Articles | Volume 21, issue 1
https://doi.org/10.5194/acp-21-393-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-393-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Measurement report: Changing characteristics of atmospheric CH4 in the Tibetan Plateau: records from 1994 to 2019 at the Mount Waliguan station
Shuo Liu
State Key Laboratory of Urban and Regional Ecology, Research Center
for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
College of Environmental and Resource Sciences, Zhejiang University of Technology, Hangzhou, China
Shuangxi Fang
CORRESPONDING AUTHOR
College of Environmental and Resource Sciences, Zhejiang University of Technology, Hangzhou, China
Peng Liu
Mt. Waliguan background station, China Meteorological Administration (CMA), Qinghai, China
Miao Liang
Meteorological Observation Center (MOC), China Meteorological
Administration (CMA), Beijing, China
Minrui Guo
College of Global Change and Earth System Science, Beijing Normal
University, Beijing, China
Zhaozhong Feng
CORRESPONDING AUTHOR
State Key Laboratory of Urban and Regional Ecology, Research Center
for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
Key Laboratory of Agrometeorology of Jiangsu Province, Institute of
Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, China
Related authors
Shuo Liu, Zeping Jin, Ziyi Chen, Haolin Li, Zihan Fan, Shaohui Li, Haiwang Fu, Wei He, Kunpeng Zang, Shuangxi Fang, and Peng Yan
EGUsphere, https://doi.org/10.5194/egusphere-2025-5065, https://doi.org/10.5194/egusphere-2025-5065, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
We studied how planting green manure between tea rows affects carbon dioxide release from tea fields. Mixing legume and grass species improved soil health, reduced emissions from tea rows, and stabilized carbon over time. Although inter-row areas released more carbon, overall emissions declined with continued intercropping. This shows that green manure can make tea farming more climate-friendly and sustainable.
Jiaxin Li, Kunpeng Zang, Yi Lin, Yuanyuan Chen, Shuo Liu, Shanshan Qiu, Kai Jiang, Xuemei Qing, Haoyu Xiong, Haixiang Hong, Shuangxi Fang, Honghui Xu, and Yujun Jiang
Atmos. Meas. Tech., 16, 4757–4768, https://doi.org/10.5194/amt-16-4757-2023, https://doi.org/10.5194/amt-16-4757-2023, 2023
Short summary
Short summary
Based on observed data of CO2 and CH4 and meteorological parameters over the Yellow Sea in November 2012 and June 2013, a data process and quality control method was optimized and established to filter the data influenced by multiple factors. Spatial and seasonal variations in CO2 and CH4 mixing ratios were mainly controlled by the East Asian Monsoon, while the influence of air–sea exchange was slight.
Shuo Liu, Zeping Jin, Ziyi Chen, Haolin Li, Zihan Fan, Shaohui Li, Haiwang Fu, Wei He, Kunpeng Zang, Shuangxi Fang, and Peng Yan
EGUsphere, https://doi.org/10.5194/egusphere-2025-5065, https://doi.org/10.5194/egusphere-2025-5065, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
We studied how planting green manure between tea rows affects carbon dioxide release from tea fields. Mixing legume and grass species improved soil health, reduced emissions from tea rows, and stabilized carbon over time. Although inter-row areas released more carbon, overall emissions declined with continued intercropping. This shows that green manure can make tea farming more climate-friendly and sustainable.
Zhonghua He, Ling Gao, Miao Liang, and Zhao-Cheng Zeng
Atmos. Meas. Tech., 17, 2937–2956, https://doi.org/10.5194/amt-17-2937-2024, https://doi.org/10.5194/amt-17-2937-2024, 2024
Short summary
Short summary
Using Gaofen-5B satellite data, this study detected 93 methane plume events from 32 coal mines in Shanxi, China, with emission rates spanning from 761.78 ± 185.00 to 12729.12 ± 4658.13 kg h-1, showing significant variability among sources. This study highlights Gaofen-5B’s capacity for monitoring large methane point sources, offering valuable support in reducing greenhouse gas emissions.
Jiaxin Li, Kunpeng Zang, Yi Lin, Yuanyuan Chen, Shuo Liu, Shanshan Qiu, Kai Jiang, Xuemei Qing, Haoyu Xiong, Haixiang Hong, Shuangxi Fang, Honghui Xu, and Yujun Jiang
Atmos. Meas. Tech., 16, 4757–4768, https://doi.org/10.5194/amt-16-4757-2023, https://doi.org/10.5194/amt-16-4757-2023, 2023
Short summary
Short summary
Based on observed data of CO2 and CH4 and meteorological parameters over the Yellow Sea in November 2012 and June 2013, a data process and quality control method was optimized and established to filter the data influenced by multiple factors. Spatial and seasonal variations in CO2 and CH4 mixing ratios were mainly controlled by the East Asian Monsoon, while the influence of air–sea exchange was slight.
