Articles | Volume 21, issue 3
https://doi.org/10.5194/acp-21-1737-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-1737-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Assessing the vertical structure of Arctic aerosols using balloon-borne measurements
Jessie M. Creamean
CORRESPONDING AUTHOR
Department of Atmospheric Science, Colorado State University, Fort
Collins, CO 80526, USA
Gijs de Boer
Cooperative Institute for Research in Environmental Sciences,
University of Colorado, Boulder, CO 80509, USA
Physical Sciences Laboratory, National Oceanic and Atmospheric
Administration, Boulder, CO 80305, USA
Hagen Telg
Cooperative Institute for Research in Environmental Sciences,
University of Colorado, Boulder, CO 80509, USA
Physical Sciences Laboratory, National Oceanic and Atmospheric
Administration, Boulder, CO 80305, USA
Pacific Northwest National Laboratory, Richland, WA 99354, USA
Darielle Dexheimer
Sandia National Laboratories, Albuquerque, NM 87123, USA
Matthew D. Shupe
Cooperative Institute for Research in Environmental Sciences,
University of Colorado, Boulder, CO 80509, USA
Physical Sciences Laboratory, National Oceanic and Atmospheric
Administration, Boulder, CO 80305, USA
Amy Solomon
Cooperative Institute for Research in Environmental Sciences,
University of Colorado, Boulder, CO 80509, USA
Physical Sciences Laboratory, National Oceanic and Atmospheric
Administration, Boulder, CO 80305, USA
Allison McComiskey
Brookhaven National Laboratory, Uptown, NY 11973, USA
Related authors
Jessie M. Creamean, Carson C. Hume, Maria Vazquez, and Adam Theisen
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-352, https://doi.org/10.5194/essd-2025-352, 2025
Preprint under review for ESSD
Short summary
Short summary
This study presents a comprehensive, publicly available ice nucleating particles (INP) dataset from the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) user facility across diverse environments, including Arctic, agricultural, urban, marine, and mountainous sites. Samples are collected via fixed and mobile platforms and processed using a standardized pipeline. The dataset supports observational and modelling analyses of seasonal, spatial, and compositional variability in INPs.
Kevin R. Barry, Thomas C. J. Hill, Marina Nieto-Caballero, Thomas A. Douglas, Sonia M. Kreidenweis, Paul J. DeMott, and Jessie M. Creamean
Atmos. Chem. Phys., 23, 15783–15793, https://doi.org/10.5194/acp-23-15783-2023, https://doi.org/10.5194/acp-23-15783-2023, 2023
Short summary
Short summary
Ice-nucleating particles (INPs) are important for the climate due to their influence on cloud properties. To understand potential land-based sources of them in the Arctic, we carried out a survey near the northernmost point of Alaska, a landscape connected to the permafrost (thermokarst). Permafrost contained high concentrations of INPs, with the largest values near the coast. The thermokarst lakes were found to emit INPs, and the water contained elevated concentrations.
Albert Ansmann, Kevin Ohneiser, Ronny Engelmann, Martin Radenz, Hannes Griesche, Julian Hofer, Dietrich Althausen, Jessie M. Creamean, Matthew C. Boyer, Daniel A. Knopf, Sandro Dahlke, Marion Maturilli, Henriette Gebauer, Johannes Bühl, Cristofer Jimenez, Patric Seifert, and Ulla Wandinger
Atmos. Chem. Phys., 23, 12821–12849, https://doi.org/10.5194/acp-23-12821-2023, https://doi.org/10.5194/acp-23-12821-2023, 2023
Short summary
Short summary
The 1-year MOSAiC (2019–2020) expedition with the German ice breaker Polarstern was the largest polar field campaign ever conducted. The Polarstern, with our lidar aboard, drifted with the pack ice north of 85° N for more than 7 months (October 2019 to mid-May 2020). We measured the full annual cycle of aerosol conditions in terms of aerosol optical and cloud-process-relevant properties. We observed a strong contrast between polluted winter and clean summer aerosol conditions.
Jessie M. Creamean, Julio E. Ceniceros, Lilyanna Newman, Allyson D. Pace, Thomas C. J. Hill, Paul J. DeMott, and Matthew E. Rhodes
Biogeosciences, 18, 3751–3762, https://doi.org/10.5194/bg-18-3751-2021, https://doi.org/10.5194/bg-18-3751-2021, 2021
Short summary
Short summary
Microorganisms have the unique ability to form ice in clouds at relatively warm temperatures, especially specific types of plant bacteria. However, to date, members of the domain Archaea have not been evaluated for their cloud-forming capabilities. Here, we show the first results of Haloarchaea that have the ability to form cloud ice at moderate supercooled temperatures that are found in hypersaline environments on Earth.
Simone Pulimeno, Angelo Lupi, Vito Vitale, Claudia Frangipani, Carlos Toledano, Stelios Kazadzis, Natalia Kouremeti, Christoph Ritter, Sandra Graßl, Kerstin Stebel, Vitali Fioletov, Ihab Abboud, Sandra Blindheim, Lynn Ma, Norm O’Neill, Piotr Sobolewski, Pawan Gupta, Elena Lind, Thomas F. Eck, Antti Hyvärinen, Veijo Aaltonen, Rigel Kivi, Janae Csavina, Dmitry Kabanov, Sergey M. Sakerin, Olga R. Sidorova, Robert S. Stone, Hagen Telg, Laura Riihimaki, Raul R. Cordero, Martin Radenz, Ronny Engelmann, Michel Van Roozendal, Anatoli Chaikovsky, Philippe Goloub, Junji Hisamitsu, and Mauro Mazzola
EGUsphere, https://doi.org/10.5194/egusphere-2025-2527, https://doi.org/10.5194/egusphere-2025-2527, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
This study analyzed aerosols optical properties over the Arctic and Antarctic to measure them even during long periods of darkness. It found that pollution in the Arctic is decreasing, likely due to European emission regulations, while wildfires are becoming a more important source of particles. In Antarctica, particle levels are higher near the coast than inland, and vary by season. These results help us better understand how air pollution and climate are changing at the Earth’s poles.
Jessie M. Creamean, Carson C. Hume, Maria Vazquez, and Adam Theisen
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-352, https://doi.org/10.5194/essd-2025-352, 2025
Preprint under review for ESSD
Short summary
Short summary
This study presents a comprehensive, publicly available ice nucleating particles (INP) dataset from the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) user facility across diverse environments, including Arctic, agricultural, urban, marine, and mountainous sites. Samples are collected via fixed and mobile platforms and processed using a standardized pipeline. The dataset supports observational and modelling analyses of seasonal, spatial, and compositional variability in INPs.
Peggy Achtert, Torsten Seelig, Gabriella Wallentin, Luisa Ickes, Matthew D. Shupe, Corinna Hoose, and Matthias Tesche
EGUsphere, https://doi.org/10.5194/egusphere-2025-3529, https://doi.org/10.5194/egusphere-2025-3529, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
We quantify the occurrence of single- and multi-layer clouds in the Arctic based on combining soundings with cloud-radar observations. We also assess the rate of ice-crystal seeding in multi-layer cloud systems as this is an important initiator of glaciation in super-cooled liquid cloud layers. We find an abundance of multi-layer clouds in the Arctic with seeding in about half to two thirds of cases in which the gap between upper and lower layers ranges between 100 and 1000 m.
Jean Lac, Hélène Chepfer, Matthew D. Shupe, and Hannes Griesche
EGUsphere, https://doi.org/10.5194/egusphere-2025-3549, https://doi.org/10.5194/egusphere-2025-3549, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Satellite observations show that Arctic spring experiences a rapid increase in liquid-containing clouds over sea ice. Our study shows that this transition is mostly driven by warmer temperatures in early spring than in late spring, favoring more liquid clouds formation, rather than a limited moisture source in early spring. It suggests that, in the future, this transition is likely to occur earlier in spring considering the rapid Arctic warming.
Aidan D. Pantoya, Stephanie R. Simonsen, Elisabeth Andrews, Ross Burgener, Christopher J. Cox, Gijs de Boer, Bryan D. Thomas, and Naruki Hiranuma
Aerosol Research, 3, 253–270, https://doi.org/10.5194/ar-3-253-2025, https://doi.org/10.5194/ar-3-253-2025, 2025
Short summary
Short summary
We present continuous ice-nucleating particle data that were measured in the Alaskan Arctic from October 2021 to December 2023. We found a greater efficiency in the arctic immersion freezing during fall compared to those found previously at two mid-latitude sites, together with profound freezing efficiencies in spring, presumably due to arctic haze events. Our study will be useful for improving atmospheric models to simulate cloud feedback and determine their impact on the global radiative energy budget.
Manfred Wendisch, Benjamin Kirbus, Davide Ori, Matthew D. Shupe, Susanne Crewell, Harald Sodemann, and Vera Schemann
EGUsphere, https://doi.org/10.5194/egusphere-2025-2062, https://doi.org/10.5194/egusphere-2025-2062, 2025
Short summary
Short summary
Aircraft observations of air parcels moving into and out of the Arctic are reported. From the data, heating and cooling as well as drying and moistening of the air masses along their way into and out of the Arctic could be measured for the first time. These data enable to evaluate if numerical weather prediction models are able to accurately represent these air mass transformations. This work helps to model the future climate changes in the Arctic, which are important for mid-latitude weather.
