhanced photochemical formation of formic and isocyanic acids in urban region aloft: insights from tower-based online gradient measurements
Measurement report: Method for evaluating CO2 emissions from a cement plant using atmospheric δ(O2 ∕ N2) and CO2 measurements and its implication for future detection of CO2 capture signals
Aircraft-based mass balance estimate of methane emissions from offshore gas facilities in the southern North Sea
Parameterizations of US wildfire and prescribed fire emission ratios and emission factors based on FIREX-AQ aircraft measurements
Measurement report: Atmospheric nitrate radical chemistry in the South China Sea influenced by the urban outflow of the Pearl River Delta
The interhemispheric gradient of SF6 in the upper troposphere
Deciphering anthropogenic and biogenic contributions to selected NMVOC emissions in an urban area
Weather regimes and the related atmospheric composition at a Pyrenean observatory characterized by hierarchical clustering of a 5-year data set
Tropospheric bromine monoxide vertical profiles retrieved across the Alaskan Arctic in springtime
Source apportionment of methane emissions from the Upper Silesian Coal Basin using isotopic signatures
Measurement report: Exchange fluxes of HONO over agricultural fields in the North China Plain
HONO chemistry at a suburban site during the EXPLORE-YRD campaign in 2018: formation mechanisms and impacts on O3 production
Evaluation of modelled climatologies of O3, CO, water vapour and NOy in the upper troposphere–lower stratosphere using regular in situ observations by passenger aircraft
Photochemical ageing of aerosols contributes significantly to the production of atmospheric formic acid
Nitrous acid budgets in the coastal atmosphere: potential daytime marine sources
Sources of organic gases and aerosol particles and their roles in nighttime particle growth at a rural forested site in southwest Germany
Undetected biogenic volatile organic compounds from Norway spruce drive total ozone reactivity measurements
Quantification of fossil fuel CO2 from combined CO, δ13CO2 and Δ14CO2 observations
Radical chemistry and ozone production at a UK coastal receptor site
Sources and long-term variability of carbon monoxide at Mount Kenya and in Nairobi
Opinion: Strengthening Research in the Global South: Atmospheric Science Opportunities in South America and Africa
Measurement report: Airborne measurements of NOx fluxes over Los Angeles during the RECAP-CA 2021 campaign
Influence of anthropogenic emissions on the composition of highly oxygenated organic molecules in Helsinki: a street canyon and urban background station comparison
Changes in surface ozone in South Korea on diurnal to decadal timescales for the period of 2001–2021
Characterization of the nitrogen stable isotope composition (δ15N) of ship-emitted NOx
Volatile organic compound fluxes in the agricultural San Joaquin Valley – spatial distribution, source attribution, and inventory comparison
Exploring the amplified role of HCHO in the formation of HMS and O3 during the co-occurring PM2.5 and O3 pollution in a coastal city of southeast China
High potential for CH4 emission mitigation from oil infrastructure in one of EU's major production regions
Measurement report: Source apportionment and environmental impacts of volatile organic compounds (VOCs) in Lhasa, a highland city in China
OH, HO2, and RO2 radical chemistry in a rural forest environment: measurements, model comparisons, and evidence of a missing radical sink
The atmospheric fate of 1,2-dibromo-4-(1,2-dibromoethyl)cyclohexane (TBECH): spatial patterns, seasonal variability, and deposition to Canadian coastal regions
A single-point modeling approach for the intercomparison and evaluation of ozone dry deposition across chemical transport models (Activity 2 of AQMEII4)
Direct observations of NOx emissions over the San Joaquin Valley using airborne flux measurements during RECAP-CA 2021 field campaign
Heidi Hellén, Rostislav Kouznetsov, Kaisa Kraft, Jukka Seppälä, Mika Vestenius, Jukka-Pekka Jalkanen, Lauri Laakso, and Hannele Hakola
Atmos. Chem. Phys., 24, 4717–4731, https://doi.org/10.5194/acp-24-4717-2024, https://doi.org/10.5194/acp-24-4717-2024, 2024
Short summary
Short summary
Mixing ratios of C2-C5 NMHCs and methanethiol were measured on an island in the Baltic Sea using an in situ gas chromatograph. Shipping emissions were found to be an important source of ethene, ethyne, propene, and benzene. High summertime mixing ratios of methanethiol and dependence of mixing ratios on seawater temperature and height indicated the biogenic origin to possibly be phytoplankton or macroalgae. These emissions may have a strong impact on SO2 production and new particle formation.
Matthew M. Coggon, Chelsea E. Stockwell, Lu Xu, Jeff Peischl, Jessica B. Gilman, Aaron Lamplugh, Henry J. Bowman, Kenneth Aikin, Colin Harkins, Qindan Zhu, Rebecca H. Schwantes, Jian He, Meng Li, Karl Seltzer, Brian McDonald, and Carsten Warneke
Atmos. Chem. Phys., 24, 4289–4304, https://doi.org/10.5194/acp-24-4289-2024, https://doi.org/10.5194/acp-24-4289-2024, 2024
Short summary
Short summary
Residential and commercial cooking emits pollutants that degrade air quality. Here, ambient observations show that cooking is an important contributor to anthropogenic volatile organic compounds (VOCs) emitted in Las Vegas, NV. These emissions are not fully presented in air quality models, and more work may be needed to quantify emissions from important sources, such as commercial restaurants.
Fabien Paulot, Gabrielle Pétron, Andrew M. Crotwell, and Matteo B. Bertagni
Atmos. Chem. Phys., 24, 4217–4229, https://doi.org/10.5194/acp-24-4217-2024, https://doi.org/10.5194/acp-24-4217-2024, 2024
Short summary
Short summary
New data from the National Oceanic and Atmospheric Administration show that hydrogen (H2) concentrations increased from 2010 to 2019, which is consistent with the simulated increase in H2 photochemical production (mainly from methane). But this cannot be reconciled with the expected decrease (increase) in H2 anthropogenic emissions (soil deposition) in the same period. This shows gaps in our knowledge of the H2 biogeochemical cycle that must be resolved to quantify the impact of higher H2 usage.
Wenjie Wang, Bin Yuan, Hang Su, Yafang Cheng, Jipeng Qi, Sihang Wang, Wei Song, Xinming Wang, Chaoyang Xue, Chaoqun Ma, Fengxia Bao, Hongli Wang, Shengrong Lou, and Min Shao
Atmos. Chem. Phys., 24, 4017–4027, https://doi.org/10.5194/acp-24-4017-2024, https://doi.org/10.5194/acp-24-4017-2024, 2024
Short summary
Short summary
This study investigates the important role of unmeasured volatile organic compounds (VOCs) in ozone formation. Based on results in a megacity of China, we show that unmeasured VOCs can contribute significantly to ozone fomation and also influence the determination of ozone control strategy. Our results show that these unmeasured VOCs are mainly from human sources.
Romain Salignat, Matti Rissanen, Siddharth Iyer, Jean-Luc Baray, Pierre Tulet, Jean-Marc Metzger, Jérôme Brioude, Karine Sellegri, and Clémence Rose
Atmos. Chem. Phys., 24, 3785–3812, https://doi.org/10.5194/acp-24-3785-2024, https://doi.org/10.5194/acp-24-3785-2024, 2024
Short summary
Short summary
Using mass spectrometry data collected at the Maïdo Observatory (2160 m a.s.l., Réunion), we provide the first detailed analysis of molecular cluster chemical composition specifically in the marine free troposphere. The abundance of the identified species is related both to in situ meteorological parameters and air mass history, which also provide insight into their origin. Our work makes an important contribution to documenting the chemistry and physics of the marine free troposphere.
Delaney B. Kilgour, Gordon A. Novak, Megan S. Claflin, Brian M. Lerner, and Timothy H. Bertram
Atmos. Chem. Phys., 24, 3729–3742, https://doi.org/10.5194/acp-24-3729-2024, https://doi.org/10.5194/acp-24-3729-2024, 2024
Short summary
Short summary
Laboratory experiments with seawater mimics suggest ozone deposition to the surface ocean can be a source of reactive carbon to the marine atmosphere. We conduct both field and laboratory measurements to assess abiotic VOC composition and yields from ozonolysis of real surface seawater. We show that C5–C11 aldehydes contribute to the observed VOC emission flux. We estimate that VOCs generated by the ozonolysis of surface seawater are competitive with biological VOC production and emission.
Xiangdong Zheng, Wen Yang, Yuting Sun, Chunmei Geng, Yingying Liu, and Xiaobin Xu
Atmos. Chem. Phys., 24, 3759–3768, https://doi.org/10.5194/acp-24-3759-2024, https://doi.org/10.5194/acp-24-3759-2024, 2024
Short summary
Short summary
Chen et al. (2022) attributed the nocturnal ozone enhancement (NOE) during the night of 31 July 2021 in the North China Plain (NCP) to "the direct stratospheric intrusion to reach the surface". We analyzed in situ data from the NCP. Our results do not suggest that there was a significant impact from the stratosphere on surface ozone during the NOE. We argue that the NOE was not caused by stratospheric intrusion but originated from fresh photochemical production in the lower troposphere.
James M. Roberts, Siyuan Wang, Patrick R. Veres, J. Andrew Neuman, Michael A. Robinson, Ilann Bourgeois, Jeff Peischl, Thomas B. Ryerson, Chelsea R. Thompson, Hannah M. Allen, John D. Crounse, Paul O. Wennberg, Samuel R. Hall, Kirk Ullmann, Simone Meinardi, Isobel J. Simpson, and Donald Blake
Atmos. Chem. Phys., 24, 3421–3443, https://doi.org/10.5194/acp-24-3421-2024, https://doi.org/10.5194/acp-24-3421-2024, 2024
Short summary
Short summary
We measured cyanogen bromide (BrCN) in the troposphere for the first time. BrCN is a product of the same active bromine chemistry that destroys ozone and removes mercury in polar surface environments and is a previously unrecognized sink for active Br compounds. BrCN has an apparent lifetime against heterogeneous loss in the range 1–10 d, so it serves as a cumulative marker of Br-radical chemistry. Accounting for BrCN chemistry is an important part of understanding polar Br cycling.