Cited articles
Ahmed, E., Kim, K. H., Jeon, E. C., and Brown, R. J. C.: Long term trends of
methane, non methane hydrocarbons, and carbon monoxide in urban atmosphere,
Sci. Total Environ., 518, 595–604, https://doi.org/10.1016/j.scitotenv.2015.02.058, 2015.
Air Resources Laboratory (ARL): Gridded meteorological data (2004–2019), available at: ftp://arlftp.arlhq.noaa.gov/pub/archives/gdas1/, last access: 2 January 2020.
Ashbaugh, L. L., Malm, W. C., and Sadeh, W. Z.: A residence time probability
analysis of sulfur concentrations at grand-canyon-national-park, Atmos.
Environ., 19, 1263–1270, https://doi.org/10.1016/0004-6981(85)90256-2, 1985.
Battle, M., Bender, M., Sowers, T., Tans, P. P., Butler, J. H., Elkins, J.
W., Ellis, J. T., Conway, T., Zhang, N., Lang, P., and Clarke, A. D.:
Atmospheric gas concentrations over the past century measured in air from
firn at the south pole, Nature, 383, 231–235, https://doi.org/10.1038/383231a0, 1996.
Bergamaschi, P., Houweling, S., Segers, A., Krol, M., Frankenberg, C.,
Scheepmaker, R. A., Dlugokencky, E., Wofsy, S. C., Kort, E. A., Sweeney, C.,
Schuck, T., Brenninkmeijer, C., Chen, H., Beck, V., and Gerbig, C.:
Atmospheric CH4 in the first decade of the 21st century: Inverse
modeling analysis using sciamachy satellite retrievals and NOAA surface
measurements, J. Geophys. Res.-Atmos., 118, 7350–7369, https://doi.org/10.1002/jgrd.50480, 2013.
Blake, D. R., Mayer, E. W., Tyler, S. C., Makide, Y., Montague, D. C., and
Rowland, F. S.: Global increase in atmospheric methane concentrations
between 1978 and 1980, Geophys. Res. Lett., 9, 477–480,
https://doi.org/10.1029/GL009i004p00477, 1982.
Bousquet, P., Ringeval, B., Pison, I., Dlugokencky, E. J., Brunke, E.-G., Carouge, C., Chevallier, F., Fortems-Cheiney, A., Frankenberg, C., Hauglustaine, D. A., Krummel, P. B., Langenfelds, R. L., Ramonet, M., Schmidt, M., Steele, L. P., Szopa, S., Yver, C., Viovy, N., and Ciais, P.: Source attribution of the changes in atmospheric methane for 2006–2008, Atmos. Chem. Phys., 11, 3689–3700, https://doi.org/10.5194/acp-11-3689-2011, 2011.
Buchholz, R. R., Paton-Walsh, C., Griffith, D. W. T., Kubistin, D., Caldow,
C., Fisher, J. A., Deutscher, N. M., Kettlewell, G., Riggenbach, M.,
Macatangay, R., Krummel, P. B., and Langenfelds, R. L.: Source and
meteorological influences on air quality (CO, CH4 & CO2) at a Southern Hemisphere urban site, Atmos. Environ., 126, 274–289,
https://doi.org/10.1016/j.atmosenv.2015.11.041, 2016.
Burke, S. A., Wik, M., Lang, A., Contosta, A. R., Palace, M., Crill, M., and
Varner, R. K.: Long-term measurements of methane ebullition from thaw ponds,
J. Geophys. Res.-Biogeo., 124, 2208–2221, https://doi.org/10.1029/2018jg004786, 2019.
Cai, Z. C., Tsuruta, H., and Minami, K.: Methane emission from rice fields
in China: Measurements and influencing factors, J. Geophys. Res., 105, 17231–17242, https://doi.org/10.1029/2000jd900014, 2000.
Carslaw, D. C., Beevers, S. D., Ropkins, K., and Bell, M. C.: Detecting and
quantifying aircraft and other on-airport contributions to ambient nitrogen
oxides in the vicinity of a large international airport, Atmos. Environ.,
40, 5424–5434, https://doi.org/10.1016/j.atmosenv.2006.04.062, 2006.
Chen, H., Zhu, Q. A., Peng, C. H., Wu, N., Wang, Y. F., Fang, X. Q., Gao, Y.
H., Zhu, D., Yang, G., Tian, J. Q., Kang, X. M., Piao, S. L., Ouyang, H.,
Xiang, W. H., Luo, Z. B., Jiang, H., Song, X. Z., Zhang, Y., Yu, G. R.,
Zhao, X. Q., Gong, P., Yao, T. D., and Wu, J. H.: The impacts of climate
change and human activities on biogeochemical cycles on the Qinghai-Tibetan
Plateau, Glob. Change Biol., 19, 2940–2955, https://doi.org/10.1111/gcb.12277, 2013.