Meghan Guagenti, Darielle Dexheimer, Alexandra Ulinksi, Paul Walter, James H. Flynn III, and Sascha Usenko
Atmos. Meas. Tech., 18, 2125–2136, https://doi.org/10.5194/amt-18-2125-2025, https://doi.org/10.5194/amt-18-2125-2025, 2025
Short summary
Short summary
A robust, automatic volatile organic compound (VOC) collection system was developed for vertical VOC sampling associated with the 2022 DOE ARM-program-led TRACER in Houston, Texas. This modular sampler has been developed to measure vertical profiles of VOCs to improve near-surface characterization. This article helps fill the current lack of commercially available options for aerial VOC sampling and serves to support and encourage researchers to build and develop custom samplers.
Lexie Goldberger, Maxwell Levin, Carlandra Harris, Andrew Geiss, Matthew D. Shupe, and Damao Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1501, https://doi.org/10.5194/egusphere-2025-1501, 2025
Short summary
Short summary
This study leverages machine learning models to classify cloud thermodynamic phases using multi-sensor remote sensing data collected at the Department of Energy Atmospheric Radiation Measurement North Slope of Alaska observatory. We evaluate model performance, feature importance, application of the model to another observatory, and quantify how the models respond to instrument outages.
Brian J. Butterworth, Brent G. T. Else, Kristina A. Brown, Christopher J. Mundy, William J. Williams, Lina M. Rotermund, and Gijs de Boer
EGUsphere, https://doi.org/10.5194/egusphere-2025-1802, https://doi.org/10.5194/egusphere-2025-1802, 2025
Short summary
Short summary
Observations of carbon dioxide transfer between water and air were measured at a seasonally ice-covered marine location using the eddy covariance method. The goal was to determine how sea ice influences water-air transfer of carbon dioxide by season. During full ice cover in winter, ice acted as a barrier to transfer. In spring, melt water absorbed carbon dioxide from the air. In fall, freezing released carbon dioxide from water to the air.
Christopher J. Cox, Janet M. Intrieri, Brian J. Butterworth, Gijs de Boer, Michael R. Gallagher, Jonathan Hamilton, Erik Hulm, Tilden Meyers, Sara M. Morris, Jackson Osborn, P. Ola G. Persson, Benjamin Schmatz, Matthew D. Shupe, and James M. Wilczak
Earth Syst. Sci. Data, 17, 1481–1499, https://doi.org/10.5194/essd-17-1481-2025, https://doi.org/10.5194/essd-17-1481-2025, 2025
Short summary
Short summary
Snow is an essential water resource in the intermountain western United States, and predictions are made using models. We made observations to validate, constrain, and develop the models. The data are from the Study of Precipitation, the Lower Atmosphere and Surface for Hydrometeorology (SPLASH) campaign in Colorado's East River valley, 2021–2023. The measurements include meteorology and variables that quantify energy transfer between the atmosphere and surface. The data are available publicly.
Carola Barrientos-Velasco, Christopher J. Cox, Hartwig Deneke, J. Brant Dodson, Anja Hünerbein, Matthew D. Shupe, Patrick C. Taylor, and Andreas Macke
Atmos. Chem. Phys., 25, 3929–3960, https://doi.org/10.5194/acp-25-3929-2025, https://doi.org/10.5194/acp-25-3929-2025, 2025
Short summary
Short summary
Understanding how clouds affect the climate, especially in the Arctic, is crucial. This study used data from the largest polar expedition in history, MOSAiC, and the CERES satellite to analyse the impact of clouds on radiation. Simulations showed accurate results, aligning with observations. Over the year, clouds caused the atmospheric surface system to lose 5.2 W m−² of radiative energy to space, while the surface gained 25 W m−² and the atmosphere cooled by 30.2 W m−².
Fan Mei, Qi Zhang, Damao Zhang, Jerome D. Fast, Gourihar Kulkarni, Mikhail S. Pekour, Christopher R. Niedek, Susanne Glienke, Israel Silber, Beat Schmid, Jason M. Tomlinson, Hardeep S. Mehta, Xena Mansoura, Zezhen Cheng, Gregory W. Vandergrift, Nurun Nahar Lata, Swarup China, and Zihua Zhu
Atmos. Chem. Phys., 25, 3425–3444, https://doi.org/10.5194/acp-25-3425-2025, https://doi.org/10.5194/acp-25-3425-2025, 2025
Short summary
Short summary
This study highlights the unique capability of the ArcticShark, an uncrewed aerial system, in measuring vertically resolved atmospheric properties. Data from 32 research flights in 2023 reveal seasonal patterns and correlations with conventional measurements. The consistency and complementarity of in situ and remote sensing methods are highlighted. The study demonstrates the ArcticShark’s versatility in bridging data gaps and improving the understanding of vertical atmospheric structures.
Benjamin Heutte, Nora Bergner, Hélène Angot, Jakob B. Pernov, Lubna Dada, Jessica A. Mirrielees, Ivo Beck, Andrea Baccarini, Matthew Boyer, Jessie M. Creamean, Kaspar R. Daellenbach, Imad El Haddad, Markus M. Frey, Silvia Henning, Tiia Laurila, Vaios Moschos, Tuukka Petäjä, Kerri A. Pratt, Lauriane L. J. Quéléver, Matthew D. Shupe, Paul Zieger, Tuija Jokinen, and Julia Schmale
Atmos. Chem. Phys., 25, 2207–2241, https://doi.org/10.5194/acp-25-2207-2025, https://doi.org/10.5194/acp-25-2207-2025, 2025
Short summary
Short summary
Limited aerosol measurements in the central Arctic hinder our understanding of aerosol–climate interactions in the region. Our year-long observations of aerosol physicochemical properties during the MOSAiC expedition reveal strong seasonal variations in aerosol chemical composition, where the short-term variability is heavily affected by storms in the Arctic. Local wind-generated particles are shown to be an important source of cloud seeds, especially in autumn.
Yugo Kanaya, Roberto Sommariva, Alfonso Saiz-Lopez, Andrea Mazzeo, Theodore K. Koenig, Kaori Kawana, James E. Johnson, Aurélie Colomb, Pierre Tulet, Suzie Molloy, Ian E. Galbally, Rainer Volkamer, Anoop Mahajan, John W. Halfacre, Paul B. Shepson, Julia Schmale, Hélène Angot, Byron Blomquist, Matthew D. Shupe, Detlev Helmig, Junsu Gil, Meehye Lee, Sean C. Coburn, Ivan Ortega, Gao Chen, James Lee, Kenneth C. Aikin, David D. Parrish, John S. Holloway, Thomas B. Ryerson, Ilana B. Pollack, Eric J. Williams, Brian M. Lerner, Andrew J. Weinheimer, Teresa Campos, Frank M. Flocke, J. Ryan Spackman, Ilann Bourgeois, Jeff Peischl, Chelsea R. Thompson, Ralf M. Staebler, Amir A. Aliabadi, Wanmin Gong, Roeland Van Malderen, Anne M. Thompson, Ryan M. Stauffer, Debra E. Kollonige, Juan Carlos Gómez Martin, Masatomo Fujiwara, Katie Read, Matthew Rowlinson, Keiichi Sato, Junichi Kurokawa, Yoko Iwamoto, Fumikazu Taketani, Hisahiro Takashima, Monica Navarro Comas, Marios Panagi, and Martin G. Schultz
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-566, https://doi.org/10.5194/essd-2024-566, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
The first comprehensive dataset of tropospheric ozone over oceans/polar regions is presented, including 77 ship/buoy and 48 aircraft campaign observations (1977–2022, 0–5000 m altitude), supplemented by ozonesonde and surface data. Air masses isolated from land for 72+ hours are systematically selected as essentially oceanic. Among the 11 global regions, they show daytime decreases of 10–16% in the tropics, while near-zero depletions are rare, unlike in the Arctic, implying different mechanisms.
Madison M. Smith, Niels Fuchs, Evgenii Salganik, Donald K. Perovich, Ian Raphael, Mats A. Granskog, Kirstin Schulz, Matthew D. Shupe, and Melinda Webster
The Cryosphere, 19, 619–644, https://doi.org/10.5194/tc-19-619-2025, https://doi.org/10.5194/tc-19-619-2025, 2025
Short summary
Short summary
The fate of freshwater from Arctic sea ice and snowmelt impacts interactions of the atmosphere, sea ice, and ocean. We complete a comprehensive analysis of datasets from a 2020 central Arctic field campaign to understand the drivers of the sea ice freshwater budget and the fate of this water. Over half of the freshwater comes from surface melt, and a majority fraction is incorporated into the ocean. Results suggest that the representation of melt ponds is a key area for future development.
Jerome D. Fast, Adam C. Varble, Fan Mei, Mikhail Pekour, Jason Tomlinson, Alla Zelenyuk, Art J. Sedlacek III, Maria Zawadowicz, and Louisa Emmons
Atmos. Chem. Phys., 24, 13477–13502, https://doi.org/10.5194/acp-24-13477-2024, https://doi.org/10.5194/acp-24-13477-2024, 2024
Short summary
Short summary
Aerosol property measurements recently collected on the ground and by a research aircraft in central Argentina during the Cloud, Aerosol, and Complex Terrain Interactions (CACTI) campaign exhibit large spatial and temporal variability. These measurements coupled with coincident meteorological information provide a valuable data set needed to evaluate and improve model predictions of aerosols in a traditionally data-sparse region of South America.