Kai Qin, Wei Hu, Qin He, Fan Lu, and Jason Blake Cohen
Atmos. Chem. Phys., 24, 3009–3028, https://doi.org/10.5194/acp-24-3009-2024, https://doi.org/10.5194/acp-24-3009-2024, 2024
Short summary
Short summary
We compute CH4 emissions and uncertainty on a mine-by-mine basis, including underground, overground, and abandoned mines. Mine-by-mine gas and flux data and 30 min observations from a flux tower located next to a mine shaft are integrated. The observed variability and bias correction are propagated over the emissions dataset, demonstrating that daily observations may not cover the range of variability. Comparisons show both an emissions magnitude and spatial mismatch with current inventories.
Yao Yan Huang and D. James Donaldson
Atmos. Chem. Phys., 24, 2387–2398, https://doi.org/10.5194/acp-24-2387-2024, https://doi.org/10.5194/acp-24-2387-2024, 2024
Short summary
Short summary
Ground-level ozone interacts at the lake–land boundary; this is important to our understanding and modelling of atmospheric chemistry and air pollution in the lower atmosphere. We show that a steep ozone gradient occurs year-round moving inland up to 1 km from the lake and that this gradient is influenced by seasonal factors on the local land environment, where more rural areas are more greatly affected seasonally.
Katrin Müller, Jordis S. Tradowsky, Peter von der Gathen, Christoph Ritter, Sharon Patris, Justus Notholt, and Markus Rex
Atmos. Chem. Phys., 24, 2169–2193, https://doi.org/10.5194/acp-24-2169-2024, https://doi.org/10.5194/acp-24-2169-2024, 2024
Short summary
Short summary
The Palau Atmospheric Observatory is introduced as an ideal site to detect changes in atmospheric composition and dynamics above the remote tropical western Pacific. We focus on the ozone sounding program from 2016–2021, including El Niño 2016. The year-round high convective activity is reflected in dominant low tropospheric ozone and high relative humidity. Their seasonal distributions are unique compared to other tropical sites and are modulated by the Intertropical Convergence Zone.
Ziyan Guo, Keding Lu, Pengxiang Qiu, Mingyi Xu, and Zhaobing Guo
Atmos. Chem. Phys., 24, 2195–2205, https://doi.org/10.5194/acp-24-2195-2024, https://doi.org/10.5194/acp-24-2195-2024, 2024
Short summary
Short summary
The formation of secondary sulfate needs to be further explored. In this work, we simultaneously measured sulfur and oxygen isotopic compositions to gain an increased understanding of specific sulfate formation processes. The results indicated that secondary sulfate was mainly ascribed to SO2 homogeneous oxidation by OH radicals and heterogeneous oxidation by H2O2 and Fe3+ / O2. This study is favourable for deeply investigating the sulfur cycle in the atmosphere.
Imran A. Girach, Narendra Ojha, Prabha R. Nair, Kandula V. Subrahmanyam, Neelakantan Koushik, Mohammed M. Nazeer, Nadimpally Kiran Kumar, Surendran Nair Suresh Babu, Jos Lelieveld, and Andrea Pozzer
Atmos. Chem. Phys., 24, 1979–1995, https://doi.org/10.5194/acp-24-1979-2024, https://doi.org/10.5194/acp-24-1979-2024, 2024
Short summary
Short summary
We investigate surface ozone variability in East Antarctica based on measurements and EMAC global model simulations during austral summer. Nearly half of the surface ozone is found to be of stratospheric origin. The east coast of Antarctica acts as a stronger sink of ozone than surrounding regions. Photochemical loss of ozone is counterbalanced by downward transport of ozone. The study highlights the intertwined role of chemistry and dynamics in governing ozone variations over East Antarctica.
Sihang Wang, Bin Yuan, Xianjun He, Ru Cui, Xin Song, Yubin Chen, Caihong Wu, Chaomin Wang, Yibo Huangfu, Xiaobing Li, Boguang Wang, and Min Shao
EGUsphere, https://doi.org/10.5194/egusphere-2024-380, https://doi.org/10.5194/egusphere-2024-380, 2024
Short summary
Short summary
Emissions of reactive organic gases from industrial volatile chemical products sources are measured. Large differences among these industrial sources. We show that oxygenated species account for significant contributions to reactive organic gases emissions, especially for industrial sources utilizing water-borne chemicals.
Ying Zhang, Duzitian Li, Xu-Cheng He, Wei Nie, Chenjuan Deng, Runlong Cai, Yuliang Liu, Yishuo Guo, Chong Liu, Yiran Li, Liangduo Chen, Yuanyuan Li, Chenjie Hua, Tingyu Liu, Zongcheng Wang, Jiali Xie, Lei Wang, Tuukka Petäjä, Federico Bianchi, Ximeng Qi, Xuguang Chi, Pauli Paasonen, Yongchun Liu, Chao Yan, Jingkun Jiang, Aijun Ding, and Markku Kulmala
Atmos. Chem. Phys., 24, 1873–1893, https://doi.org/10.5194/acp-24-1873-2024, https://doi.org/10.5194/acp-24-1873-2024, 2024
Short summary
Short summary
This study conducts a long-term observation of gaseous iodine oxoacids in two Chinese megacities, revealing their ubiquitous presence with peak concentrations (up to 0.1 pptv) in summer. Our analysis suggests a mix of terrestrial and marine sources for iodine. Additionally, iodic acid is identified as a notable contributor to sub-3 nm particle growth and particle survival probability.
Guoxian Zhang, Renzhi Hu, Pinhua Xie, Changjin Hu, Xiaoyan Liu, Liujun Zhong, Haotian Cai, Bo Zhu, Shiyong Xia, Xiaofeng Huang, Xin Li, and Wenqing Liu
Atmos. Chem. Phys., 24, 1825–1839, https://doi.org/10.5194/acp-24-1825-2024, https://doi.org/10.5194/acp-24-1825-2024, 2024
Short summary
Short summary
Comprehensive observation of HOx radicals was conducted at a coastal site in the Pearl River Delta. Radical chemistry was influenced by different air masses in a time-dependent way. Land mass promotes a more active photochemical process, with daily averages of 7.1 × 106 and 5.2 × 108 cm−3 for OH and HO2 respectively. The rapid oxidation process was accompanied by a higher diurnal HONO concentration, which influences the ozone-sensitive system and eventually magnifies the background ozone.
Sarah Albertin, Joël Savarino, Slimane Bekki, Albane Barbero, Roberto Grilli, Quentin Fournier, Irène Ventrillard, Nicolas Caillon, and Kathy Law
Atmos. Chem. Phys., 24, 1361–1388, https://doi.org/10.5194/acp-24-1361-2024, https://doi.org/10.5194/acp-24-1361-2024, 2024
Short summary
Short summary
This study reports the first simultaneous records of oxygen (Δ17O) and nitrogen (δ15N) isotopes in nitrogen dioxide (NO2) and nitrate (NO3−). These data are combined with atmospheric observations to explore sub-daily N reactive chemistry and quantify N fractionation effects in an Alpine winter city. The results highlight the necessity of using Δ17O and δ15N in both NO2 and NO3− to avoid biased estimations of NOx sources and fates from NO3− isotopic records in urban winter environments.
Qing Yang, Xiao-Bing Li, Bin Yuan, Xiaoxiao Zhang, Yibo Huangfu, Lei Yang, Xianjun He, Jipeng Qi, and Min Shao
EGUsphere, https://doi.org/10.5194/egusphere-2024-13, https://doi.org/10.5194/egusphere-2024-13, 2024
Short summary
Short summary
Online vertical gradient measurements of formic and isocyanic acids were made based on a 320 m tower in a megacity. Vertical variations and sources of the two acids were analyzed in this study. We find that formic and isocyanic acids exhibited positive vertical gradients and were mainly contributed by photochemical formations. The formation of formic and isocyanic acids was also significantly enhanced in urban region aloft.
Shigeyuki Ishidoya, Kazuhiro Tsuboi, Hiroaki Kondo, Kentaro Ishijima, Nobuyuki Aoki, Hidekazu Matsueda, and Kazuyuki Saito
Atmos. Chem. Phys., 24, 1059–1077, https://doi.org/10.5194/acp-24-1059-2024, https://doi.org/10.5194/acp-24-1059-2024, 2024
Short summary
Short summary
A method evaluating techniques for carbon neutrality, such as carbon capture and storage (CCS), is important. This study presents a method to evaluate CO2 emissions from a cement plant based on atmospheric O2 and CO2 measurements. The method will also be useful for evaluating CO2 capture from flue gas at CCS plants, since the plants remove CO2 from the atmosphere without causing any O2 changes, just as cement plants do, differing only in the direction of CO2 exchange with the atmosphere.
Magdalena Pühl, Anke Roiger, Alina Fiehn, Alan M. Gorchov Negron, Eric A. Kort, Stefan Schwietzke, Ignacio Pisso, Amy Foulds, James Lee, James L. France, Anna E. Jones, Dave Lowry, Rebecca E. Fisher, Langwen Huang, Jacob Shaw, Prudence Bateson, Stephen Andrews, Stuart Young, Pamela Dominutti, Tom Lachlan-Cope, Alexandra Weiss, and Grant Allen
Atmos. Chem. Phys., 24, 1005–1024, https://doi.org/10.5194/acp-24-1005-2024, https://doi.org/10.5194/acp-24-1005-2024, 2024
Short summary
Short summary
In April–May 2019 we carried out an airborne field campaign in the southern North Sea with the aim of studying methane emissions of offshore gas installations. We determined methane emissions from elevated methane measured downstream of the sampled installations. We compare our measured methane emissions with estimated methane emissions from national and global annual inventories. As a result, we find inconsistencies of inventories and large discrepancies between measurements and inventories.