Crippa, M., Oreggioni, G., Guizzardi, D., Muntean, M., Schaaf, E., Lo Vullo,
E., Solazzo, E., Monforti-Ferrario, F., Olivier, J. G. J., and Vignati, E.: Fossil CO2 and GHG emissions of all world countries – 2019 Report, EUR 29849 EN, Publications Office of the European Union, Luxembourg, ISBN 978-92-76-11100-9, 2019a.
Crippa, M., Solazzo, E., Huang, G., Guizzardi, D., Koffi, E., Muntean, M., Schieberle, C., Friedrich, R., and Janssens-Maenhout, G.: High resolution temporal profiles in the Emissions Database for Global Atmospheric Research (EDGAR), European Commission's Joint Research Centre (JRC), https://doi.org/10.2904/JRC_DATASET_EDGAR, 2019b.
Cunnold, D. M., Steele, L. P., Fraser, P. J., Simmonds, P. G., Prinn, R. G.,
Weiss, R. F., Porter, L. W., O'Doherty, S., Langenfelds, R. L., Krummel, P.
B., Wang, H. J., Emmons, L., Tie, X. X., and Dlugokencky, E. J.: In situ
measurements of atmospheric methane at GAGE/AGAGE sites during 1985–2000 and
resulting source inferences, J. Geophys. Res., 107, ACH 20-1–ACH 20-18,
https://doi.org/10.1029/2001jd001226, 2002.
Diederich, A.: Generalized additive models. An introduction with R, J. Math.
Psychol., 51, 339–339, 2007.
Dlugokencky, E. J., Steele, L. P., Lang, P. M., and Masarie, K. A.: The
growth-rate and distribution of atmospheric methane, J. Geophys.
Res., 99, 17021–17043, https://doi.org/10.1029/94jd01245, 1994.
Dlugokencky, E. J., Steele, L. P., Lang, P. M., and Masarie, K. A.:
Atmospheric methane at Mauna-Loa and Barrow observatories: Presentation and
analysis of in-situ measurements, J. Geophys. Res., 100, 23103–23113,
https://doi.org/10.1029/95JD02460, 1995.
Dlugokencky, E. J., Masarie, K. A., Lang, P. M., and Tans, P. P.: Continuing
decline in the growth rate of the atmospheric methane burden, Nature, 393,
447–450, https://doi.org/10.1038/30934, 1998.
Dlugokencky, E. J., Bruhwiler, L., White, J. W. C., Emmons, L. K., Novelli,
P. C., Montzka, S. A., Masarie, K. A., Lang, P. M., Crotwell, A. M., Miller,
J. B., and Gatti, L. V.: Observational constraints on recent increases in
the atmospheric CH4 burden, Geophys. Res. Lett., 36, L18803,
https://doi.org/10.1029/2009gl039780, 2009.
Dlugokencky, E. J., Crotwell, A. M., Lang, P. M., and Mund, J. W.: Atmospheric Methane Dry Air Mole Fractions from quasi-continuous measurements at Barrow, Alaska and Mauna Loa, Hawaii, 1986–2018, Version: 2019-03-04, available at: ftp://aftp.cmdl.noaa.gov/data/trace_gases/CH4/in-situ/surface/ (last access: 10 March 2020), 2019a.
Dlugokencky, E. J., Lang, P. M., Crotwell, A. M., Thoning, K. W., and Crotwell, M. J.: Atmospheric Methane Dry Air Mole Fractions from the NOAA ESRL Carbon Cycle Cooperative Global Air Sampling Network, Data Path: ftp://aftp.cmdl.noaa.gov/data/trace_gases/CH4/flask/surface/ (last access: 10 March 2020), 2019b.
Draxier, R. R. and Hess, G. D.: An Overview of the HYSPLIT_4 Modelling Systemfor Trajectories, Dispersion, and Deposition, Aust. Meteorol. Mag., 47, 295–308, 1998.
Etheridge, D. M., Steele, L. P., Francey, R. J., and Langenfelds, R. L.:
Atmospheric methane between 1000 A.D. and present: Evidence of anthropogenic
emissions and climatic variability, J. Geophys. Res.-Atmos., 103,
15979–15993, https://doi.org/10.1029/98jd00923, 1998.
Etminan, M., Myhre, G., Highwood, E. J., and Shine, K. P.: Radiative forcing
of carbon dioxide, methane, and nitrous oxide: A significant revision of the
methane radiative forcing, Geophys. Res. Lett., 43, 12614–12623,
https://doi.org/10.1002/2016gl071930, 2016.