Fan Mei, Jennifer M. Comstock, Mikhail S. Pekour, Jerome D. Fast, Krista L. Gaustad, Beat Schmid, Shuaiqi Tang, Damao Zhang, John E. Shilling, Jason M. Tomlinson, Adam C. Varble, Jian Wang, L. Ruby Leung, Lawrence Kleinman, Scot Martin, Sebastien C. Biraud, Brian D. Ermold, and Kenneth W. Burk
Earth Syst. Sci. Data, 16, 5429–5448, https://doi.org/10.5194/essd-16-5429-2024, https://doi.org/10.5194/essd-16-5429-2024, 2024
Short summary
Short summary
Our study explores a comprehensive dataset from airborne field studies (2013–2018) conducted using the US Department of Energy's Gulfstream 1 (G-1). The 236 flights span diverse regions, including the Arctic, US Southern Great Plains, US West Coast, eastern North Atlantic, Amazon Basin in Brazil, and Sierras de Córdoba range in Argentina. This dataset provides unique insights into atmospheric dynamics, aerosols, and clouds and makes data available in a more accessible format.
Johanna Tjernström, Michael Gallagher, Jareth Holt, Gunilla Svensson, Matthew D. Shupe, Jonathan J. Day, Lara Ferrighi, Siri Jodha Khalsa, Leslie M. Hartten, Ewan O'Connor, Zen Mariani, and Øystein Godøy
EGUsphere, https://doi.org/10.5194/egusphere-2024-2088, https://doi.org/10.5194/egusphere-2024-2088, 2024
Preprint archived
Short summary
Short summary
The value of numerical weather predictions can be enhanced in several ways, one is to improve the representations of small-scale processes in models. To understand what needs to be improved, the model results need to be evaluated. Following standardized principles, a file format has been defined to be as similar as possible for both observational and model data. Python packages and toolkits are presented as a community resource in the production of the files and evaluation analysis.
Jonathan J. Day, Gunilla Svensson, Barbara Casati, Taneil Uttal, Siri-Jodha Khalsa, Eric Bazile, Elena Akish, Niramson Azouz, Lara Ferrighi, Helmut Frank, Michael Gallagher, Øystein Godøy, Leslie M. Hartten, Laura X. Huang, Jareth Holt, Massimo Di Stefano, Irene Suomi, Zen Mariani, Sara Morris, Ewan O'Connor, Roberta Pirazzini, Teresa Remes, Rostislav Fadeev, Amy Solomon, Johanna Tjernström, and Mikhail Tolstykh
Geosci. Model Dev., 17, 5511–5543, https://doi.org/10.5194/gmd-17-5511-2024, https://doi.org/10.5194/gmd-17-5511-2024, 2024
Short summary
Short summary
The YOPP site Model Intercomparison Project (YOPPsiteMIP), which was designed to facilitate enhanced weather forecast evaluation in polar regions, is discussed here, focussing on describing the archive of forecast data and presenting a multi-model evaluation at Arctic supersites during February and March 2018. The study highlights an underestimation in boundary layer temperature variance that is common across models and a related inability to forecast cold extremes at several of the sites.
Shan Sun and Amy Solomon
The Cryosphere, 18, 3033–3048, https://doi.org/10.5194/tc-18-3033-2024, https://doi.org/10.5194/tc-18-3033-2024, 2024
Short summary
Short summary
The study brings to light the suitability of CICE for seasonal prediction being contingent on several factors, such as initial conditions like sea ice coverage and thickness, as well as atmospheric and oceanic conditions including oceanic currents and sea surface temperature. We show there is potential to improve seasonal forecasting by using a more reliable sea ice thickness initialization. Thus, data assimilation of sea ice thickness is highly relevant for advancing seasonal prediction skills.
Francesca Lappin, Gijs de Boer, Petra Klein, Jonathan Hamilton, Michelle Spencer, Radiance Calmer, Antonio R. Segales, Michael Rhodes, Tyler M. Bell, Justin Buchli, Kelsey Britt, Elizabeth Asher, Isaac Medina, Brian Butterworth, Leia Otterstatter, Madison Ritsch, Bryony Puxley, Angelina Miller, Arianna Jordan, Ceu Gomez-Faulk, Elizabeth Smith, Steven Borenstein, Troy Thornberry, Brian Argrow, and Elizabeth Pillar-Little
Earth Syst. Sci. Data, 16, 2525–2541, https://doi.org/10.5194/essd-16-2525-2024, https://doi.org/10.5194/essd-16-2525-2024, 2024
Short summary
Short summary
This article provides an overview of the lower-atmospheric dataset collected by two uncrewed aerial systems near the Gulf of Mexico coastline south of Houston, TX, USA, as part of the TRacking Aerosol Convection interactions ExpeRiment (TRACER) campaign. The data were collected through boundary layer transitions, through sea breeze circulations, and in the pre- and near-storm environment to understand how these processes influence the coastal environment.
Leah Bertrand, Jennifer E. Kay, John Haynes, and Gijs de Boer
Earth Syst. Sci. Data, 16, 1301–1316, https://doi.org/10.5194/essd-16-1301-2024, https://doi.org/10.5194/essd-16-1301-2024, 2024
Short summary
Short summary
The vertical structure of clouds has a major impact on global energy flows, air circulation, and the hydrologic cycle. Two satellite instruments, CloudSat radar and CALIPSO lidar, have taken complementary measurements of cloud vertical structure for over a decade. Here, we present the 3S-GEOPROF-COMB product, a globally gridded satellite data product combining CloudSat and CALIPSO observations of cloud vertical structure.
Michael Lonardi, Elisa F. Akansu, André Ehrlich, Mauro Mazzola, Christian Pilz, Matthew D. Shupe, Holger Siebert, and Manfred Wendisch
Atmos. Chem. Phys., 24, 1961–1978, https://doi.org/10.5194/acp-24-1961-2024, https://doi.org/10.5194/acp-24-1961-2024, 2024
Short summary
Short summary
Profiles of thermal-infrared irradiance were measured at two Arctic sites. The presence or lack of clouds influences the vertical structure of these observations. In particular, the cloud top region is a source of radiative energy that can promote cooling and mixing in the cloud layer. Simulations are used to further characterize how the amount of water in the cloud modifies this forcing. A case study additionally showcases the evolution of the radiation profiles in a dynamic atmosphere.
Maximilian Maahn, Dmitri Moisseev, Isabelle Steinke, Nina Maherndl, and Matthew D. Shupe
Atmos. Meas. Tech., 17, 899–919, https://doi.org/10.5194/amt-17-899-2024, https://doi.org/10.5194/amt-17-899-2024, 2024
Short summary
Short summary
The open-source Video In Situ Snowfall Sensor (VISSS) is a novel instrument for characterizing particle shape, size, and sedimentation velocity in snowfall. It combines a large observation volume with relatively high resolution and a design that limits wind perturbations. The open-source nature of the VISSS hardware and software invites the community to contribute to the development of the instrument, which has many potential applications in atmospheric science and beyond.
Gina C. Jozef, John J. Cassano, Sandro Dahlke, Mckenzie Dice, Christopher J. Cox, and Gijs de Boer
Atmos. Chem. Phys., 24, 1429–1450, https://doi.org/10.5194/acp-24-1429-2024, https://doi.org/10.5194/acp-24-1429-2024, 2024
Short summary
Short summary
Observations collected during MOSAiC were used to identify the range in vertical structure and stability of the central Arctic lower atmosphere through a self-organizing map analysis. Characteristics of wind features (such as low-level jets) and atmospheric moisture features (such as clouds) were analyzed in the context of the varying vertical structure and stability. Thus, the results of this paper give an overview of the thermodynamic and kinematic features of the central Arctic atmosphere.
Kevin R. Barry, Thomas C. J. Hill, Marina Nieto-Caballero, Thomas A. Douglas, Sonia M. Kreidenweis, Paul J. DeMott, and Jessie M. Creamean
Atmos. Chem. Phys., 23, 15783–15793, https://doi.org/10.5194/acp-23-15783-2023, https://doi.org/10.5194/acp-23-15783-2023, 2023
Short summary
Short summary
Ice-nucleating particles (INPs) are important for the climate due to their influence on cloud properties. To understand potential land-based sources of them in the Arctic, we carried out a survey near the northernmost point of Alaska, a landscape connected to the permafrost (thermokarst). Permafrost contained high concentrations of INPs, with the largest values near the coast. The thermokarst lakes were found to emit INPs, and the water contained elevated concentrations.
Yang Wang, Chanakya Bagya Ramesh, Scott E. Giangrande, Jerome Fast, Xianda Gong, Jiaoshi Zhang, Ahmet Tolga Odabasi, Marcus Vinicius Batista Oliveira, Alyssa Matthews, Fan Mei, John E. Shilling, Jason Tomlinson, Die Wang, and Jian Wang
Atmos. Chem. Phys., 23, 15671–15691, https://doi.org/10.5194/acp-23-15671-2023, https://doi.org/10.5194/acp-23-15671-2023, 2023
Short summary
Short summary
We report the vertical profiles of aerosol properties over the Southern Great Plains (SGP), a region influenced by shallow convective clouds, land–atmosphere interactions, boundary layer turbulence, and the aerosol life cycle. We examined the processes that drive the aerosol population and distribution in the lower troposphere over the SGP. This study helps improve our understanding of aerosol–cloud interactions and the model representation of aerosol processes.
Damao Zhang, Andrew M. Vogelmann, Fan Yang, Edward Luke, Pavlos Kollias, Zhien Wang, Peng Wu, William I. Gustafson Jr., Fan Mei, Susanne Glienke, Jason Tomlinson, and Neel Desai
Atmos. Meas. Tech., 16, 5827–5846, https://doi.org/10.5194/amt-16-5827-2023, https://doi.org/10.5194/amt-16-5827-2023, 2023
Short summary
Short summary
Cloud droplet number concentration can be retrieved from remote sensing measurements. Aircraft measurements are used to validate four ground-based retrievals of cloud droplet number concentration. We demonstrate that retrieved cloud droplet number concentrations align well with aircraft measurements for overcast clouds, but they may substantially differ for broken clouds. The ensemble of various retrievals can help quantify retrieval uncertainties and identify reliable retrieval scenarios.