Georgios I. Gkatzelis, Matthew M. Coggon, Chelsea E. Stockwell, Rebecca S. Hornbrook, Hannah Allen, Eric C. Apel, Megan M. Bela, Donald R. Blake, Ilann Bourgeois, Steven S. Brown, Pedro Campuzano-Jost, Jason M. St. Clair, James H. Crawford, John D. Crounse, Douglas A. Day, Joshua P. DiGangi, Glenn S. Diskin, Alan Fried, Jessica B. Gilman, Hongyu Guo, Johnathan W. Hair, Hannah S. Halliday, Thomas F. Hanisco, Reem Hannun, Alan Hills, L. Gregory Huey, Jose L. Jimenez, Joseph M. Katich, Aaron Lamplugh, Young Ro Lee, Jin Liao, Jakob Lindaas, Stuart A. McKeen, Tomas Mikoviny, Benjamin A. Nault, J. Andrew Neuman, John B. Nowak, Demetrios Pagonis, Jeff Peischl, Anne E. Perring, Felix Piel, Pamela S. Rickly, Michael A. Robinson, Andrew W. Rollins, Thomas B. Ryerson, Melinda K. Schueneman, Rebecca H. Schwantes, Joshua P. Schwarz, Kanako Sekimoto, Vanessa Selimovic, Taylor Shingler, David J. Tanner, Laura Tomsche, Krystal T. Vasquez, Patrick R. Veres, Rebecca Washenfelder, Petter Weibring, Paul O. Wennberg, Armin Wisthaler, Glenn M. Wolfe, Caroline C. Womack, Lu Xu, Katherine Ball, Robert J. Yokelson, and Carsten Warneke
Atmos. Chem. Phys., 24, 929–956, https://doi.org/10.5194/acp-24-929-2024, https://doi.org/10.5194/acp-24-929-2024, 2024
Short summary
Short summary
This study reports emissions of gases and particles from wildfires. These emissions are related to chemical proxies that can be measured by satellite and incorporated into models to improve predictions of wildfire impacts on air quality and climate.
Jie Wang, Haichao Wang, Yee Jun Tham, Lili Ming, Zelong Zheng, Guizhen Fang, Cuizhi Sun, Zhenhao Ling, Jun Zhao, and Shaojia Fan
Atmos. Chem. Phys., 24, 977–992, https://doi.org/10.5194/acp-24-977-2024, https://doi.org/10.5194/acp-24-977-2024, 2024
Short summary
Short summary
Many works report NO3 chemistry in inland regions while less target marine regions. We measured N2O5 and related species on a typical island and found intensive nighttime chemistry and rapid NO3 loss. NO contributed significantly to NO3 loss despite its sub-ppbv level, suggesting nocturnal NO3 reactions would be largely enhanced once free from NO emissions in the open ocean. This highlights the strong influences of urban outflow on downward marine areas in terms of nighttime chemistry.
Tanja J. Schuck, Johannes Degen, Eric Hintsa, Peter Hoor, Markus Jesswein, Timo Keber, Daniel Kunkel, Fred Moore, Florian Obersteiner, Matt Rigby, Thomas Wagenhäuser, Luke M. Western, Andreas Zahn, and Andreas Engel
Atmos. Chem. Phys., 24, 689–705, https://doi.org/10.5194/acp-24-689-2024, https://doi.org/10.5194/acp-24-689-2024, 2024
Short summary
Short summary
We study the interhemispheric gradient of sulfur hexafluoride (SF6), a strong long-lived greenhouse gas. Its emissions are stronger in the Northern Hemisphere; therefore, mixing ratios in the Southern Hemisphere lag behind. Comparing the observations to a box model, the model predicts air in the Southern Hemisphere to be older. For a better agreement, the emissions used as model input need to be increased (and their spatial pattern changed), and we need to modify north–south transport.
Arianna Peron, Martin Graus, Marcus Striednig, Christian Lamprecht, Georg Wohlfahrt, and Thomas Karl
EGUsphere, https://doi.org/10.5194/egusphere-2024-79, https://doi.org/10.5194/egusphere-2024-79, 2024
Short summary
Short summary
The anthropogenic fraction of NMVOC emissions typically associated with biogenic sources (e.g. terpenes) is investigated in an urban area based on direct eddy covariance observations. We find that the anthropogenic fraction for terpene emissions is strongly dependent on the season. When analyzing VCP emissions in context of urban environments we caution that short-term campaign-based observations might over- or underestimate their significance depending on local and seasonal circumstances.
Jérémy Gueffier, François Gheusi, Marie Lothon, Véronique Pont, Alban Philibert, Fabienne Lohou, Solène Derrien, Yannick Bezombes, Gilles Athier, Yves Meyerfeld, Antoine Vial, and Emmanuel Leclerc
Atmos. Chem. Phys., 24, 287–316, https://doi.org/10.5194/acp-24-287-2024, https://doi.org/10.5194/acp-24-287-2024, 2024
Short summary
Short summary
This study investigates the link between weather regime and atmospheric composition at a Pyrenean observatory. Five years of meteorological data were synchronized on a daily basis and then, using a clustering method, separated into six groups of observation days, with most showing marked characteristics of different weather regimes (fair and disturbed weather, winter windstorms, foehn). Statistical differences in gas and particle concentrations appeared between the groups and are discussed.
Nathaniel Brockway, Peter K. Peterson, Katja Bigge, Kristian D. Hajny, Paul B. Shepson, Kerri A. Pratt, Jose D. Fuentes, Tim Starn, Robert Kaeser, Brian H. Stirm, and William R. Simpson
Atmos. Chem. Phys., 24, 23–40, https://doi.org/10.5194/acp-24-23-2024, https://doi.org/10.5194/acp-24-23-2024, 2024
Short summary
Short summary
Bromine monoxide (BrO) strongly affects atmospheric chemistry in the springtime Arctic, yet there are still many uncertainties around its sources and recycling, particularly in the context of a rapidly changing Arctic. In this study, we observed BrO as a function of altitude above the Alaskan Arctic. We found that BrO was often most concentrated near the ground, confirming the ability of snow to produce and recycle reactive bromine, and identified four common vertical distributions of BrO.
Alina Fiehn, Maximilian Eckl, Julian Kostinek, Michał Gałkowski, Christoph Gerbig, Michael Rothe, Thomas Röckmann, Malika Menoud, Hossein Maazallahi, Martina Schmidt, Piotr Korbeń, Jarosław Neçki, Mila Stanisavljević, Justyna Swolkień, Andreas Fix, and Anke Roiger
Atmos. Chem. Phys., 23, 15749–15765, https://doi.org/10.5194/acp-23-15749-2023, https://doi.org/10.5194/acp-23-15749-2023, 2023
Short summary
Short summary
During the CoMet mission in the Upper Silesian Coal Basin (USCB) ground-based and airborne air samples were taken and analyzed for the isotopic composition of CH4 to derive the mean signature of the USCB and source signatures of individual coal mines. Using δ2H signatures, the biogenic emissions from the USCB account for 15 %–50 % of total emissions, which is underestimated in common emission inventories. This demonstrates the importance of δ2H-CH4 observations for methane source apportionment.
Yifei Song, Chaoyang Xue, Yuanyuan Zhang, Pengfei Liu, Fengxia Bao, Xuran Li, and Yujing Mu
Atmos. Chem. Phys., 23, 15733–15747, https://doi.org/10.5194/acp-23-15733-2023, https://doi.org/10.5194/acp-23-15733-2023, 2023
Short summary
Short summary
We present measurements of HONO flux and related parameters over an agricultural field during a whole growing season of summer maize. This dataset allows studies on the characteristics and influencing factors of soil HONO emissions, determination of HONO emission factors, estimation of total HONO emissions at a national scale, and the discussion on future environmental policies in terms of mitigating regional air pollution.
Can Ye, Keding Lu, Xuefei Ma, Wanyi Qiu, Shule Li, Xinping Yang, Chaoyang Xue, Tianyu Zhai, Yuhan Liu, Xuan Li, Yang Li, Haichao Wang, Zhaofeng Tan, Xiaorui Chen, Huabin Dong, Limin Zeng, Min Hu, and Yuanhang Zhang
Atmos. Chem. Phys., 23, 15455–15472, https://doi.org/10.5194/acp-23-15455-2023, https://doi.org/10.5194/acp-23-15455-2023, 2023
Short summary
Short summary
In this study, combining comprehensive field measurements and a box model, we found NO2 conversion on the ground surface was the most important source for HONO production among the proposed heterogeneous and gas-phase HONO sources. In addition, HONO was found to evidently enhance O3 production and aggravate O3 pollution in summer in China. Our study improved our understanding of the relative importance of different HONO sources and the crucial role of HONO in O3 formation in polluted areas.
Yann Cohen, Didier Hauglustaine, Bastien Sauvage, Susanne Rohs, Patrick Konjari, Ulrich Bundke, Andreas Petzold, Valérie Thouret, Andreas Zahn, and Helmut Ziereis
Atmos. Chem. Phys., 23, 14973–15009, https://doi.org/10.5194/acp-23-14973-2023, https://doi.org/10.5194/acp-23-14973-2023, 2023
Short summary
Short summary
The upper troposphere–lower stratosphere (UTLS) is a key region regarding the lower atmospheric composition. This study consists of a comprehensive evaluation of an up-to-date chemistry–climate model in this layer, using regular in situ measurements based on passenger aircraft. For this purpose, a specific software (Interpol-IAGOS) has been updated and made publicly available. The model reproduces the carbon monoxide peaks due to biomass burning over the continental tropics particularly well.
Yifan Jiang, Men Xia, Zhe Wang, Penggang Zheng, Yi Chen, and Tao Wang
Atmos. Chem. Phys., 23, 14813–14828, https://doi.org/10.5194/acp-23-14813-2023, https://doi.org/10.5194/acp-23-14813-2023, 2023
Short summary
Short summary
This study provides the first estimate of high rates of formic acid (HCOOH) production from the photochemical aging of real ambient particles and demonstrates the potential importance of this pathway in the formation of HCOOH under ambient conditions. Incorporating this pathway significantly improved the performance of a widely used chemical model. Our solution irradiation experiments demonstrated the importance of nitrate photolysis in HCOOH production via the production of oxidants.