Fang, S. X., Zhou, L. X., Masarie, K. A., Xu, L., and Rella, C. W.: Study of
atmospheric CH4 mole fractions at three WMO/GAW stations in China, J.
Geophys. Res.-Atmos., 118, 4874–4886, https://doi.org/10.1002/jgrd.50284, 2013.
Fang, S. X., Tans, P. P., Dong, F., Zhou, H. G., and Luan, T.: Characteristics of atmospheric CO2 and CH4 at the Shangdianzi
regional background station in China, Atmos. Environ., 131, 1–8,
https://doi.org/10.1016/j.atmosenv.2016.01.044, 2016.
Fu, X. W., Feng, X., Liang, P., Deliger, Zhang, H., Ji, J., and Liu, P.: Temporal trend and sources of speciated atmospheric mercury at Waliguan GAW station, Northwestern China, Atmos. Chem. Phys., 12, 1951–1964, https://doi.org/10.5194/acp-12-1951-2012, 2012.
Galloway, J. N.: Atmospheric acidification – projections for the future,
Ambio, 18, 161–166, 1989.
Guha, T., Tiwari, Y. K., Valsala, V., Lin, X., Ramonet, M., Mahajan, A.,
Datye, A., and Kumar, K. R.: What controls the atmospheric methane seasonal
variability over India?, Atmos. Environ., 175, 83–91,
https://doi.org/10.1016/j.atmosenv.2017.11.042, 2018.
Hausmann, P., Sussmann, R., and Smale, D.: Contribution of oil and natural gas production to renewed increase in atmospheric methane (2007–2014): top–down estimate from ethane and methane column observations, Atmos. Chem. Phys., 16, 3227–3244, https://doi.org/10.5194/acp-16-3227-2016, 2016.
IPCC: Climate Change 2014: Synthesis Report. Contribution of Working Groups
I, II and III to the Fifth Assessment Report of the Intergovernmental Panel
on Climate Change, edited by: Core Writing Team, Pachauri, R. K., and Meyer, L. A., IPCC, Geneva, Switzerland, 151 pp., 2014.
Janssens-Maenhout, G., Crippa, M., Guizzardi, D., Muntean, M., Schaaf, E., Dentener, F., Bergamaschi, P., Pagliari, V., Olivier, J. G. J., Peters, J. A. H. W., van Aardenne, J. A., Monni, S., Doering, U., Petrescu, A. M. R., Solazzo, E., and Oreggioni, G. D.: EDGAR v4.3.2 Global Atlas of the three major greenhouse gas emissions for the period 1970–2012, Earth Syst. Sci. Data, 11, 959–1002, https://doi.org/10.5194/essd-11-959-2019, 2019.
Keeling, C. D., Bacastow, R. B., Bainbridge, A. E., Ekdahl, C. A., Guenther,
P. R., Waterman, L. S., and Chin, J. F. S.: Atmospheric carbon-dioxide
variations at Mauna-Loa observatory, Hawaii, Tellus, 28, 538–551, 1976.
Keeling, C. D., Whorf, T. P., Wahlen, M., and Vanderplicht, J.: Interannual
extremes in the rate of rise of atmospheric carbon-dioxide since 1980,
Nature, 375, 666–670, https://doi.org/10.1038/375666a0, 1995.
Keenan, T. F., Prentice, I. C., Canadell, J. G., Williams, C. A., Wang, H.,
Raupach, M., and Collatz, G. J.: Recent pause in the growth rate of
atmospheric CO2 due to enhanced terrestrial carbon uptake, Nat.
Commun., 7, 13428, https://doi.org/10.1038/ncomms13428, 2016.
Kim, H. S., Chung, Y. S., Tans, P. P., and Dlugokencky, E. J.: Decadal
trends of atmospheric methane in East Asia from 1991 to 2013, Air Qual.
Atmos. Hlth, 8, 293–298, https://doi.org/10.1007/s11869-015-0331-x, 2015.
Lelieveld, J., Dentener, F. J., Peters, W., and Krol, M. C.: On the role of hydroxyl radicals in the self-cleansing capacity of the troposphere, Atmos. Chem. Phys., 4, 2337–2344, https://doi.org/10.5194/acp-4-2337-2004, 2004.
Lin, M. Y., Horowitz, L. W., Oltmans, S. J., Fiore, A. M., and Fan, S. M.:
Tropospheric ozone trends at Mauna Loa observatory tied to decadal climate
variability, Nat. Geosci., 7, 136–143, https://doi.org/10.1038/ngeo2066, 2014.
Liu, S., Fang, S. X., Liang, M., Ma, Q. L., and Feng, Z. Z.: Study on CO
data filtering approaches based on observations at two background stations
in China, Sci. Total Environ., 691, 675–684, https://doi.org/10.1016/j.scitotenv.2019.07.162, 2019.