Gina C. Jozef, Robert Klingel, John J. Cassano, Björn Maronga, Gijs de Boer, Sandro Dahlke, and Christopher J. Cox
Earth Syst. Sci. Data, 15, 4983–4995, https://doi.org/10.5194/essd-15-4983-2023, https://doi.org/10.5194/essd-15-4983-2023, 2023
Short summary
Short summary
Observations from the MOSAiC expedition relating to lower-atmospheric temperature, wind, stability, moisture, and surface radiation budget from radiosondes, a meteorological tower, radiation station, and ceilometer were compiled to create a dataset which describes the thermodynamic and kinematic state of the central Arctic lower atmosphere between October 2019 and September 2020. This paper describes the methods used to develop this lower-atmospheric properties dataset.
Shuaiqi Tang, Adam C. Varble, Jerome D. Fast, Kai Zhang, Peng Wu, Xiquan Dong, Fan Mei, Mikhail Pekour, Joseph C. Hardin, and Po-Lun Ma
Geosci. Model Dev., 16, 6355–6376, https://doi.org/10.5194/gmd-16-6355-2023, https://doi.org/10.5194/gmd-16-6355-2023, 2023
Short summary
Short summary
To assess the ability of Earth system model (ESM) predictions, we developed a tool called ESMAC Diags to understand how aerosols, clouds, and aerosol–cloud interactions are represented in ESMs. This paper describes its version 2 functionality. We compared the model predictions with measurements taken by planes, ships, satellites, and ground instruments over four regions across the world. Results show that this new tool can help identify model problems and guide future development of ESMs.
Gina C. Jozef, John J. Cassano, Sandro Dahlke, Mckenzie Dice, Christopher J. Cox, and Gijs de Boer
Atmos. Chem. Phys., 23, 13087–13106, https://doi.org/10.5194/acp-23-13087-2023, https://doi.org/10.5194/acp-23-13087-2023, 2023
Short summary
Short summary
Observations from the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) were used to determine the frequency of occurrence of various central Arctic lower atmospheric stability regimes and how the stability regimes transition between each other. Wind and radiation observations were analyzed in the context of stability regime and season to reveal the relationships between Arctic atmospheric stability and mechanically and radiatively driven turbulent forcings.
Albert Ansmann, Kevin Ohneiser, Ronny Engelmann, Martin Radenz, Hannes Griesche, Julian Hofer, Dietrich Althausen, Jessie M. Creamean, Matthew C. Boyer, Daniel A. Knopf, Sandro Dahlke, Marion Maturilli, Henriette Gebauer, Johannes Bühl, Cristofer Jimenez, Patric Seifert, and Ulla Wandinger
Atmos. Chem. Phys., 23, 12821–12849, https://doi.org/10.5194/acp-23-12821-2023, https://doi.org/10.5194/acp-23-12821-2023, 2023
Short summary
Short summary
The 1-year MOSAiC (2019–2020) expedition with the German ice breaker Polarstern was the largest polar field campaign ever conducted. The Polarstern, with our lidar aboard, drifted with the pack ice north of 85° N for more than 7 months (October 2019 to mid-May 2020). We measured the full annual cycle of aerosol conditions in terms of aerosol optical and cloud-process-relevant properties. We observed a strong contrast between polluted winter and clean summer aerosol conditions.
Olivia Linke, Johannes Quaas, Finja Baumer, Sebastian Becker, Jan Chylik, Sandro Dahlke, André Ehrlich, Dörthe Handorf, Christoph Jacobi, Heike Kalesse-Los, Luca Lelli, Sina Mehrdad, Roel A. J. Neggers, Johannes Riebold, Pablo Saavedra Garfias, Niklas Schnierstein, Matthew D. Shupe, Chris Smith, Gunnar Spreen, Baptiste Verneuil, Kameswara S. Vinjamuri, Marco Vountas, and Manfred Wendisch
Atmos. Chem. Phys., 23, 9963–9992, https://doi.org/10.5194/acp-23-9963-2023, https://doi.org/10.5194/acp-23-9963-2023, 2023
Short summary
Short summary
Lapse rate feedback (LRF) is a major driver of the Arctic amplification (AA) of climate change. It arises because the warming is stronger at the surface than aloft. Several processes can affect the LRF in the Arctic, such as the omnipresent temperature inversion. Here, we compare multimodel climate simulations to Arctic-based observations from a large research consortium to broaden our understanding of these processes, find synergy among them, and constrain the Arctic LRF and AA.
Weixing Hao, Fan Mei, Susanne Hering, Steven Spielman, Beat Schmid, Jason Tomlinson, and Yang Wang
Atmos. Meas. Tech., 16, 3973–3986, https://doi.org/10.5194/amt-16-3973-2023, https://doi.org/10.5194/amt-16-3973-2023, 2023
Short summary
Short summary
Airborne aerosol instrumentation plays a crucial role in understanding the spatial distribution of ambient aerosol particles. This study investigates a versatile water-based condensation particle counter through simulations and experiments. It provides valuable insights to improve versatile water-based condensation particle counter (vWCPC) aerosol measurement and operation for the community.
Manfred Wendisch, Johannes Stapf, Sebastian Becker, André Ehrlich, Evelyn Jäkel, Marcus Klingebiel, Christof Lüpkes, Michael Schäfer, and Matthew D. Shupe
Atmos. Chem. Phys., 23, 9647–9667, https://doi.org/10.5194/acp-23-9647-2023, https://doi.org/10.5194/acp-23-9647-2023, 2023
Short summary
Short summary
Atmospheric radiation measurements have been conducted during two field campaigns using research aircraft. The data are analyzed to see if the near-surface air in the Arctic is warmed or cooled if warm–humid air masses from the south enter the Arctic or cold–dry air moves from the north from the Arctic to mid-latitude areas. It is important to study these processes and to check if climate models represent them well. Otherwise it is not possible to reliably forecast the future Arctic climate.
Shijie Peng, Qinghua Yang, Matthew D. Shupe, Xingya Xi, Bo Han, Dake Chen, Sandro Dahlke, and Changwei Liu
Atmos. Chem. Phys., 23, 8683–8703, https://doi.org/10.5194/acp-23-8683-2023, https://doi.org/10.5194/acp-23-8683-2023, 2023
Short summary
Short summary
Due to a lack of observations, the structure of the Arctic atmospheric boundary layer (ABL) remains to be further explored. By analyzing a year-round radiosonde dataset collected over the Arctic sea-ice surface, we found the annual cycle of the ABL height (ABLH) is primarily controlled by the evolution of ABL thermal structure, and the surface conditions also show a high correlation with ABLH variation. In addition, the Arctic ABLH is found to be decreased in summer compared with 20 years ago.
Kameswara S. Vinjamuri, Marco Vountas, Luca Lelli, Martin Stengel, Matthew D. Shupe, Kerstin Ebell, and John P. Burrows
Atmos. Meas. Tech., 16, 2903–2918, https://doi.org/10.5194/amt-16-2903-2023, https://doi.org/10.5194/amt-16-2903-2023, 2023
Short summary
Short summary
Clouds play an important role in Arctic amplification. Cloud data from ground-based sites are valuable but cannot represent the whole Arctic. Therefore the use of satellite products is a measure to cover the entire Arctic. However, the quality of such cloud measurements from space is not well known. The paper discusses the differences and commonalities between satellite and ground-based measurements. We conclude that the satellite dataset, with a few exceptions, can be used in the Arctic.
Ulrike Egerer, John J. Cassano, Matthew D. Shupe, Gijs de Boer, Dale Lawrence, Abhiram Doddi, Holger Siebert, Gina Jozef, Radiance Calmer, Jonathan Hamilton, Christian Pilz, and Michael Lonardi
Atmos. Meas. Tech., 16, 2297–2317, https://doi.org/10.5194/amt-16-2297-2023, https://doi.org/10.5194/amt-16-2297-2023, 2023
Short summary
Short summary
This paper describes how measurements from a small uncrewed aircraft system can be used to estimate the vertical turbulent heat energy exchange between different layers in the atmosphere. This is particularly important for the atmosphere in the Arctic, as turbulent exchange in this region is often suppressed but is still important to understand how the atmosphere interacts with sea ice. We present three case studies from the MOSAiC field campaign in Arctic sea ice in 2020.
Francesca Gallo, Janek Uin, Kevin J. Sanchez, Richard H. Moore, Jian Wang, Robert Wood, Fan Mei, Connor Flynn, Stephen Springston, Eduardo B. Azevedo, Chongai Kuang, and Allison C. Aiken
Atmos. Chem. Phys., 23, 4221–4246, https://doi.org/10.5194/acp-23-4221-2023, https://doi.org/10.5194/acp-23-4221-2023, 2023
Short summary
Short summary
This study provides a summary statistic of multiday aerosol plume transport event influences on aerosol physical properties and the cloud condensation nuclei budget at the U.S. Department of Energy Atmospheric Radiation Measurement Facility in the eastern North Atlantic (ENA). An algorithm that integrates aerosol properties is developed and applied to identify multiday aerosol transport events. The influence of the aerosol plumes on aerosol populations at the ENA is successively assessed.