Xuelian Zhong, Hengqing Shen, Min Zhao, Ji Zhang, Yue Sun, Yuhong Liu, Yingnan Zhang, Ye Shan, Hongyong Li, Jiangshan Mu, Yu Yang, Yanqiu Nie, Jinghao Tang, Can Dong, Xinfeng Wang, Yujiao Zhu, Mingzhi Guo, Wenxing Wang, and Likun Xue
Atmos. Chem. Phys., 23, 14761–14778, https://doi.org/10.5194/acp-23-14761-2023, https://doi.org/10.5194/acp-23-14761-2023, 2023
Short summary
Short summary
Nitrous acid (HONO) is vital for atmospheric oxidation. In research at Mount Lao, China, models revealed a significant unidentified marine HONO source. Overlooking this could skew our understanding of air quality and climate change. This finding emphasizes HONO’s importance in the coastal atmosphere, uncovering previously unnoticed interactions.
Junwei Song, Harald Saathoff, Feng Jiang, Linyu Gao, Hengheng Zhang, and Thomas Leisner
EGUsphere, https://doi.org/10.5194/egusphere-2023-2255, https://doi.org/10.5194/egusphere-2023-2255, 2023
Short summary
Short summary
This study presents the concurrent online measurements of organic gas and particles (VOCs and OA) at a forest site in summer. Both VOCs and OA were largely contributed by oxygenated organic compounds. Semi-volatile oxygenated OA and organic nitrate formed from monoterpenes and sesquiterpenes contribute significantly to nighttime particle growth. The results help to understand the causes of nighttime particle growth regularly observed in summer in the central European rural forested environments.
Steven Job Thomas, Toni Tykkä, Heidi Hellén, Federico Bianchi, and Arnaud P. Praplan
Atmos. Chem. Phys., 23, 14627–14642, https://doi.org/10.5194/acp-23-14627-2023, https://doi.org/10.5194/acp-23-14627-2023, 2023
Short summary
Short summary
The study employed total ozone reactivity to demonstrate how emissions of Norway spruce readily react with ozone and could be a major ozone sink, particularly under stress. Additionally, this approach provided insight into the limitations of current analytical techniques that measure the compounds present or emitted into the atmosphere. The study shows how the technique used was not enough to measure all compounds emitted, and this could potentially underestimate various atmospheric processes.
Jinsol Kim, John B. Miller, Charles E. Miller, Scott J. Lehman, Sylvia E. Michel, Vineet Yadav, Nick E. Rollins, and William M. Berelson
Atmos. Chem. Phys., 23, 14425–14436, https://doi.org/10.5194/acp-23-14425-2023, https://doi.org/10.5194/acp-23-14425-2023, 2023
Short summary
Short summary
In this study, we present the partitioning of CO2 signals from biogenic, petroleum and natural gas sources by combining CO, 13CO2 and 14CO2 measurements. Using measurements from flask air samples at three sites in the greater Los Angeles region, we find larger and positive contributions of biogenic signals in winter and smaller and negative contributions in summer. The largest contribution of natural gas combustion generally occurs in summer.
Robert Woodward-Massey, Roberto Sommariva, Lisa K. Whalley, Danny R. Cryer, Trevor Ingham, William J. Bloss, Stephen M. Ball, Sam Cox, James D. Lee, Chris P. Reed, Leigh R. Crilley, Louisa J. Kramer, Brian J. Bandy, Grant L. Forster, Claire E. Reeves, Paul S. Monks, and Dwayne E. Heard
Atmos. Chem. Phys., 23, 14393–14424, https://doi.org/10.5194/acp-23-14393-2023, https://doi.org/10.5194/acp-23-14393-2023, 2023
Short summary
Short summary
Measurements of OH, HO2 and RO2 radicals and also OH reactivity were made at a UK coastal site and compared to calculations from a constrained box model utilising the Master Chemical Mechanism. The model agreement displayed a strong dependence on the NO concentration. An experimental budget analysis for OH, HO2, RO2 and total ROx demonstrated significant imbalances between HO2 and RO2 production rates. Ozone production rates were calculated from measured radicals and compared to modelled values.
Leonard Kirago, Örjan Gustafsson, Samuel Mwaniki Gaita, Sophie L. Haslett, Michael J. Gatari, Maria Elena Popa, Thomas Röckmann, Christoph Zellweger, Martin Steinbacher, Jörg Klausen, Christian Félix, David Njiru, and August Andersson
Atmos. Chem. Phys., 23, 14349–14357, https://doi.org/10.5194/acp-23-14349-2023, https://doi.org/10.5194/acp-23-14349-2023, 2023
Short summary
Short summary
This study provides ground-observational evidence that supports earlier suggestions that savanna fires are the main emitters and modulators of carbon monoxide gas in Africa. Using isotope-based techniques, the study has shown that about two-thirds of this gas is emitted from savanna fires, while for urban areas, in this case Nairobi, primary sources approach 100 %. The latter has implications for air quality policy, suggesting primary emissions such as traffic should be targeted.
Rebecca M. Garland, Katye E. Altieri, Laura Dawidowski, Laura Gallardo, Aderiana Mbandi, Nestor Y. Rojas, and N'datchoh E. Touré
EGUsphere, https://doi.org/10.5194/egusphere-2023-2566, https://doi.org/10.5194/egusphere-2023-2566, 2023
Short summary
Short summary
In this opinion, we focus on two geographical areas in the Global South to discuss some common challenges and constraints, with a focus on our strengths in atmospheric science research. It is these strengths, we believe, that highlight the critical role of Global South researchers in the future of atmospheric science research.
Clara M. Nussbaumer, Bryan K. Place, Qindan Zhu, Eva Y. Pfannerstill, Paul Wooldridge, Benjamin C. Schulze, Caleb Arata, Ryan Ward, Anthony Bucholtz, John H. Seinfeld, Allen H. Goldstein, and Ronald C. Cohen
Atmos. Chem. Phys., 23, 13015–13028, https://doi.org/10.5194/acp-23-13015-2023, https://doi.org/10.5194/acp-23-13015-2023, 2023
Short summary
Short summary
NOx is a precursor to hazardous tropospheric ozone and can be emitted from various anthropogenic sources. It is important to quantify NOx emissions in urban environments to improve the local air quality, which still remains a challenge, as sources are heterogeneous in space and time. In this study, we calculate NOx emissions over Los Angeles, based on aircraft measurements in June 2021, and compare them to a local emission inventory, which we find mostly overpredicts the measured values.
Magdalena Okuljar, Olga Garmash, Miska Olin, Joni Kalliokoski, Hilkka Timonen, Jarkko V. Niemi, Pauli Paasonen, Jenni Kontkanen, Yanjun Zhang, Heidi Hellén, Heino Kuuluvainen, Minna Aurela, Hanna E. Manninen, Mikko Sipilä, Topi Rönkkö, Tuukka Petäjä, Markku Kulmala, Miikka Dal Maso, and Mikael Ehn
Atmos. Chem. Phys., 23, 12965–12983, https://doi.org/10.5194/acp-23-12965-2023, https://doi.org/10.5194/acp-23-12965-2023, 2023
Short summary
Short summary
Highly oxygenated organic molecules (HOMs) form secondary organic aerosol that affects air quality and health. In this study, we demonstrate that in a moderately polluted city with abundant vegetation, the composition of HOMs is largely controlled by the effect of NOx on the biogenic volatile organic compound oxidation. Comparing the results from two nearby stations, we show that HOM composition and formation pathways can change considerably within small distances in urban environments.
Si-Wan Kim, Kyoung-Min Kim, Yujoo Jeong, Seunghwan Seo, Yeonsu Park, and Jeongyeon Kim
Atmos. Chem. Phys., 23, 12867–12886, https://doi.org/10.5194/acp-23-12867-2023, https://doi.org/10.5194/acp-23-12867-2023, 2023
Short summary
Short summary
Surface ozone is a pollutant regulated for public health. This study derived surface ozone trends over South Korea from 2001 to 2021 and highlighted that South Korea has been a nonattainment area since 2010, based on the US EPA standard. However, the occurrences of high ozone condition decreased in spring during the COVID-19 pandemic, partly due to large reductions of ozone precursor concentrations in China and South Korea.
Zeyu Sun, Zheng Zong, Yang Tan, Chongguo Tian, Zeyu Liu, Fan Zhang, Rong Sun, Yingjun Chen, Jun Li, and Gan Zhang
Atmos. Chem. Phys., 23, 12851–12865, https://doi.org/10.5194/acp-23-12851-2023, https://doi.org/10.5194/acp-23-12851-2023, 2023
Short summary
Short summary
This is the first report of ship-emitted nitrogen stable isotope composition (δ15N) of nitrogen oxides (NOx). The results showed that δ15N–NOx from ships was −18.5 ± 10.9 ‰ and increased monotonically with tightening emission regulations. The selective catalytic reduction system was the most vital factor. The temporal variation in δ15N–NOx was evaluated and can be used to select suitable δ15N–NOx for a more accurate assessment of the contribution of ship-emitted exhaust to atmospheric NOx.
Eva Y. Pfannerstill, Caleb Arata, Qindan Zhu, Benjamin C. Schulze, Roy Woods, John H. Seinfeld, Anthony Bucholtz, Ronald C. Cohen, and Allen H. Goldstein
Atmos. Chem. Phys., 23, 12753–12780, https://doi.org/10.5194/acp-23-12753-2023, https://doi.org/10.5194/acp-23-12753-2023, 2023
Short summary
Short summary
The San Joaquin Valley is an agricultural area with poor air quality. Organic gases drive the formation of hazardous air pollutants. Agricultural emissions of these gases are not well understood and have rarely been quantified at landscape scale. By combining aircraft-based emission measurements with land cover information, we found mis- or unrepresented emission sources. Our results help in understanding of pollution sources and in improving predictions of air quality in agricultural regions.