Logan, J. A., Prather, M. J., Wofsy, S. C., and McElroy, M. B.: Tropospheric
chemistry: A global perspective, J. Geophys. Res., 86, 7210–7254,
https://doi.org/10.1029/JC086iC08p07210, 1981.
Loov, J. M. B., Henne, S., Legreid, G., Staehelin, J., Reimann, S., Prévôt, A. S. H., Steinbacher, M., and Vollmer, M. K.: Estimation of background concentrations of trace gases at the Swiss Alpine site Jungfraujoch (3580 m asl), J. Geophys. Res., 113, D22305, https://doi.org/10.1029/2007jd009751, 2008.
Ma, J. Z., Tang, J., Zhou, X. J., and Zhang, X. S.: Estimates of the
chemical budget for ozone at Waliguan observatory, J. Atmos. Chem., 41,
21–48, https://doi.org/10.1023/a:1013892308983, 2002.
Matsueda, H., Sawa, Y., Wada, A., Inoue, H. Y., Kazuto Suda, K., Hirano, Y., Tsuboi, K., and Nishioka, S.: Methane standard gases for atmospheric measurements at the MRI and JMA and intercomparison experiments, Pap. Meteor. Geophys., 54, 91–109, https://doi.org/10.2467/mripapers.54.91, 2004.
Miller, S. M., Michalak, A. M., Detmers, R. G., Hasekamp, O. P., Bruhwiler,
L. M. P., and Schwietzke, S.: China's coal mine methane regulations have not
curbed growing emissions, Nat. Commun., 10, 303, https://doi.org/10.1038/s41467-018-07891-7, 2019.
Morimoto, S., Fujita, R., Aoki, S., Goto, D., and Nakazawa, T.: Long-term
variations of the mole fraction and carbon isotope ratio of atmospheric
methane observed at Ny-Ålesund, Svalbard from 1996 to 2013, Tellus B, 69, 1380497, https://doi.org/10.1080/16000889.2017.1380497, 2017.
Nisbet, E. G., Dlugokencky, E. J., and Bousquet, P.: Methane on the
rise-again, Science, 343, 493–495, https://doi.org/10.1126/science.1247828, 2014.
Nisbet, E. G., Dlugokencky, E. J., Manning, M. R., Lowry, D., Fisher, R. E.,
France, J. L., Michel, S. E., Miller, J. B., White, J. W. C., Vaughn, B.,
Bousquet, P., Pyle, J. A., Warwick, N. J., Cain, M., Brownlow, R., Zazzeri,
G., Lanoisellé, M., Manning, A. C., Gloor, E., Worthy, D. E. J., Brunke,
E.-G., Labuschagne, C., Wolff, E. W., and Ganesan, A. L.: Rising atmospheric
methane: 2007–2014 growth and isotopic shift, Global Biogeochem. Cy., 30,
1356–1370, https://doi.org/10.1002/2016gb005406, 2016.
Nisbet, E. G., Manning, M. R., Dlugokencky, E. J., Fisher, R. E., Lowry, D.,
Michel, S. E., Myhre, C. L., Platt, S. M., Allen, G., Bousquet, P.,
Brownlow, R., Cain, M., France, J. L., Hermansen, O., Hossaini, R., Jones,
A. E., Levin, I., Manning, A. C., Myhre, G., Pyle, J. A., Vaughn, B. H.,
Warwick, N. J., and White, J. W. C.: Very strong atmospheric methane growth
in the 4 years 2014–2017: Implications for the paris agreement, Global
Biogeochem. Cy., 33, 318–342, https://doi.org/10.1029/2018gb006009, 2019.
Niwa, Y., Tsuboi, K., Matsueda, H., Sawa, Y., Machida, T., Nakamura, M.,
Kawasato, T., Saito, K., Takatsuji, S., Tsuji, K., Nishi, H., Dehara, K.,
Baba, Y., Kuboike, D., Iwatsubo, S., Ohmori, H., and Hanamiya, Y.: Seasonal
variations of CO2, CH4, N2O and CO in the mid-troposphere over the western North Pacific observed using a C-130H cargo aircraft, J. Meteorol. Soc. Jpn., 92, 55–70, https://doi.org/10.2151/jmsj.2014-104, 2014.
Pearman, G. I. and Beardsmore, D. J.: Atmospheric carbon-dioxide
measurements in the Australian region - 10 years of aircraft data, Tellus B, 36, 1–24, https://doi.org/10.1111/j.1600-0889.1984.tb00047.x, 1984.