Felix Pithan, Marylou Athanase, Sandro Dahlke, Antonio Sánchez-Benítez, Matthew D. Shupe, Anne Sledd, Jan Streffing, Gunilla Svensson, and Thomas Jung
Geosci. Model Dev., 16, 1857–1873, https://doi.org/10.5194/gmd-16-1857-2023, https://doi.org/10.5194/gmd-16-1857-2023, 2023
Short summary
Short summary
Evaluating climate models usually requires long observational time series, but we present a method that also works for short field campaigns. We compare climate model output to observations from the MOSAiC expedition in the central Arctic Ocean. All models show how the arrival of a warm air mass warms the Arctic in April 2020, but two models do not show the response of snow temperature to the diurnal cycle. One model has too little liquid water and too much ice in clouds during cold days.
Christopher R. Niedek, Fan Mei, Maria A. Zawadowicz, Zihua Zhu, Beat Schmid, and Qi Zhang
Atmos. Meas. Tech., 16, 955–968, https://doi.org/10.5194/amt-16-955-2023, https://doi.org/10.5194/amt-16-955-2023, 2023
Short summary
Short summary
This novel micronebulization aerosol mass spectrometry (MS) technique requires a low sample volume (10 μL) and can quantify nanogram levels of organic and inorganic particulate matter (PM) components when used with 34SO4. This technique was successfully applied to PM samples collected from uncrewed atmospheric measurement platforms and provided chemical information that agrees well with real-time data from a co-located aerosol chemical speciation monitor and offline data from secondary ion MS.
Shan Sun and Amy Solomon
EGUsphere, https://doi.org/10.5194/egusphere-2022-1368, https://doi.org/10.5194/egusphere-2022-1368, 2022
Preprint archived
Short summary
Short summary
We evaluate sea ice prediction skill at seasonal time scales using the CICE sea ice model. It confirms the importance of the accuracy in ice thickness initialization for seasonal sea ice prediction. It suggests that there exists a potentially important source of additional skill in seasonal forecasting, namely, a more reliable sea ice thickness initialization. Hence, assimilation of sea ice thickness appears to be highly relevant for advancing seasonal prediction skill.
Jonathan Hamilton, Gijs de Boer, Abhiram Doddi, and Dale A. Lawrence
Atmos. Meas. Tech., 15, 6789–6806, https://doi.org/10.5194/amt-15-6789-2022, https://doi.org/10.5194/amt-15-6789-2022, 2022
Short summary
Short summary
The DataHawk2 is a small, low-cost, rugged, uncrewed aircraft system (UAS) used to observe the thermodynamic and turbulence structures of the lower atmosphere, supporting an advanced understanding of the physical processes that regulate weather and climate. This paper discusses the development, performance, and sensing capabilities of the DataHawk2 using data collected during several recent field deployments.
Jerome D. Fast, David M. Bell, Gourihar Kulkarni, Jiumeng Liu, Fan Mei, Georges Saliba, John E. Shilling, Kaitlyn Suski, Jason Tomlinson, Jian Wang, Rahul Zaveri, and Alla Zelenyuk
Atmos. Chem. Phys., 22, 11217–11238, https://doi.org/10.5194/acp-22-11217-2022, https://doi.org/10.5194/acp-22-11217-2022, 2022
Short summary
Short summary
Recent aircraft measurements from the HI-SCALE campaign conducted over the Southern Great Plains (SGP) site in Oklahoma are used to quantify spatial variability of aerosol properties in terms of grid spacings typically used by weather and climate models. Surprisingly large horizontal gradients in aerosol properties were frequently observed in this rural area. This spatial variability can be used as an uncertainty range when comparing surface point measurements with model predictions.
Océane Hames, Mahdi Jafari, David Nicholas Wagner, Ian Raphael, David Clemens-Sewall, Chris Polashenski, Matthew D. Shupe, Martin Schneebeli, and Michael Lehning
Geosci. Model Dev., 15, 6429–6449, https://doi.org/10.5194/gmd-15-6429-2022, https://doi.org/10.5194/gmd-15-6429-2022, 2022
Short summary
Short summary
This paper presents an Eulerian–Lagrangian snow transport model implemented in the fluid dynamics software OpenFOAM, which we call snowBedFoam 1.0. We apply this model to reproduce snow deposition on a piece of ridged Arctic sea ice, which was produced during the MOSAiC expedition through scan measurements. The model appears to successfully reproduce the enhanced snow accumulation and deposition patterns, although some quantitative uncertainties were shown.
Fan Mei, Mikhail S. Pekour, Darielle Dexheimer, Gijs de Boer, RaeAnn Cook, Jason Tomlinson, Beat Schmid, Lexie A. Goldberger, Rob Newsom, and Jerome D. Fast
Earth Syst. Sci. Data, 14, 3423–3438, https://doi.org/10.5194/essd-14-3423-2022, https://doi.org/10.5194/essd-14-3423-2022, 2022
Short summary
Short summary
This work focuses on an expanding number of data sets observed using ARM TBS (133 flights) and UAS (seven flights) platforms by the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) user facility. These data streams provide new perspectives on spatial variability of atmospheric and surface parameters, helping to address critical science questions in Earth system science research, such as the aerosol–cloud interaction in the boundary layer.
Gina Jozef, John Cassano, Sandro Dahlke, and Gijs de Boer
Atmos. Meas. Tech., 15, 4001–4022, https://doi.org/10.5194/amt-15-4001-2022, https://doi.org/10.5194/amt-15-4001-2022, 2022
Short summary
Short summary
During the MOSAiC expedition, meteorological conditions over the lowest 1 km of the atmosphere were sampled with the DataHawk2 uncrewed aircraft system. These data were used to identify the best method for atmospheric boundary layer height detection by comparing visually identified subjective boundary layer height to that identified by several objective automated detection methods. The results show a bulk Richardson number-based approach gives the best estimate of boundary layer height.
Assia Arouf, Hélène Chepfer, Thibault Vaillant de Guélis, Marjolaine Chiriaco, Matthew D. Shupe, Rodrigo Guzman, Artem Feofilov, Patrick Raberanto, Tristan S. L'Ecuyer, Seiji Kato, and Michael R. Gallagher
Atmos. Meas. Tech., 15, 3893–3923, https://doi.org/10.5194/amt-15-3893-2022, https://doi.org/10.5194/amt-15-3893-2022, 2022
Short summary
Short summary
We proposed new estimates of the surface longwave (LW) cloud radiative effect (CRE) derived from observations collected by a space-based lidar on board the CALIPSO satellite and radiative transfer computations. Our estimate appropriately captures the surface LW CRE annual variability over bright polar surfaces, and it provides a dataset more than 13 years long.
David N. Wagner, Matthew D. Shupe, Christopher Cox, Ola G. Persson, Taneil Uttal, Markus M. Frey, Amélie Kirchgaessner, Martin Schneebeli, Matthias Jaggi, Amy R. Macfarlane, Polona Itkin, Stefanie Arndt, Stefan Hendricks, Daniela Krampe, Marcel Nicolaus, Robert Ricker, Julia Regnery, Nikolai Kolabutin, Egor Shimanshuck, Marc Oggier, Ian Raphael, Julienne Stroeve, and Michael Lehning
The Cryosphere, 16, 2373–2402, https://doi.org/10.5194/tc-16-2373-2022, https://doi.org/10.5194/tc-16-2373-2022, 2022
Short summary
Short summary
Based on measurements of the snow cover over sea ice and atmospheric measurements, we estimate snowfall and snow accumulation for the MOSAiC ice floe, between November 2019 and May 2020. For this period, we estimate 98–114 mm of precipitation. We suggest that about 34 mm of snow water equivalent accumulated until the end of April 2020 and that at least about 50 % of the precipitated snow was eroded or sublimated. Further, we suggest explanations for potential snowfall overestimation.
Shuaiqi Tang, Jerome D. Fast, Kai Zhang, Joseph C. Hardin, Adam C. Varble, John E. Shilling, Fan Mei, Maria A. Zawadowicz, and Po-Lun Ma
Geosci. Model Dev., 15, 4055–4076, https://doi.org/10.5194/gmd-15-4055-2022, https://doi.org/10.5194/gmd-15-4055-2022, 2022
Short summary
Short summary
We developed an Earth system model (ESM) diagnostics package to compare various types of aerosol properties simulated in ESMs with aircraft, ship, and surface measurements from six field campaigns across spatial scales. The diagnostics package is coded and organized to be flexible and modular for future extension to other field campaign datasets and adapted to higher-resolution model simulations. Future releases will include comprehensive cloud and aerosol–cloud interaction diagnostics.
Patricia A. Cleary, Gijs de Boer, Joseph P. Hupy, Steven Borenstein, Jonathan Hamilton, Ben Kies, Dale Lawrence, R. Bradley Pierce, Joe Tirado, Aidan Voon, and Timothy Wagner
Earth Syst. Sci. Data, 14, 2129–2145, https://doi.org/10.5194/essd-14-2129-2022, https://doi.org/10.5194/essd-14-2129-2022, 2022
Short summary
Short summary
A field campaign, WiscoDISCO-21, was conducted at the shoreline of Lake Michigan to better understand the role of marine air in pollutants. Two uncrewed aircraft systems were equipped with sensors for meteorological variables and ozone. A Doppler lidar instrument at a ground station measured horizontal and vertical winds. The overlap of observations from multiple instruments allowed for a unique mapping of the meteorology and pollutants as a marine air mass moved over land.