Youwei Hong, Keran Zhang, Dan Liao, Gaojie Chen, Min Zhao, Yiling Lin, Xiaoting Ji, Ke Xu, Yu Wu, Ruilian Yu, Gongren Hu, Sung-Deuk Choi, Likun Xue, and Jinsheng Chen
Atmos. Chem. Phys., 23, 10795–10807, https://doi.org/10.5194/acp-23-10795-2023, https://doi.org/10.5194/acp-23-10795-2023, 2023
Short summary
Short summary
Particle uptakes of HCHO and the impacts on PM2.5 and O3 production remain highly uncertain. Based on the investigation of co-occurring wintertime O3 and PM2.5 pollution in a coastal city of southeast China, we found enhanced heterogeneous formation of hydroxymethanesulfonate (HMS) and increased ROx concentrations and net O3 production rates. The findings of this study are helpful to better explore the mechanisms of key precursors for co-occurring PM2.5 and O3 pollution.
Foteini Stavropoulou, Katarina Vinković, Bert Kers, Marcel de Vries, Steven van Heuven, Piotr Korbeń, Martina Schmidt, Julia Wietzel, Pawel Jagoda, Jaroslav M. Necki, Jakub Bartyzel, Hossein Maazallahi, Malika Menoud, Carina van der Veen, Sylvia Walter, Béla Tuzson, Jonas Ravelid, Randulph Paulo Morales, Lukas Emmenegger, Dominik Brunner, Michael Steiner, Arjan Hensen, Ilona Velzeboer, Pim van den Bulk, Hugo Denier van der Gon, Antonio Delre, Maklawe Essonanawe Edjabou, Charlotte Scheutz, Marius Corbu, Sebastian Iancu, Denisa Moaca, Alin Scarlat, Alexandru Tudor, Ioana Vizireanu, Andreea Calcan, Magdalena Ardelean, Sorin Ghemulet, Alexandru Pana, Aurel Constantinescu, Lucian Cusa, Alexandru Nica, Calin Baciu, Cristian Pop, Andrei Radovici, Alexandru Mereuta, Horatiu Stefanie, Alexandru Dandocsi, Bas Hermans, Stefan Schwietzke, Daniel Zavala-Araiza, Huilin Chen, and Thomas Röckmann
Atmos. Chem. Phys., 23, 10399–10412, https://doi.org/10.5194/acp-23-10399-2023, https://doi.org/10.5194/acp-23-10399-2023, 2023
Short summary
Short summary
In this study, we quantify CH4 emissions from onshore oil production sites in Romania at source and facility level using a combination of ground- and drone-based measurement techniques. We show that the total CH4 emissions in our studied areas are much higher than the emissions reported to UNFCCC, and up to three-quarters of the detected emissions are related to operational venting. Our results suggest that oil and gas production infrastructure in Romania holds a massive mitigation potential.
Chunxiang Ye, Shuzheng Guo, Weili Lin, Fangjie Tian, Jianshu Wang, Chong Zhang, Suzhen Chi, Yi Chen, Yingjie Zhang, Limin Zeng, Xin Li, Duo Bu, Jiacheng Zhou, and Weixiong Zhao
Atmos. Chem. Phys., 23, 10383–10397, https://doi.org/10.5194/acp-23-10383-2023, https://doi.org/10.5194/acp-23-10383-2023, 2023
Short summary
Short summary
Online volatile organic compound (VOC) measurements by gas chromatography–mass spectrometry, with other O3 precursors, were used to identify key VOC and other key sources in Lhasa. Total VOCs (TVOCs), alkanes, and aromatics are half as abundant as in Beijing. Oxygenated VOCs (OVOCs) consist of 52 % of the TVOCs. Alkenes and OVOCs account for 80 % of the ozone formation potential. Aromatics dominate secondary organic aerosol potential. Positive matrix factorization decomposed residential sources.
Brandon Bottorff, Michelle M. Lew, Youngjun Woo, Pamela Rickly, Matthew D. Rollings, Benjamin Deming, Daniel C. Anderson, Ezra Wood, Hariprasad D. Alwe, Dylan B. Millet, Andrew Weinheimer, Geoff Tyndall, John Ortega, Sebastien Dusanter, Thierry Leonardis, James Flynn, Matt Erickson, Sergio Alvarez, Jean C. Rivera-Rios, Joshua D. Shutter, Frank Keutsch, Detlev Helmig, Wei Wang, Hannah M. Allen, Johnathan H. Slade, Paul B. Shepson, Steven Bertman, and Philip S. Stevens
Atmos. Chem. Phys., 23, 10287–10311, https://doi.org/10.5194/acp-23-10287-2023, https://doi.org/10.5194/acp-23-10287-2023, 2023
Short summary
Short summary
The hydroxyl (OH), hydroperoxy (HO2), and organic peroxy (RO2) radicals play important roles in atmospheric chemistry and have significant air quality implications. Here, we compare measurements of OH, HO2, and total peroxy radicals (XO2) made in a remote forest in Michigan, USA, to predictions from a series of chemical models. Lower measured radical concentrations suggest that the models may be missing an important radical sink and overestimating the rate of ozone production in this forest.
Jenny Oh, Chubashini Shunthirasingham, Ying Duan Lei, Faqiang Zhan, Yuening Li, Abigaëlle Dalpé Castilloux, Amina Ben Chaaben, Zhe Lu, Kelsey Lee, Frank A. P. C. Gobas, Sabine Eckhardt, Nick Alexandrou, Hayley Hung, and Frank Wania
Atmos. Chem. Phys., 23, 10191–10205, https://doi.org/10.5194/acp-23-10191-2023, https://doi.org/10.5194/acp-23-10191-2023, 2023
Short summary
Short summary
An emerging brominated flame retardant (BFR) called TBECH (1,2-dibromo-4-(1,2-dibromoethyl)cyclohexane) has never been produced or imported for use in Canada yet is found to be one of the most abundant gaseous BFRs in the Canadian atmosphere. The recorded spatial and temporal variability of TBECH suggest that the release from imported consumer products containing TBECH is the most likely explanation for its environmental occurrence in Canada.
Olivia E. Clifton, Donna Schwede, Christian Hogrefe, Jesse O. Bash, Sam Bland, Philip Cheung, Mhairi Coyle, Lisa Emberson, Johannes Flemming, Erick Fredj, Stefano Galmarini, Laurens Ganzeveld, Orestis Gazetas, Ignacio Goded, Christopher D. Holmes, László Horváth, Vincent Huijnen, Qian Li, Paul A. Makar, Ivan Mammarella, Giovanni Manca, J. William Munger, Juan L. Pérez-Camanyo, Jonathan Pleim, Limei Ran, Roberto San Jose, Sam J. Silva, Ralf Staebler, Shihan Sun, Amos P. K. Tai, Eran Tas, Timo Vesala, Tamás Weidinger, Zhiyong Wu, and Leiming Zhang
Atmos. Chem. Phys., 23, 9911–9961, https://doi.org/10.5194/acp-23-9911-2023, https://doi.org/10.5194/acp-23-9911-2023, 2023
Short summary
Short summary
A primary sink of air pollutants is dry deposition. Dry deposition estimates differ across the models used to simulate atmospheric chemistry. Here, we introduce an effort to examine dry deposition schemes from atmospheric chemistry models. We provide our approach’s rationale, document the schemes, and describe datasets used to drive and evaluate the schemes. We also launch the analysis of results by evaluating against observations and identifying the processes leading to model–model differences.
Qindan Zhu, Bryan Place, Eva Y. Pfannerstill, Sha Tong, Huanxin Zhang, Jun Wang, Clara M. Nussbaumer, Paul Wooldridge, Benjamin C. Schulze, Caleb Arata, Anthony Bucholtz, John H. Seinfeld, Allen H. Goldstein, and Ronald C. Cohen
Atmos. Chem. Phys., 23, 9669–9683, https://doi.org/10.5194/acp-23-9669-2023, https://doi.org/10.5194/acp-23-9669-2023, 2023
Short summary
Short summary
Nitrogen oxide (NOx) is a hazardous air pollutant, and it is the precursor of short-lived climate forcers like tropospheric ozone and aerosol particles. While NOx emissions from transportation has been strictly regulated, soil NOx emissions are overlooked. We use the airborne flux measurements to observe NOx emissions from highways and urban and cultivated soil land cover types. We show non-negligible soil NOx emissions, which are significantly underestimated in current model simulations.
Cited articles
Ahmed, E., Kim, K. H., Jeon, E. C., and Brown, R. J. C.: Long term trends of
methane, non methane hydrocarbons, and carbon monoxide in urban atmosphere,
Sci. Total Environ., 518, 595–604, https://doi.org/10.1016/j.scitotenv.2015.02.058, 2015.
Air Resources Laboratory (ARL): Gridded meteorological data (2004–2019), available at: ftp://arlftp.arlhq.noaa.gov/pub/archives/gdas1/, last access: 2 January 2020.
Ashbaugh, L. L., Malm, W. C., and Sadeh, W. Z.: A residence time probability
analysis of sulfur concentrations at grand-canyon-national-park, Atmos.
Environ., 19, 1263–1270, https://doi.org/10.1016/0004-6981(85)90256-2, 1985.
Battle, M., Bender, M., Sowers, T., Tans, P. P., Butler, J. H., Elkins, J.
W., Ellis, J. T., Conway, T., Zhang, N., Lang, P., and Clarke, A. D.:
Atmospheric gas concentrations over the past century measured in air from
firn at the south pole, Nature, 383, 231–235, https://doi.org/10.1038/383231a0, 1996.
Bergamaschi, P., Houweling, S., Segers, A., Krol, M., Frankenberg, C.,
Scheepmaker, R. A., Dlugokencky, E., Wofsy, S. C., Kort, E. A., Sweeney, C.,
Schuck, T., Brenninkmeijer, C., Chen, H., Beck, V., and Gerbig, C.:
Atmospheric CH4 in the first decade of the 21st century: Inverse
modeling analysis using sciamachy satellite retrievals and NOAA surface
measurements, J. Geophys. Res.-Atmos., 118, 7350–7369, https://doi.org/10.1002/jgrd.50480, 2013.
Blake, D. R., Mayer, E. W., Tyler, S. C., Makide, Y., Montague, D. C., and
Rowland, F. S.: Global increase in atmospheric methane concentrations
between 1978 and 1980, Geophys. Res. Lett., 9, 477–480,
https://doi.org/10.1029/GL009i004p00477, 1982.