Polissar, A. V., Hopke, P. K., Paatero, P., Kaufmann, Y. J., Hall, D. K.,
Bodhaine, B. A., Dutton, E. G., and Harris, J. M.: The aerosol at barrow,
alaska: Long-term trends and source locations, Atmos. Environ., 33,
2441–2458, https://doi.org/10.1016/s1352-2310(98)00423-3, 1999.
Popa, M. E., Gloor, M., Manning, A. C., Jordan, A., Schultz, U., Haensel, F., Seifert, T., and Heimann, M.: Measurements of greenhouse gases and related tracers at Bialystok tall tower station in Poland, Atmos. Meas. Tech., 3, 407–427, https://doi.org/10.5194/amt-3-407-2010, 2010.
Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T.:
Numerical recipes in C: The art of scientific programming, Cambridge University Press, New York, Section, 10, 408–412, 1992.
Rasmussen, R. A. and Khalil, M. A. K.: Atmospheric methane in the recent
and ancient atmospheres – concentrations, trends, and interhemispheric
gradient, J. Geophys. Res., 89, 11599–11605, https://doi.org/10.1029/JD089iD07p11599, 1984.
R Core Team: R: a language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, available at: http://www.R-project.org/, last access: 5 July 2019.
Rigby, M., Montzka, S. A., Prinn, R. G., White, J. W. C., Young, D.,
O'Doherty, S., Lunt, M. F., Ganesan, A. L., Manning, A. J., Simmonds, P. G.,
Salameh, P. K., Harth, C. M., Muhle, J., Weiss, R. F., Fraser, P. J.,
Steele, L. P., Krummel, P. B., McCulloch, A., and Park, S.: Role of
atmospheric oxidation in recent methane growth, P. Natl. Acad. Sci. USA, 114, 5373–5377, https://doi.org/10.1073/pnas.1616426114, 2017.
Rousseau, D. D., Duzer, D., Etienne, J. L., Cambon, G., Jolly, D., Ferrier,
J., and Schevin, P.: Pollen record of rapidly changing air trajectories to
the North Pole, J. Geophys. Res., 109, D06116, https://doi.org/10.1029/2003jd003985, 2004.
Rubino, M., Etheridge, D. M., Thornton, D. P., Howden, R., Allison, C. E., Francey, R. J., Langenfelds, R. L., Steele, L. P., Trudinger, C. M., Spencer, D. A., Curran, M. A. J., van Ommen, T. D., and Smith, A. M.: Revised records of atmospheric trace gases CO2, CH4, N2O, and δ13C−CO2 over the last 2000 years from Law Dome, Antarctica, Earth Syst. Sci. Data, 11, 473–492, https://doi.org/10.5194/essd-11-473-2019, 2019.
Satar, E., Berhanu, T. A., Brunner, D., Henne, S., and Leuenberger, M.: Continuous measurements (2012–2014) at Beromünster tall tower station in Switzerland, Biogeosciences, 13, 2623–2635, https://doi.org/10.5194/bg-13-2623-2016, 2016.
Schaefer, H., Fletcher, S. E. M., Veidt, C., Lassey, K. R., Brailsford, G.
W., Bromley, T. M., Dlugokencky, E. J., Michel, S. E., Miller, J. B., Levin,
I., Lowe, D. C., Martin, R. J., Vaughn, B. H., and White, J. W. C.: A
21st-century shift from fossil-fuel to biogenic methane emissions indicated
by 13CH4, Science, 352, 80–84, https://doi.org/10.1126/science.aad2705, 2016.
Simmonds, P. G., Manning, A. J., Derwent, R. G., Ciais, P., Ramonet, M.,
Kazan, V., and Ryall, D.: A burning question. Can recent growth rate
anomalies in the greenhouse gases be attributed to large-scale biomass
burning events?, Atmos. Environ., 39, 2513–2517,
https://doi.org/10.1016/j.atmosenv.2005.02.018, 2005.
Streets, D. G. and Waldhoff, S. T.: Present and future emissions of air
pollutants in China: SO2, NOx, and CO, Atmos. Environ., 34,
363–374, https://doi.org/10.1016/s1352-2310(99)00167-3, 2000.
Sweeney, C., Dlugokencky, E., Miller, C. E., Wofsy, S., Karion, A., Dinardo,
S., Chang, R. Y. W., Miller, J. B., Bruhwiler, L., Crotwell, A. M.,
Newberger, T., McKain, K., Stone, R. S., Wolter, S. E., Lang, P. E., and
Tans, P.: No significant increase in long-term CH4 emissions on north slope of Alaska despite significant increase in air temperature, Geophys.
Res. Lett., 43, 6604–6611, https://doi.org/10.1002/2016gl069292, 2016.
Tang, J., Wen, Y. P., and Zhou, L. X.:, Observational study of black carbon
aerosol in western China, J. Appl. Meteor. Sci., 10, 160–170, 1999.