Michael R. Gallagher, Matthew D. Shupe, Hélène Chepfer, and Tristan L'Ecuyer
The Cryosphere, 16, 435–450, https://doi.org/10.5194/tc-16-435-2022, https://doi.org/10.5194/tc-16-435-2022, 2022
Short summary
Short summary
By using direct observations of snowfall and mass changes, the variability of daily snowfall mass input to the Greenland ice sheet is quantified for the first time. With new methods we conclude that cyclones west of Greenland in summer contribute the most snowfall, with 1.66 Gt per occurrence. These cyclones are contextualized in the broader Greenland climate, and snowfall is validated against mass changes to verify the results. Snowfall and mass change observations are shown to agree well.
Gijs de Boer, Steven Borenstein, Radiance Calmer, Christopher Cox, Michael Rhodes, Christopher Choate, Jonathan Hamilton, Jackson Osborn, Dale Lawrence, Brian Argrow, and Janet Intrieri
Earth Syst. Sci. Data, 14, 19–31, https://doi.org/10.5194/essd-14-19-2022, https://doi.org/10.5194/essd-14-19-2022, 2022
Short summary
Short summary
This article provides a summary of the collection of atmospheric data over the near-coastal zone upwind of Barbados during the ATOMIC and EUREC4A field campaigns. These data were collected to improve our understanding of the structure and dynamics of the lower atmosphere in the tropical trade-wind regime over the Atlantic Ocean and the influence of that portion of the atmosphere on the development and maintenance of clouds.
Fan Mei, Steven Spielman, Susanne Hering, Jian Wang, Mikhail S. Pekour, Gregory Lewis, Beat Schmid, Jason Tomlinson, and Maynard Havlicek
Atmos. Meas. Tech., 14, 7329–7340, https://doi.org/10.5194/amt-14-7329-2021, https://doi.org/10.5194/amt-14-7329-2021, 2021
Short summary
Short summary
This study focuses on understanding a versatile water-based condensation particle counter (vWCPC 3789) performance under various ambient pressure conditions (500–1000 hPa). A vWCPC has the advantage of avoiding health and safety concerns. However, its performance characterization under low pressure is rare but crucial for ensuring successful airborne deployment. This paper provides advanced knowledge of operating a vWCPC 3789 to capture the spatial variations of atmospheric aerosols.
Shan Sun and Amy Solomon
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-353, https://doi.org/10.5194/tc-2021-353, 2021
Preprint withdrawn
Short summary
Short summary
We validate the standalone CICE sea ice model for application in the seasonal forecast, before it is used in the coupled atmosphere-ocean-ice model. We found the model did a better job in forecasting Arctic sea ice extent in the warm season than in the cold season at the seasonal time scale. A higher forecast skill is achieved when the model is initialized with ice thickness from satellite observations, indicating the importance of the ice thickness initialization.
Heather Guy, Ian M. Brooks, Ken S. Carslaw, Benjamin J. Murray, Von P. Walden, Matthew D. Shupe, Claire Pettersen, David D. Turner, Christopher J. Cox, William D. Neff, Ralf Bennartz, and Ryan R. Neely III
Atmos. Chem. Phys., 21, 15351–15374, https://doi.org/10.5194/acp-21-15351-2021, https://doi.org/10.5194/acp-21-15351-2021, 2021
Short summary
Short summary
We present the first full year of surface aerosol number concentration measurements from the central Greenland Ice Sheet. Aerosol concentrations here have a distinct seasonal cycle from those at lower-altitude Arctic sites, which is driven by large-scale atmospheric circulation. Our results can be used to help understand the role aerosols might play in Greenland surface melt through the modification of cloud properties. This is crucial in a rapidly changing region where observations are sparse.
Fan Mei, Jian Wang, Shan Zhou, Qi Zhang, Sonya Collier, and Jianzhong Xu
Atmos. Chem. Phys., 21, 13019–13029, https://doi.org/10.5194/acp-21-13019-2021, https://doi.org/10.5194/acp-21-13019-2021, 2021
Short summary
Short summary
This work focuses on understanding aerosol's ability to act as cloud condensation nuclei (CCN) and its variations with organic oxidation level and volatility using measurements at a rural site. Aerosol properties were examined from four air mass sources. The results help improve the accurate representation of aerosol from different ambient aerosol emissions, transformation pathways, and atmospheric processes in a climate model.
Bjorn Stevens, Sandrine Bony, David Farrell, Felix Ament, Alan Blyth, Christopher Fairall, Johannes Karstensen, Patricia K. Quinn, Sabrina Speich, Claudia Acquistapace, Franziska Aemisegger, Anna Lea Albright, Hugo Bellenger, Eberhard Bodenschatz, Kathy-Ann Caesar, Rebecca Chewitt-Lucas, Gijs de Boer, Julien Delanoë, Leif Denby, Florian Ewald, Benjamin Fildier, Marvin Forde, Geet George, Silke Gross, Martin Hagen, Andrea Hausold, Karen J. Heywood, Lutz Hirsch, Marek Jacob, Friedhelm Jansen, Stefan Kinne, Daniel Klocke, Tobias Kölling, Heike Konow, Marie Lothon, Wiebke Mohr, Ann Kristin Naumann, Louise Nuijens, Léa Olivier, Robert Pincus, Mira Pöhlker, Gilles Reverdin, Gregory Roberts, Sabrina Schnitt, Hauke Schulz, A. Pier Siebesma, Claudia Christine Stephan, Peter Sullivan, Ludovic Touzé-Peiffer, Jessica Vial, Raphaela Vogel, Paquita Zuidema, Nicola Alexander, Lyndon Alves, Sophian Arixi, Hamish Asmath, Gholamhossein Bagheri, Katharina Baier, Adriana Bailey, Dariusz Baranowski, Alexandre Baron, Sébastien Barrau, Paul A. Barrett, Frédéric Batier, Andreas Behrendt, Arne Bendinger, Florent Beucher, Sebastien Bigorre, Edmund Blades, Peter Blossey, Olivier Bock, Steven Böing, Pierre Bosser, Denis Bourras, Pascale Bouruet-Aubertot, Keith Bower, Pierre Branellec, Hubert Branger, Michal Brennek, Alan Brewer, Pierre-Etienne Brilouet, Björn Brügmann, Stefan A. Buehler, Elmo Burke, Ralph Burton, Radiance Calmer, Jean-Christophe Canonici, Xavier Carton, Gregory Cato Jr., Jude Andre Charles, Patrick Chazette, Yanxu Chen, Michal T. Chilinski, Thomas Choularton, Patrick Chuang, Shamal Clarke, Hugh Coe, Céline Cornet, Pierre Coutris, Fleur Couvreux, Susanne Crewell, Timothy Cronin, Zhiqiang Cui, Yannis Cuypers, Alton Daley, Gillian M. Damerell, Thibaut Dauhut, Hartwig Deneke, Jean-Philippe Desbios, Steffen Dörner, Sebastian Donner, Vincent Douet, Kyla Drushka, Marina Dütsch, André Ehrlich, Kerry Emanuel, Alexandros Emmanouilidis, Jean-Claude Etienne, Sheryl Etienne-Leblanc, Ghislain Faure, Graham Feingold, Luca Ferrero, Andreas Fix, Cyrille Flamant, Piotr Jacek Flatau, Gregory R. Foltz, Linda Forster, Iulian Furtuna, Alan Gadian, Joseph Galewsky, Martin Gallagher, Peter Gallimore, Cassandra Gaston, Chelle Gentemann, Nicolas Geyskens, Andreas Giez, John Gollop, Isabelle Gouirand, Christophe Gourbeyre, Dörte de Graaf, Geiske E. de Groot, Robert Grosz, Johannes Güttler, Manuel Gutleben, Kashawn Hall, George Harris, Kevin C. Helfer, Dean Henze, Calvert Herbert, Bruna Holanda, Antonio Ibanez-Landeta, Janet Intrieri, Suneil Iyer, Fabrice Julien, Heike Kalesse, Jan Kazil, Alexander Kellman, Abiel T. Kidane, Ulrike Kirchner, Marcus Klingebiel, Mareike Körner, Leslie Ann Kremper, Jan Kretzschmar, Ovid Krüger, Wojciech Kumala, Armin Kurz, Pierre L'Hégaret, Matthieu Labaste, Tom Lachlan-Cope, Arlene Laing, Peter Landschützer, Theresa Lang, Diego Lange, Ingo Lange, Clément Laplace, Gauke Lavik, Rémi Laxenaire, Caroline Le Bihan, Mason Leandro, Nathalie Lefevre, Marius Lena, Donald Lenschow, Qiang Li, Gary Lloyd, Sebastian Los, Niccolò Losi, Oscar Lovell, Christopher Luneau, Przemyslaw Makuch, Szymon Malinowski, Gaston Manta, Eleni Marinou, Nicholas Marsden, Sebastien Masson, Nicolas Maury, Bernhard Mayer, Margarette Mayers-Als, Christophe Mazel, Wayne McGeary, James C. McWilliams, Mario Mech, Melina Mehlmann, Agostino Niyonkuru Meroni, Theresa Mieslinger, Andreas Minikin, Peter Minnett, Gregor Möller, Yanmichel Morfa Avalos, Caroline Muller, Ionela Musat, Anna Napoli, Almuth Neuberger, Christophe Noisel, David Noone, Freja Nordsiek, Jakub L. Nowak, Lothar Oswald, Douglas J. Parker, Carolyn Peck, Renaud Person, Miriam Philippi, Albert Plueddemann, Christopher Pöhlker, Veronika Pörtge, Ulrich Pöschl, Lawrence Pologne, Michał Posyniak, Marc Prange, Estefanía Quiñones Meléndez, Jule Radtke, Karim Ramage, Jens Reimann, Lionel Renault, Klaus Reus, Ashford Reyes, Joachim Ribbe, Maximilian Ringel, Markus Ritschel, Cesar B. Rocha, Nicolas Rochetin, Johannes Röttenbacher, Callum Rollo, Haley Royer, Pauline Sadoulet, Leo Saffin, Sanola Sandiford, Irina Sandu, Michael Schäfer, Vera Schemann, Imke Schirmacher, Oliver Schlenczek, Jerome Schmidt, Marcel Schröder, Alfons Schwarzenboeck, Andrea Sealy, Christoph J. Senff, Ilya Serikov, Samkeyat Shohan, Elizabeth Siddle, Alexander Smirnov, Florian Späth, Branden Spooner, M. Katharina Stolla, Wojciech Szkółka, Simon P. de Szoeke, Stéphane Tarot, Eleni Tetoni, Elizabeth Thompson, Jim Thomson, Lorenzo Tomassini, Julien Totems, Alma Anna Ubele, Leonie Villiger, Jan von Arx, Thomas Wagner, Andi Walther, Ben Webber, Manfred Wendisch, Shanice Whitehall, Anton Wiltshire, Allison A. Wing, Martin Wirth, Jonathan Wiskandt, Kevin Wolf, Ludwig Worbes, Ethan Wright, Volker Wulfmeyer, Shanea Young, Chidong Zhang, Dongxiao Zhang, Florian Ziemen, Tobias Zinner, and Martin Zöger
Earth Syst. Sci. Data, 13, 4067–4119, https://doi.org/10.5194/essd-13-4067-2021, https://doi.org/10.5194/essd-13-4067-2021, 2021
Short summary
Short summary
The EUREC4A field campaign, designed to test hypothesized mechanisms by which clouds respond to warming and benchmark next-generation Earth-system models, is presented. EUREC4A comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. It was the first campaign that attempted to characterize the full range of processes and scales influencing trade wind clouds.