Bousquet, P., Ringeval, B., Pison, I., Dlugokencky, E. J., Brunke, E.-G., Carouge, C., Chevallier, F., Fortems-Cheiney, A., Frankenberg, C., Hauglustaine, D. A., Krummel, P. B., Langenfelds, R. L., Ramonet, M., Schmidt, M., Steele, L. P., Szopa, S., Yver, C., Viovy, N., and Ciais, P.: Source attribution of the changes in atmospheric methane for 2006–2008, Atmos. Chem. Phys., 11, 3689–3700, https://doi.org/10.5194/acp-11-3689-2011, 2011.
Buchholz, R. R., Paton-Walsh, C., Griffith, D. W. T., Kubistin, D., Caldow,
C., Fisher, J. A., Deutscher, N. M., Kettlewell, G., Riggenbach, M.,
Macatangay, R., Krummel, P. B., and Langenfelds, R. L.: Source and
meteorological influences on air quality (CO, CH4 & CO2) at a Southern Hemisphere urban site, Atmos. Environ., 126, 274–289,
https://doi.org/10.1016/j.atmosenv.2015.11.041, 2016.
Burke, S. A., Wik, M., Lang, A., Contosta, A. R., Palace, M., Crill, M., and
Varner, R. K.: Long-term measurements of methane ebullition from thaw ponds,
J. Geophys. Res.-Biogeo., 124, 2208–2221, https://doi.org/10.1029/2018jg004786, 2019.
Cai, Z. C., Tsuruta, H., and Minami, K.: Methane emission from rice fields
in China: Measurements and influencing factors, J. Geophys. Res., 105, 17231–17242, https://doi.org/10.1029/2000jd900014, 2000.
Carslaw, D. C., Beevers, S. D., Ropkins, K., and Bell, M. C.: Detecting and
quantifying aircraft and other on-airport contributions to ambient nitrogen
oxides in the vicinity of a large international airport, Atmos. Environ.,
40, 5424–5434, https://doi.org/10.1016/j.atmosenv.2006.04.062, 2006.
Chen, H., Zhu, Q. A., Peng, C. H., Wu, N., Wang, Y. F., Fang, X. Q., Gao, Y.
H., Zhu, D., Yang, G., Tian, J. Q., Kang, X. M., Piao, S. L., Ouyang, H.,
Xiang, W. H., Luo, Z. B., Jiang, H., Song, X. Z., Zhang, Y., Yu, G. R.,
Zhao, X. Q., Gong, P., Yao, T. D., and Wu, J. H.: The impacts of climate
change and human activities on biogeochemical cycles on the Qinghai-Tibetan
Plateau, Glob. Change Biol., 19, 2940–2955, https://doi.org/10.1111/gcb.12277, 2013.
Crippa, M., Oreggioni, G., Guizzardi, D., Muntean, M., Schaaf, E., Lo Vullo,
E., Solazzo, E., Monforti-Ferrario, F., Olivier, J. G. J., and Vignati, E.: Fossil CO2 and GHG emissions of all world countries – 2019 Report, EUR 29849 EN, Publications Office of the European Union, Luxembourg, ISBN 978-92-76-11100-9, 2019a.
Crippa, M., Solazzo, E., Huang, G., Guizzardi, D., Koffi, E., Muntean, M., Schieberle, C., Friedrich, R., and Janssens-Maenhout, G.: High resolution temporal profiles in the Emissions Database for Global Atmospheric Research (EDGAR), European Commission's Joint Research Centre (JRC), https://doi.org/10.2904/JRC_DATASET_EDGAR, 2019b.
Cunnold, D. M., Steele, L. P., Fraser, P. J., Simmonds, P. G., Prinn, R. G.,
Weiss, R. F., Porter, L. W., O'Doherty, S., Langenfelds, R. L., Krummel, P.
B., Wang, H. J., Emmons, L., Tie, X. X., and Dlugokencky, E. J.: In situ
measurements of atmospheric methane at GAGE/AGAGE sites during 1985–2000 and
resulting source inferences, J. Geophys. Res., 107, ACH 20-1–ACH 20-18,
https://doi.org/10.1029/2001jd001226, 2002.
Diederich, A.: Generalized additive models. An introduction with R, J. Math.
Psychol., 51, 339–339, 2007.
Dlugokencky, E. J., Steele, L. P., Lang, P. M., and Masarie, K. A.: The
growth-rate and distribution of atmospheric methane, J. Geophys.
Res., 99, 17021–17043, https://doi.org/10.1029/94jd01245, 1994.
Dlugokencky, E. J., Steele, L. P., Lang, P. M., and Masarie, K. A.:
Atmospheric methane at Mauna-Loa and Barrow observatories: Presentation and
analysis of in-situ measurements, J. Geophys. Res., 100, 23103–23113,
https://doi.org/10.1029/95JD02460, 1995.
Dlugokencky, E. J., Masarie, K. A., Lang, P. M., and Tans, P. P.: Continuing
decline in the growth rate of the atmospheric methane burden, Nature, 393,
447–450, https://doi.org/10.1038/30934, 1998.
Dlugokencky, E. J., Bruhwiler, L., White, J. W. C., Emmons, L. K., Novelli,
P. C., Montzka, S. A., Masarie, K. A., Lang, P. M., Crotwell, A. M., Miller,
J. B., and Gatti, L. V.: Observational constraints on recent increases in
the atmospheric CH4 burden, Geophys. Res. Lett., 36, L18803,
https://doi.org/10.1029/2009gl039780, 2009.
Dlugokencky, E. J., Crotwell, A. M., Lang, P. M., and Mund, J. W.: Atmospheric Methane Dry Air Mole Fractions from quasi-continuous measurements at Barrow, Alaska and Mauna Loa, Hawaii, 1986–2018, Version: 2019-03-04, available at: ftp://aftp.cmdl.noaa.gov/data/trace_gases/CH4/in-situ/surface/ (last access: 10 March 2020), 2019a.
Dlugokencky, E. J., Lang, P. M., Crotwell, A. M., Thoning, K. W., and Crotwell, M. J.: Atmospheric Methane Dry Air Mole Fractions from the NOAA ESRL Carbon Cycle Cooperative Global Air Sampling Network, Data Path: ftp://aftp.cmdl.noaa.gov/data/trace_gases/CH4/flask/surface/ (last access: 10 March 2020), 2019b.
Draxier, R. R. and Hess, G. D.: An Overview of the HYSPLIT_4 Modelling Systemfor Trajectories, Dispersion, and Deposition, Aust. Meteorol. Mag., 47, 295–308, 1998.
Etheridge, D. M., Steele, L. P., Francey, R. J., and Langenfelds, R. L.:
Atmospheric methane between 1000 A.D. and present: Evidence of anthropogenic
emissions and climatic variability, J. Geophys. Res.-Atmos., 103,
15979–15993, https://doi.org/10.1029/98jd00923, 1998.
Etminan, M., Myhre, G., Highwood, E. J., and Shine, K. P.: Radiative forcing
of carbon dioxide, methane, and nitrous oxide: A significant revision of the
methane radiative forcing, Geophys. Res. Lett., 43, 12614–12623,
https://doi.org/10.1002/2016gl071930, 2016.
Fang, S. X., Zhou, L. X., Masarie, K. A., Xu, L., and Rella, C. W.: Study of
atmospheric CH4 mole fractions at three WMO/GAW stations in China, J.
Geophys. Res.-Atmos., 118, 4874–4886, https://doi.org/10.1002/jgrd.50284, 2013.
Fang, S. X., Tans, P. P., Dong, F., Zhou, H. G., and Luan, T.: Characteristics of atmospheric CO2 and CH4 at the Shangdianzi
regional background station in China, Atmos. Environ., 131, 1–8,
https://doi.org/10.1016/j.atmosenv.2016.01.044, 2016.
Fu, X. W., Feng, X., Liang, P., Deliger, Zhang, H., Ji, J., and Liu, P.: Temporal trend and sources of speciated atmospheric mercury at Waliguan GAW station, Northwestern China, Atmos. Chem. Phys., 12, 1951–1964, https://doi.org/10.5194/acp-12-1951-2012, 2012.
Galloway, J. N.: Atmospheric acidification – projections for the future,
Ambio, 18, 161–166, 1989.
Guha, T., Tiwari, Y. K., Valsala, V., Lin, X., Ramonet, M., Mahajan, A.,
Datye, A., and Kumar, K. R.: What controls the atmospheric methane seasonal
variability over India?, Atmos. Environ., 175, 83–91,
https://doi.org/10.1016/j.atmosenv.2017.11.042, 2018.
Hausmann, P., Sussmann, R., and Smale, D.: Contribution of oil and natural gas production to renewed increase in atmospheric methane (2007–2014): top–down estimate from ethane and methane column observations, Atmos. Chem. Phys., 16, 3227–3244, https://doi.org/10.5194/acp-16-3227-2016, 2016.
IPCC: Climate Change 2014: Synthesis Report. Contribution of Working Groups
I, II and III to the Fifth Assessment Report of the Intergovernmental Panel
on Climate Change, edited by: Core Writing Team, Pachauri, R. K., and Meyer, L. A., IPCC, Geneva, Switzerland, 151 pp., 2014.
Janssens-Maenhout, G., Crippa, M., Guizzardi, D., Muntean, M., Schaaf, E., Dentener, F., Bergamaschi, P., Pagliari, V., Olivier, J. G. J., Peters, J. A. H. W., van Aardenne, J. A., Monni, S., Doering, U., Petrescu, A. M. R., Solazzo, E., and Oreggioni, G. D.: EDGAR v4.3.2 Global Atlas of the three major greenhouse gas emissions for the period 1970–2012, Earth Syst. Sci. Data, 11, 959–1002, https://doi.org/10.5194/essd-11-959-2019, 2019.
Keeling, C. D., Bacastow, R. B., Bainbridge, A. E., Ekdahl, C. A., Guenther,
P. R., Waterman, L. S., and Chin, J. F. S.: Atmospheric carbon-dioxide
variations at Mauna-Loa observatory, Hawaii, Tellus, 28, 538–551, 1976.