Thompson, R. L., Manning, A. C., Gloor, E., Schultz, U., Seifert, T., Hänsel, F., Jordan, A., and Heimann, M.: In-situ measurements of oxygen, carbon monoxide and greenhouse gases from Ochsenkopf tall tower in Germany, Atmos. Meas. Tech., 2, 573–591, https://doi.org/10.5194/amt-2-573-2009, 2009.
Tohjima, Y., Machida, T., Utiyama, M., Katsumoto, M., Fujinuma, Y., and
Maksyutov, S.: Analysis and presentation of in situ atmospheric methane
measurements from Cape Ochi-ishi and Hateruma island, J. Geophys. Res., 107, ACH 8-1–ACH 8-11, https://doi.org/10.1029/2001jd001003, 2002.
Tohjima, Y., Kubo, M., Minejima, C., Mukai, H., Tanimoto, H., Ganshin, A., Maksyutov, S., Katsumata, K., Machida, T., and Kita, K.: Temporal changes in the emissions of CH4 and CO from China estimated from CH4∕CO2 and CO∕CO2 correlations observed at Hateruma Island, Atmos. Chem. Phys., 14, 1663–1677, https://doi.org/10.5194/acp-14-1663-2014, 2014.
Thoning, K. W., Tans, P. P., and Komhyr, W. D.: Atmospheric carbon dioxide
at Mauna Loa observatory: 2. Analysis of the NOAA GMCC data, 1974–1985, J.
Geophys. Res., 94, 8549–8565, https://doi.org/10.1029/JD094iD06p08549, 1989.
Tsutsumi, Y., Mori, K., Ikegami, M., Tashiro, T., and Tsuboi, K.: Long-term
trends of greenhouse gases in regional and background events observed during
1998–2004 at Yonagunijima located to the east of the Asian continent, Atmos.
Environ., 40, 5868–5879, https://doi.org/10.1016/j.atmosenv.2006.04.036, 2006.
Turner, A. J., Frankenbergb, C., Wennberg, P. O., and Jacob, D. J.:
Ambiguity in the causes for decadal trends in atmospheric methane and
hydroxyl, P. Natl. Acad. Sci. USA, 114, 5367–5372, https://doi.org/10.1073/pnas.1616020114, 2017.
Uria-Tellaetxe, I. and Carslaw, D. C.: Conditional bivariate probability
function for source identification, Environ. Modell. Softw., 59, 1–9,
https://doi.org/10.1016/j.envsoft.2014.05.002, 2014.
U.S. EIA (US Energy Information Administration): International energy
statistics, U.S. EIA, Washington, DC, available at: https://www.eia.gov/beta/international/data/browser/ (last access: 19 May 2018), 2017.
Vaghjiani, G. L. and Ravishankara, A. R.: New measurement of the rate
coefficient for the reaction of OH with methane, Nature, 350, 406–409,
https://doi.org/10.1038/350406a0, 1991.
Wada, A., Sawa, Y., Matsueda, H., Taguchi, S., Murayama, S., Okubo, S., and
Tsutsumi, Y.: Influence of continental air mass transport on atmospheric
CO2 in the western North Pacific, J. Geophys. Res., 112, D07311,
https://doi.org/10.1029/2006jd007552, 2007.
Wada, A., Matsueda, H., Sawa, Y., Tsuboi, K., and Okubo, S.: Seasonal
variation of enhancement ratios of trace gases observed over 10 years in the
western North Pacific, Atmos. Environ., 45, 2129–2137,
https://doi.org/10.1016/j.atmosenv.2011.01.043, 2011.
Wang, D. Q., Chen, Z. L., and Xu, S. Y.: Methane emission from Yangtze
estuarine wetland, china, J. Geophys. Res.-Biogeosci., 114, G02011,
https://doi.org/10.1029/2008JG000857, 2009.
Wang, T., Cheung, T. F., Li, Y. S., Yu, X. M., and Blake, D. R.: Emission
characteristics of CO, NOx, SO2 and indications of biomass burning
observed at a rural site in eastern China, J. Geophys. Res., 107, ACH 9-1–ACH 9-10, https://doi.org/10.1029/2001JD000724, 2002.
Weber, T., Wiseman, N. A., and Kock, A.: Global ocean methane emissions
dominated by shallow coastal waters, Nat. Commun., 10, 4584,
https://doi.org/10.1038/s41467-019-12541-7, 2019.
Wilson, M. C. and Smith, A. T.: The pika and the watershed: The impact of
small mammal poisoning on the ecohydrology of the Qinghai-Tibetan Plateau,
Ambio, 44, 16–22, https://doi.org/10.1007/s13280-014-0568-x, 2015.