Amy Solomon, Céline Heuzé, Benjamin Rabe, Sheldon Bacon, Laurent Bertino, Patrick Heimbach, Jun Inoue, Doroteaciro Iovino, Ruth Mottram, Xiangdong Zhang, Yevgeny Aksenov, Ronan McAdam, An Nguyen, Roshin P. Raj, and Han Tang
Ocean Sci., 17, 1081–1102, https://doi.org/10.5194/os-17-1081-2021, https://doi.org/10.5194/os-17-1081-2021, 2021
Short summary
Short summary
Freshwater in the Arctic Ocean plays a critical role in the global climate system by impacting ocean circulations, stratification, mixing, and emergent regimes. In this review paper we assess how Arctic Ocean freshwater changed in the 2010s relative to the 2000s. Estimates from observations and reanalyses show a qualitative stabilization in the 2010s due to a compensation between a freshening of the Beaufort Gyre and a reduction in freshwater in the Amerasian and Eurasian basins.
Yang Wang, Guangjie Zheng, Michael P. Jensen, Daniel A. Knopf, Alexander Laskin, Alyssa A. Matthews, David Mechem, Fan Mei, Ryan Moffet, Arthur J. Sedlacek, John E. Shilling, Stephen Springston, Amy Sullivan, Jason Tomlinson, Daniel Veghte, Rodney Weber, Robert Wood, Maria A. Zawadowicz, and Jian Wang
Atmos. Chem. Phys., 21, 11079–11098, https://doi.org/10.5194/acp-21-11079-2021, https://doi.org/10.5194/acp-21-11079-2021, 2021
Short summary
Short summary
This paper reports the vertical profiles of trace gas and aerosol properties over the eastern North Atlantic, a region of persistent but diverse subtropical marine boundary layer (MBL) clouds. We examined the key processes that drive the cloud condensation nuclei (CCN) population and how it varies with season and synoptic conditions. This study helps improve the model representation of the aerosol processes in the remote MBL, reducing the simulated aerosol indirect effects.
Robert Pincus, Chris W. Fairall, Adriana Bailey, Haonan Chen, Patrick Y. Chuang, Gijs de Boer, Graham Feingold, Dean Henze, Quinn T. Kalen, Jan Kazil, Mason Leandro, Ashley Lundry, Ken Moran, Dana A. Naeher, David Noone, Akshar J. Patel, Sergio Pezoa, Ivan PopStefanija, Elizabeth J. Thompson, James Warnecke, and Paquita Zuidema
Earth Syst. Sci. Data, 13, 3281–3296, https://doi.org/10.5194/essd-13-3281-2021, https://doi.org/10.5194/essd-13-3281-2021, 2021
Short summary
Short summary
This paper describes observations taken from a research aircraft during a field experiment in the western Atlantic Ocean during January and February 2020. The plane made 11 flights, most 8-9 h long, and measured the properties of the atmosphere and ocean with a combination of direct measurements, sensors falling from the plane to profile the atmosphere and ocean, and remote sensing measurements of clouds and the ocean surface.
Jessie M. Creamean, Julio E. Ceniceros, Lilyanna Newman, Allyson D. Pace, Thomas C. J. Hill, Paul J. DeMott, and Matthew E. Rhodes
Biogeosciences, 18, 3751–3762, https://doi.org/10.5194/bg-18-3751-2021, https://doi.org/10.5194/bg-18-3751-2021, 2021
Short summary
Short summary
Microorganisms have the unique ability to form ice in clouds at relatively warm temperatures, especially specific types of plant bacteria. However, to date, members of the domain Archaea have not been evaluated for their cloud-forming capabilities. Here, we show the first results of Haloarchaea that have the ability to form cloud ice at moderate supercooled temperatures that are found in hypersaline environments on Earth.
David Brus, Jani Gustafsson, Osku Kemppinen, Gijs de Boer, and Anne Hirsikko
Earth Syst. Sci. Data, 13, 2909–2922, https://doi.org/10.5194/essd-13-2909-2021, https://doi.org/10.5194/essd-13-2909-2021, 2021
Short summary
Short summary
This publication summarizes measurements collected and datasets generated by the Finnish Meteorological Institute and Kansas State University teams during the LAPSE-RATE campaign that took place in San Luis Valley, Colorado, during summer 2018. We provide an overview of the rotorcraft and offer insights into the payloads that were used. We describe the teams’ scientific goals, flight strategies, and the datasets, including a description of the measurement validation techniques applied.
Gijs de Boer, Cory Dixon, Steven Borenstein, Dale A. Lawrence, Jack Elston, Daniel Hesselius, Maciej Stachura, Roger Laurence III, Sara Swenson, Christopher M. Choate, Abhiram Doddi, Aiden Sesnic, Katherine Glasheen, Zakariya Laouar, Flora Quinby, Eric Frew, and Brian M. Argrow
Earth Syst. Sci. Data, 13, 2515–2528, https://doi.org/10.5194/essd-13-2515-2021, https://doi.org/10.5194/essd-13-2515-2021, 2021
Short summary
Short summary
This paper describes data collected by uncrewed aircraft operated by the University of Colorado Boulder and Black Swift Technologies during the Lower Atmospheric Profiling Studies at Elevation – A Remotely-piloted Aircraft Team Experiment (LAPSE-RATE) field campaign. This effort was conducted in the San Luis Valley of Colorado in July 2018 and included intensive observing of the atmospheric boundary layer. This paper describes data collected by four aircraft operated by these entities.
Maria A. Zawadowicz, Kaitlyn Suski, Jiumeng Liu, Mikhail Pekour, Jerome Fast, Fan Mei, Arthur J. Sedlacek, Stephen Springston, Yang Wang, Rahul A. Zaveri, Robert Wood, Jian Wang, and John E. Shilling
Atmos. Chem. Phys., 21, 7983–8002, https://doi.org/10.5194/acp-21-7983-2021, https://doi.org/10.5194/acp-21-7983-2021, 2021
Short summary
Short summary
This paper describes the results of a recent field campaign in the eastern North Atlantic, where two mass spectrometers were deployed aboard a research aircraft to measure the chemistry of aerosols and trace gases. Very clean conditions were found, dominated by local sulfate-rich acidic aerosol and very aged organics. Evidence of
long-range transport of aerosols from the continents was also identified.
Patricia K. Quinn, Elizabeth J. Thompson, Derek J. Coffman, Sunil Baidar, Ludovic Bariteau, Timothy S. Bates, Sebastien Bigorre, Alan Brewer, Gijs de Boer, Simon P. de Szoeke, Kyla Drushka, Gregory R. Foltz, Janet Intrieri, Suneil Iyer, Chris W. Fairall, Cassandra J. Gaston, Friedhelm Jansen, James E. Johnson, Ovid O. Krüger, Richard D. Marchbanks, Kenneth P. Moran, David Noone, Sergio Pezoa, Robert Pincus, Albert J. Plueddemann, Mira L. Pöhlker, Ulrich Pöschl, Estefania Quinones Melendez, Haley M. Royer, Malgorzata Szczodrak, Jim Thomson, Lucia M. Upchurch, Chidong Zhang, Dongxiao Zhang, and Paquita Zuidema
Earth Syst. Sci. Data, 13, 1759–1790, https://doi.org/10.5194/essd-13-1759-2021, https://doi.org/10.5194/essd-13-1759-2021, 2021
Short summary
Short summary
ATOMIC took place in the northwestern tropical Atlantic during January and February of 2020 to gather information on shallow atmospheric convection, the effects of aerosols and clouds on the ocean surface energy budget, and mesoscale oceanic processes. Measurements made from the NOAA RV Ronald H. Brown and assets it deployed (instrumented mooring and uncrewed seagoing vehicles) are described herein to advance widespread use of the data by the ATOMIC and broader research communities.