Keeling, C. D., Whorf, T. P., Wahlen, M., and Vanderplicht, J.: Interannual
extremes in the rate of rise of atmospheric carbon-dioxide since 1980,
Nature, 375, 666–670, https://doi.org/10.1038/375666a0, 1995.
Keenan, T. F., Prentice, I. C., Canadell, J. G., Williams, C. A., Wang, H.,
Raupach, M., and Collatz, G. J.: Recent pause in the growth rate of
atmospheric CO2 due to enhanced terrestrial carbon uptake, Nat.
Commun., 7, 13428, https://doi.org/10.1038/ncomms13428, 2016.
Kim, H. S., Chung, Y. S., Tans, P. P., and Dlugokencky, E. J.: Decadal
trends of atmospheric methane in East Asia from 1991 to 2013, Air Qual.
Atmos. Hlth, 8, 293–298, https://doi.org/10.1007/s11869-015-0331-x, 2015.
Lelieveld, J., Dentener, F. J., Peters, W., and Krol, M. C.: On the role of hydroxyl radicals in the self-cleansing capacity of the troposphere, Atmos. Chem. Phys., 4, 2337–2344, https://doi.org/10.5194/acp-4-2337-2004, 2004.
Lin, M. Y., Horowitz, L. W., Oltmans, S. J., Fiore, A. M., and Fan, S. M.:
Tropospheric ozone trends at Mauna Loa observatory tied to decadal climate
variability, Nat. Geosci., 7, 136–143, https://doi.org/10.1038/ngeo2066, 2014.
Liu, S., Fang, S. X., Liang, M., Ma, Q. L., and Feng, Z. Z.: Study on CO
data filtering approaches based on observations at two background stations
in China, Sci. Total Environ., 691, 675–684, https://doi.org/10.1016/j.scitotenv.2019.07.162, 2019.
Logan, J. A., Prather, M. J., Wofsy, S. C., and McElroy, M. B.: Tropospheric
chemistry: A global perspective, J. Geophys. Res., 86, 7210–7254,
https://doi.org/10.1029/JC086iC08p07210, 1981.
Loov, J. M. B., Henne, S., Legreid, G., Staehelin, J., Reimann, S., Prévôt, A. S. H., Steinbacher, M., and Vollmer, M. K.: Estimation of background concentrations of trace gases at the Swiss Alpine site Jungfraujoch (3580 m asl), J. Geophys. Res., 113, D22305, https://doi.org/10.1029/2007jd009751, 2008.
Ma, J. Z., Tang, J., Zhou, X. J., and Zhang, X. S.: Estimates of the
chemical budget for ozone at Waliguan observatory, J. Atmos. Chem., 41,
21–48, https://doi.org/10.1023/a:1013892308983, 2002.
Matsueda, H., Sawa, Y., Wada, A., Inoue, H. Y., Kazuto Suda, K., Hirano, Y., Tsuboi, K., and Nishioka, S.: Methane standard gases for atmospheric measurements at the MRI and JMA and intercomparison experiments, Pap. Meteor. Geophys., 54, 91–109, https://doi.org/10.2467/mripapers.54.91, 2004.
Miller, S. M., Michalak, A. M., Detmers, R. G., Hasekamp, O. P., Bruhwiler,
L. M. P., and Schwietzke, S.: China's coal mine methane regulations have not
curbed growing emissions, Nat. Commun., 10, 303, https://doi.org/10.1038/s41467-018-07891-7, 2019.
Morimoto, S., Fujita, R., Aoki, S., Goto, D., and Nakazawa, T.: Long-term
variations of the mole fraction and carbon isotope ratio of atmospheric
methane observed at Ny-Ålesund, Svalbard from 1996 to 2013, Tellus B, 69, 1380497, https://doi.org/10.1080/16000889.2017.1380497, 2017.
Nisbet, E. G., Dlugokencky, E. J., and Bousquet, P.: Methane on the
rise-again, Science, 343, 493–495, https://doi.org/10.1126/science.1247828, 2014.
Nisbet, E. G., Dlugokencky, E. J., Manning, M. R., Lowry, D., Fisher, R. E.,
France, J. L., Michel, S. E., Miller, J. B., White, J. W. C., Vaughn, B.,
Bousquet, P., Pyle, J. A., Warwick, N. J., Cain, M., Brownlow, R., Zazzeri,
G., Lanoisellé, M., Manning, A. C., Gloor, E., Worthy, D. E. J., Brunke,
E.-G., Labuschagne, C., Wolff, E. W., and Ganesan, A. L.: Rising atmospheric
methane: 2007–2014 growth and isotopic shift, Global Biogeochem. Cy., 30,
1356–1370, https://doi.org/10.1002/2016gb005406, 2016.
Nisbet, E. G., Manning, M. R., Dlugokencky, E. J., Fisher, R. E., Lowry, D.,
Michel, S. E., Myhre, C. L., Platt, S. M., Allen, G., Bousquet, P.,
Brownlow, R., Cain, M., France, J. L., Hermansen, O., Hossaini, R., Jones,
A. E., Levin, I., Manning, A. C., Myhre, G., Pyle, J. A., Vaughn, B. H.,
Warwick, N. J., and White, J. W. C.: Very strong atmospheric methane growth
in the 4 years 2014–2017: Implications for the paris agreement, Global
Biogeochem. Cy., 33, 318–342, https://doi.org/10.1029/2018gb006009, 2019.
Niwa, Y., Tsuboi, K., Matsueda, H., Sawa, Y., Machida, T., Nakamura, M.,
Kawasato, T., Saito, K., Takatsuji, S., Tsuji, K., Nishi, H., Dehara, K.,
Baba, Y., Kuboike, D., Iwatsubo, S., Ohmori, H., and Hanamiya, Y.: Seasonal
variations of CO2, CH4, N2O and CO in the mid-troposphere over the western North Pacific observed using a C-130H cargo aircraft, J. Meteorol. Soc. Jpn., 92, 55–70, https://doi.org/10.2151/jmsj.2014-104, 2014.
Pearman, G. I. and Beardsmore, D. J.: Atmospheric carbon-dioxide
measurements in the Australian region - 10 years of aircraft data, Tellus B, 36, 1–24, https://doi.org/10.1111/j.1600-0889.1984.tb00047.x, 1984.
Polissar, A. V., Hopke, P. K., Paatero, P., Kaufmann, Y. J., Hall, D. K.,
Bodhaine, B. A., Dutton, E. G., and Harris, J. M.: The aerosol at barrow,
alaska: Long-term trends and source locations, Atmos. Environ., 33,
2441–2458, https://doi.org/10.1016/s1352-2310(98)00423-3, 1999.
Popa, M. E., Gloor, M., Manning, A. C., Jordan, A., Schultz, U., Haensel, F., Seifert, T., and Heimann, M.: Measurements of greenhouse gases and related tracers at Bialystok tall tower station in Poland, Atmos. Meas. Tech., 3, 407–427, https://doi.org/10.5194/amt-3-407-2010, 2010.
Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T.:
Numerical recipes in C: The art of scientific programming, Cambridge University Press, New York, Section, 10, 408–412, 1992.
Rasmussen, R. A. and Khalil, M. A. K.: Atmospheric methane in the recent
and ancient atmospheres – concentrations, trends, and interhemispheric
gradient, J. Geophys. Res., 89, 11599–11605, https://doi.org/10.1029/JD089iD07p11599, 1984.
R Core Team: R: a language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, available at: http://www.R-project.org/, last access: 5 July 2019.
Rigby, M., Montzka, S. A., Prinn, R. G., White, J. W. C., Young, D.,
O'Doherty, S., Lunt, M. F., Ganesan, A. L., Manning, A. J., Simmonds, P. G.,
Salameh, P. K., Harth, C. M., Muhle, J., Weiss, R. F., Fraser, P. J.,
Steele, L. P., Krummel, P. B., McCulloch, A., and Park, S.: Role of
atmospheric oxidation in recent methane growth, P. Natl. Acad. Sci. USA, 114, 5373–5377, https://doi.org/10.1073/pnas.1616426114, 2017.
Rousseau, D. D., Duzer, D., Etienne, J. L., Cambon, G., Jolly, D., Ferrier,
J., and Schevin, P.: Pollen record of rapidly changing air trajectories to
the North Pole, J. Geophys. Res., 109, D06116, https://doi.org/10.1029/2003jd003985, 2004.
Rubino, M., Etheridge, D. M., Thornton, D. P., Howden, R., Allison, C. E., Francey, R. J., Langenfelds, R. L., Steele, L. P., Trudinger, C. M., Spencer, D. A., Curran, M. A. J., van Ommen, T. D., and Smith, A. M.: Revised records of atmospheric trace gases CO2, CH4, N2O, and δ13C−CO2 over the last 2000 years from Law Dome, Antarctica, Earth Syst. Sci. Data, 11, 473–492, https://doi.org/10.5194/essd-11-473-2019, 2019.
Satar, E., Berhanu, T. A., Brunner, D., Henne, S., and Leuenberger, M.: Continuous measurements (2012–2014) at Beromünster tall tower station in Switzerland, Biogeosciences, 13, 2623–2635, https://doi.org/10.5194/bg-13-2623-2016, 2016.
Schaefer, H., Fletcher, S. E. M., Veidt, C., Lassey, K. R., Brailsford, G.
W., Bromley, T. M., Dlugokencky, E. J., Michel, S. E., Miller, J. B., Levin,
I., Lowe, D. C., Martin, R. J., Vaughn, B. H., and White, J. W. C.: A
21st-century shift from fossil-fuel to biogenic methane emissions indicated
by 13CH4, Science, 352, 80–84, https://doi.org/10.1126/science.aad2705, 2016.
Simmonds, P. G., Manning, A. J., Derwent, R. G., Ciais, P., Ramonet, M.,
Kazan, V., and Ryall, D.: A burning question. Can recent growth rate
anomalies in the greenhouse gases be attributed to large-scale biomass
burning events?, Atmos. Environ., 39, 2513–2517,
https://doi.org/10.1016/j.atmosenv.2005.02.018, 2005.