WMO: The State of Greenhouse Gases in the Atmosphere Based on Global Observations through 2018, WMO Greenhouse Gas Bulletin No. 15, 2–3, 2019.
WDCGG (World Data Centre for Greenhouse Gases): Data Summary:
Greenhouse Gases and Other Atmospheric Gases, WDCGG No. 43, Japan Meteorological Agency, available at: https://gaw.kishou.go.jp/static/publications/summary/sum43/sum43.pdf, last access: 10 April 2020.
Wolf, J., Asrar, G. R., and West, T. O.: Revised methane emissions factors
and spatially distributed annual carbon fluxes for global livestock, Carbon
Balanc. Manag., 12, 16, https://doi.org/10.1186/s13021-017-0084-y, 2017.
Xiong, X., Houweling, S., Wei, J., Maddy, E., Sun, F., and Barnet, C.: Methane plume over south Asia during the monsoon season: satellite observation and model simulation, Atmos. Chem. Phys., 9, 783–794, https://doi.org/10.5194/acp-9-783-2009, 2009.
Yuan, Y., Ries, L., Petermeier, H., Trickl, T., Leuchner, M., Couret, C., Sohmer, R., Meinhardt, F., and Menzel, A.: On the diurnal, weekly, and seasonal cycles and annual trends in atmospheric CO2 at Mount Zugspitze, Germany, during 1981–2016, Atmos. Chem. Phys., 19, 999–1012, https://doi.org/10.5194/acp-19-999-2019, 2019.
Zellweger, C., Emmenegger, L., Firdaus, M., Hatakka, J., Heimann, M., Kozlova, E., Spain, T. G., Steinbacher, M., van der Schoot, M. V., and Buchmann, B.: Assessment of recent advances in measurement techniques for atmospheric carbon dioxide and methane observations, Atmos. Meas. Tech., 9, 4737–4757, https://doi.org/10.5194/amt-9-4737-2016, 2016.
Zhang, F., Zhou, L. X., Novelli, P. C., Worthy, D. E. J., Zellweger, C., Klausen, J., Ernst, M., Steinbacher, M., Cai, Y. X., Xu, L., Fang, S. X., and Yao, B.: Evaluation of in situ measurements of atmospheric carbon monoxide at Mount Waliguan, China, Atmos. Chem. Phys., 11, 5195–5206, https://doi.org/10.5194/acp-11-5195-2011, 2011.
Zhang, F., Zhou, L., and Xu, L.: Temporal variation of atmospheric CH4 and the potential source regions at Waliguan, China, Sci. China Earth Sci., 56, 727–736, https://doi.org/10.1007/s11430-012-4577-y, 2013.
Zhou, L., Worthy, D. E. J., Lang, P. M., Ernst, M. K., Zhang, X. C., Wen, Y.
P., and Li, J. L.: Ten years of atmospheric methane observations at a high
elevation site in western China, Atmos. Environ., 38, 7041–7054,
https://doi.org/10.1016/j.atmosenv.2004.02.072, 2004.
Zhou, L. X., Tang, J., Wen, Y. P., Li, J. L., Yan, P., and Zhang, X. C.: The
impact of local winds and long-range transport on the continuous carbon
dioxide record at Mount Waliguan, China, Tellus B, 55, 145–158, https://doi.org/10.1034/j.1600-0889.2003.00064.x, 2003.
Zhou, L. X., Conway, T. J., White, J. W. C., Mukai, H., Zhang, X. C., Wen,
Y. P., Li, J. L., and MacClune, K.: Long-term record of atmospheric CO2 and stable isotopic ratios at Waliguan observatory: Background features and possible drivers, 1991–2002, Global Biogeochem. Cy., 19, GB3021, https://doi.org/10.1029/2004gb002430, 2005.
Zou, J. W., Huang, Y., Jiang, J. Y., Zheng, X. H., and Sass, R. L.: A 3-year
field measurement of methane and nitrous oxide emissions from rice paddies
in China: Effects of water regime, crop residue, and fertilizer application,
Global Biogeochem. Cy., 19, GB2021, https://doi.org/10.1029/2004gb002401, 2005.
Short summary
We analyzed 26-year CH4 measurements at Mount Waliguan in the Tibetan Plateau, China. The CH4 increased ~ 133 parts per billion (ppb) with a rate of 5.1 ± 0.1 ppb yr-1 from 1994 to 2019. Major source regions were identified in northeast and southwest. The influence of human activities is more and more serious, and northern India has possibly become a stronger contributor than city regions were in the past. It has become urgent to control CH4 emissions in the Tibetan Plateau.
We analyzed 26-year CH4 measurements at Mount Waliguan in the Tibetan Plateau, China. The CH4...
Altmetrics
Final-revised paper
Preprint