Streets, D. G. and Waldhoff, S. T.: Present and future emissions of air
pollutants in China: SO2, NOx, and CO, Atmos. Environ., 34,
363–374, https://doi.org/10.1016/s1352-2310(99)00167-3, 2000.
Sweeney, C., Dlugokencky, E., Miller, C. E., Wofsy, S., Karion, A., Dinardo,
S., Chang, R. Y. W., Miller, J. B., Bruhwiler, L., Crotwell, A. M.,
Newberger, T., McKain, K., Stone, R. S., Wolter, S. E., Lang, P. E., and
Tans, P.: No significant increase in long-term CH4 emissions on north slope of Alaska despite significant increase in air temperature, Geophys.
Res. Lett., 43, 6604–6611, https://doi.org/10.1002/2016gl069292, 2016.
Tang, J., Wen, Y. P., and Zhou, L. X.:, Observational study of black carbon
aerosol in western China, J. Appl. Meteor. Sci., 10, 160–170, 1999.
Thompson, R. L., Manning, A. C., Gloor, E., Schultz, U., Seifert, T., Hänsel, F., Jordan, A., and Heimann, M.: In-situ measurements of oxygen, carbon monoxide and greenhouse gases from Ochsenkopf tall tower in Germany, Atmos. Meas. Tech., 2, 573–591, https://doi.org/10.5194/amt-2-573-2009, 2009.
Tohjima, Y., Machida, T., Utiyama, M., Katsumoto, M., Fujinuma, Y., and
Maksyutov, S.: Analysis and presentation of in situ atmospheric methane
measurements from Cape Ochi-ishi and Hateruma island, J. Geophys. Res., 107, ACH 8-1–ACH 8-11, https://doi.org/10.1029/2001jd001003, 2002.
Tohjima, Y., Kubo, M., Minejima, C., Mukai, H., Tanimoto, H., Ganshin, A., Maksyutov, S., Katsumata, K., Machida, T., and Kita, K.: Temporal changes in the emissions of CH4 and CO from China estimated from CH4∕CO2 and CO∕CO2 correlations observed at Hateruma Island, Atmos. Chem. Phys., 14, 1663–1677, https://doi.org/10.5194/acp-14-1663-2014, 2014.
Thoning, K. W., Tans, P. P., and Komhyr, W. D.: Atmospheric carbon dioxide
at Mauna Loa observatory: 2. Analysis of the NOAA GMCC data, 1974–1985, J.
Geophys. Res., 94, 8549–8565, https://doi.org/10.1029/JD094iD06p08549, 1989.
Tsutsumi, Y., Mori, K., Ikegami, M., Tashiro, T., and Tsuboi, K.: Long-term
trends of greenhouse gases in regional and background events observed during
1998–2004 at Yonagunijima located to the east of the Asian continent, Atmos.
Environ., 40, 5868–5879, https://doi.org/10.1016/j.atmosenv.2006.04.036, 2006.
Turner, A. J., Frankenbergb, C., Wennberg, P. O., and Jacob, D. J.:
Ambiguity in the causes for decadal trends in atmospheric methane and
hydroxyl, P. Natl. Acad. Sci. USA, 114, 5367–5372, https://doi.org/10.1073/pnas.1616020114, 2017.
Uria-Tellaetxe, I. and Carslaw, D. C.: Conditional bivariate probability
function for source identification, Environ. Modell. Softw., 59, 1–9,
https://doi.org/10.1016/j.envsoft.2014.05.002, 2014.
U.S. EIA (US Energy Information Administration): International energy
statistics, U.S. EIA, Washington, DC, available at: https://www.eia.gov/beta/international/data/browser/ (last access: 19 May 2018), 2017.
Vaghjiani, G. L. and Ravishankara, A. R.: New measurement of the rate
coefficient for the reaction of OH with methane, Nature, 350, 406–409,
https://doi.org/10.1038/350406a0, 1991.
Wada, A., Sawa, Y., Matsueda, H., Taguchi, S., Murayama, S., Okubo, S., and
Tsutsumi, Y.: Influence of continental air mass transport on atmospheric
CO2 in the western North Pacific, J. Geophys. Res., 112, D07311,
https://doi.org/10.1029/2006jd007552, 2007.
Wada, A., Matsueda, H., Sawa, Y., Tsuboi, K., and Okubo, S.: Seasonal
variation of enhancement ratios of trace gases observed over 10 years in the
western North Pacific, Atmos. Environ., 45, 2129–2137,
https://doi.org/10.1016/j.atmosenv.2011.01.043, 2011.
Wang, D. Q., Chen, Z. L., and Xu, S. Y.: Methane emission from Yangtze
estuarine wetland, china, J. Geophys. Res.-Biogeosci., 114, G02011,
https://doi.org/10.1029/2008JG000857, 2009.
Wang, T., Cheung, T. F., Li, Y. S., Yu, X. M., and Blake, D. R.: Emission
characteristics of CO, NOx, SO2 and indications of biomass burning
observed at a rural site in eastern China, J. Geophys. Res., 107, ACH 9-1–ACH 9-10, https://doi.org/10.1029/2001JD000724, 2002.
Weber, T., Wiseman, N. A., and Kock, A.: Global ocean methane emissions
dominated by shallow coastal waters, Nat. Commun., 10, 4584,
https://doi.org/10.1038/s41467-019-12541-7, 2019.
Wilson, M. C. and Smith, A. T.: The pika and the watershed: The impact of
small mammal poisoning on the ecohydrology of the Qinghai-Tibetan Plateau,
Ambio, 44, 16–22, https://doi.org/10.1007/s13280-014-0568-x, 2015.
WMO: The State of Greenhouse Gases in the Atmosphere Based on Global Observations through 2018, WMO Greenhouse Gas Bulletin No. 15, 2–3, 2019.
WDCGG (World Data Centre for Greenhouse Gases): Data Summary:
Greenhouse Gases and Other Atmospheric Gases, WDCGG No. 43, Japan Meteorological Agency, available at: https://gaw.kishou.go.jp/static/publications/summary/sum43/sum43.pdf, last access: 10 April 2020.
Wolf, J., Asrar, G. R., and West, T. O.: Revised methane emissions factors
and spatially distributed annual carbon fluxes for global livestock, Carbon
Balanc. Manag., 12, 16, https://doi.org/10.1186/s13021-017-0084-y, 2017.
Xiong, X., Houweling, S., Wei, J., Maddy, E., Sun, F., and Barnet, C.: Methane plume over south Asia during the monsoon season: satellite observation and model simulation, Atmos. Chem. Phys., 9, 783–794, https://doi.org/10.5194/acp-9-783-2009, 2009.
Yuan, Y., Ries, L., Petermeier, H., Trickl, T., Leuchner, M., Couret, C., Sohmer, R., Meinhardt, F., and Menzel, A.: On the diurnal, weekly, and seasonal cycles and annual trends in atmospheric CO2 at Mount Zugspitze, Germany, during 1981–2016, Atmos. Chem. Phys., 19, 999–1012, https://doi.org/10.5194/acp-19-999-2019, 2019.
Zellweger, C., Emmenegger, L., Firdaus, M., Hatakka, J., Heimann, M., Kozlova, E., Spain, T. G., Steinbacher, M., van der Schoot, M. V., and Buchmann, B.: Assessment of recent advances in measurement techniques for atmospheric carbon dioxide and methane observations, Atmos. Meas. Tech., 9, 4737–4757, https://doi.org/10.5194/amt-9-4737-2016, 2016.
Zhang, F., Zhou, L. X., Novelli, P. C., Worthy, D. E. J., Zellweger, C., Klausen, J., Ernst, M., Steinbacher, M., Cai, Y. X., Xu, L., Fang, S. X., and Yao, B.: Evaluation of in situ measurements of atmospheric carbon monoxide at Mount Waliguan, China, Atmos. Chem. Phys., 11, 5195–5206, https://doi.org/10.5194/acp-11-5195-2011, 2011.
Zhang, F., Zhou, L., and Xu, L.: Temporal variation of atmospheric CH4 and the potential source regions at Waliguan, China, Sci. China Earth Sci., 56, 727–736, https://doi.org/10.1007/s11430-012-4577-y, 2013.
Zhou, L., Worthy, D. E. J., Lang, P. M., Ernst, M. K., Zhang, X. C., Wen, Y.
P., and Li, J. L.: Ten years of atmospheric methane observations at a high
elevation site in western China, Atmos. Environ., 38, 7041–7054,
https://doi.org/10.1016/j.atmosenv.2004.02.072, 2004.
Zhou, L. X., Tang, J., Wen, Y. P., Li, J. L., Yan, P., and Zhang, X. C.: The
impact of local winds and long-range transport on the continuous carbon
dioxide record at Mount Waliguan, China, Tellus B, 55, 145–158, https://doi.org/10.1034/j.1600-0889.2003.00064.x, 2003.
Zhou, L. X., Conway, T. J., White, J. W. C., Mukai, H., Zhang, X. C., Wen,
Y. P., Li, J. L., and MacClune, K.: Long-term record of atmospheric CO2 and stable isotopic ratios at Waliguan observatory: Background features and possible drivers, 1991–2002, Global Biogeochem. Cy., 19, GB3021, https://doi.org/10.1029/2004gb002430, 2005.
Zou, J. W., Huang, Y., Jiang, J. Y., Zheng, X. H., and Sass, R. L.: A 3-year
field measurement of methane and nitrous oxide emissions from rice paddies
in China: Effects of water regime, crop residue, and fertilizer application,
Global Biogeochem. Cy., 19, GB2021, https://doi.org/10.1029/2004gb002401, 2005.
Short summary
We analyzed 26-year CH4 measurements at Mount Waliguan in the Tibetan Plateau, China. The CH4 increased ~ 133 parts per billion (ppb) with a rate of 5.1 ± 0.1 ppb yr-1 from 1994 to 2019. Major source regions were identified in northeast and southwest. The influence of human activities is more and more serious, and northern India has possibly become a stronger contributor than city regions were in the past. It has become urgent to control CH4 emissions in the Tibetan Plateau.
We analyzed 26-year CH4 measurements at Mount Waliguan in the Tibetan Plateau, China. The CH4...
Altmetrics
Final-revised paper
Preprint