Joseph Sedlar, Adele Igel, and Hagen Telg
Atmos. Chem. Phys., 21, 4149–4167, https://doi.org/10.5194/acp-21-4149-2021, https://doi.org/10.5194/acp-21-4149-2021, 2021
Christopher J. Cox, Sara M. Morris, Taneil Uttal, Ross Burgener, Emiel Hall, Mark Kutchenreiter, Allison McComiskey, Charles N. Long, Bryan D. Thomas, and James Wendell
Atmos. Meas. Tech., 14, 1205–1224, https://doi.org/10.5194/amt-14-1205-2021, https://doi.org/10.5194/amt-14-1205-2021, 2021
Short summary
Short summary
Solar and infrared radiation are measured regularly for research, industry, and climate monitoring. In cold climates, icing of sensors is a poorly constrained source of uncertainty. D-ICE was carried out in Alaska to document the effectiveness of ice-mitigation technology and quantify errors associated with ice. Technology was more effective than anticipated, and while instantaneous errors were large, mean biases were small. Attributes of effective ice mitigation design were identified.
Gijs de Boer, Sean Waugh, Alexander Erwin, Steven Borenstein, Cory Dixon, Wafa'a Shanti, Adam Houston, and Brian Argrow
Earth Syst. Sci. Data, 13, 155–169, https://doi.org/10.5194/essd-13-155-2021, https://doi.org/10.5194/essd-13-155-2021, 2021
Short summary
Short summary
This paper provides an overview of measurements collected in south-central Colorado (USA) during the 2018 LAPSE-RATE campaign. The measurements described in this article were collected by mobile surface vehicles, including cars, trucks, and vans, and include measurements of thermodynamic quantities (e.g., temperature, humidity, pressure) and winds. These measurements can be used to study the evolution of the atmospheric boundary layer at a high-elevation site under a variety of conditions.
David Brus, Jani Gustafsson, Ville Vakkari, Osku Kemppinen, Gijs de Boer, and Anne Hirsikko
Atmos. Chem. Phys., 21, 517–533, https://doi.org/10.5194/acp-21-517-2021, https://doi.org/10.5194/acp-21-517-2021, 2021
Short summary
Short summary
This paper summarizes Finnish Meteorological Institute and Kansas State University unmanned aerial vehicle measurements during the summer 2018 Lower Atmospheric Process Studies at Elevation – a Remotely-piloted Aircraft Team Experiment (LAPSE-RATE) campaign in the San Luis Valley, providing an overview of the rotorcraft deployed, payloads, scientific goals and flight strategies and presenting observations of atmospheric thermodynamics and aerosol and gas parameters in the vertical column.
Gijs de Boer, Adam Houston, Jamey Jacob, Phillip B. Chilson, Suzanne W. Smith, Brian Argrow, Dale Lawrence, Jack Elston, David Brus, Osku Kemppinen, Petra Klein, Julie K. Lundquist, Sean Waugh, Sean C. C. Bailey, Amy Frazier, Michael P. Sama, Christopher Crick, David Schmale III, James Pinto, Elizabeth A. Pillar-Little, Victoria Natalie, and Anders Jensen
Earth Syst. Sci. Data, 12, 3357–3366, https://doi.org/10.5194/essd-12-3357-2020, https://doi.org/10.5194/essd-12-3357-2020, 2020
Short summary
Short summary
This paper provides an overview of the Lower Atmospheric Profiling Studies at Elevation – a Remotely-piloted Aircraft Team Experiment (LAPSE-RATE) field campaign, held from 14 to 20 July 2018. This field campaign spanned a 1-week deployment to Colorado's San Luis Valley, involving over 100 students, scientists, engineers, pilots, and outreach coordinators. This overview paper provides insight into the campaign for a special issue focused on the datasets collected during LAPSE-RATE.
Peggy Achtert, Ewan J. O'Connor, Ian M. Brooks, Georgia Sotiropoulou, Matthew D. Shupe, Bernhard Pospichal, Barbara J. Brooks, and Michael Tjernström
Atmos. Chem. Phys., 20, 14983–15002, https://doi.org/10.5194/acp-20-14983-2020, https://doi.org/10.5194/acp-20-14983-2020, 2020
Short summary
Short summary
We present observations of precipitating and non-precipitating Arctic liquid and mixed-phase clouds during a research cruise along the Russian shelf in summer and autumn of 2014. Active remote-sensing observations, radiosondes, and auxiliary measurements are combined in the synergistic Cloudnet retrieval. Cloud properties are analysed with respect to cloud-top temperature and boundary layer structure. About 8 % of all liquid clouds show a liquid water path below the infrared black body limit.
Cited articles
Abbatt, J. P. D., Leaitch, W. R., Aliabadi, A. A., Bertram, A. K., Blanchet, J.-P., Boivin-Rioux, A., Bozem, H., Burkart, J., Chang, R. Y. W., Charette, J., Chaubey, J. P., Christensen, R. J., Cirisan, A., Collins, D. B., Croft, B., Dionne, J., Evans, G. J., Fletcher, C. G., Galí, M., Ghahremaninezhad, R., Girard, E., Gong, W., Gosselin, M., Gourdal, M., Hanna, S. J., Hayashida, H., Herber, A. B., Hesaraki, S., Hoor, P., Huang, L., Hussherr, R., Irish, V. E., Keita, S. A., Kodros, J. K., Köllner, F., Kolonjari, F., Kunkel, D., Ladino, L. A., Law, K., Levasseur, M., Libois, Q., Liggio, J., Lizotte, M., Macdonald, K. M., Mahmood, R., Martin, R. V., Mason, R. H., Miller, L. A., Moravek, A., Mortenson, E., Mungall, E. L., Murphy, J. G., Namazi, M., Norman, A.-L., O'Neill, N. T., Pierce, J. R., Russell, L. M., Schneider, J., Schulz, H., Sharma, S., Si, M., Staebler, R. M., Steiner, N. S., Thomas, J. L., von Salzen, K., Wentzell, J. J. B., Willis, M. D., Wentworth, G. R., Xu, J.-W., and Yakobi-Hancock, J. D.: Overview paper: New insights into aerosol and climate in the Arctic, Atmos. Chem. Phys., 19, 2527–2560, https://doi.org/10.5194/acp-19-2527-2019, 2019.
Ancellet, G., Pelon, J., Blanchard, Y., Quennehen, B., Bazureau, A., Law, K. S., and Schwarzenboeck, A.: Transport of aerosol to the Arctic: analysis of CALIOP and French aircraft data during the spring 2008 POLARCAT campaign, Atmos. Chem. Phys., 14, 8235–8254, https://doi.org/10.5194/acp-14-8235-2014, 2014.
Ardon-Dryer, K., Levin, Z., and Lawson, R. P.: Characteristics of immersion freezing nuclei at the South Pole station in Antarctica, Atmos. Chem. Phys., 11, 4015–4024, https://doi.org/10.5194/acp-11-4015-2011, 2011.
Arrigo, K. R. and van Dijken, G. L.: Continued increases in Arctic Ocean primary production, Prog. Oceanogr., 136, 60–70, https://doi.org/10.1016/j.pocean.2015.05.002, 2015.
Atkinson, D. E., Sassen, K., Hayashi, M., Cahill, C. F., Shaw, G., Harrigan, D., and Fuelberg, H.: Aerosol properties over Interior Alaska from lidar, DRUM Impactor sampler, and OPC-sonde measurements and their meteorological context during ARCTAS-A, April 2008, Atmos. Chem. Phys., 13, 1293–1310, https://doi.org/10.5194/acp-13-1293-2013, 2013.
Barrie, L. A. and Barrie, M. J.: Chemical-Components of Lower Tropospheric
Aerosols in the High Arctic – 6 Years of Observations, J. Atmos. Chem., 11,
211–226, https://doi.org/10.1007/Bf00118349, 1990.
Bodhaine, B. A.: Aerosol measurements at four background sites, J. Geophys. Res.-Oceans, 88,
10753–10768, https://doi.org/10.1029/JC088iC15p10753, 1983.
Borys, R. D.: Studies of ice nucleation by Arctic aerosol on AGASP-II, J.
Atmos. Chem., 9, 169–185, https://doi.org/10.1007/BF00052831, 1989.
Brock, C. A., Cozic, J., Bahreini, R., Froyd, K. D., Middlebrook, A. M., McComiskey, A., Brioude, J., Cooper, O. R., Stohl, A., Aikin, K. C., de Gouw, J. A., Fahey, D. W., Ferrare, R. A., Gao, R.-S., Gore, W., Holloway, J. S., Hübler, G., Jefferson, A., Lack, D. A., Lance, S., Moore, R. H., Murphy, D. M., Nenes, A., Novelli, P. C., Nowak, J. B., Ogren, J. A., Peischl, J., Pierce, R. B., Pilewskie, P., Quinn, P. K., Ryerson, T. B., Schmidt, K. S., Schwarz, J. P., Sodemann, H., Spackman, J. R., Stark, H., Thomson, D. S., Thornberry, T., Veres, P., Watts, L. A., Warneke, C., and Wollny, A. G.: Characteristics, sources, and transport of aerosols measured in spring 2008 during the aerosol, radiation, and cloud processes affecting Arctic Climate (ARCPAC) Project, Atmos. Chem. Phys., 11, 2423–2453, https://doi.org/10.5194/acp-11-2423-2011, 2011.
Brooks, I. M., Tjernström, M., Persson, P. O. G., Shupe, M. D.,
Atkinson, R. A., Canut, G., Birch, C. E., Mauritsen, T., Sedlar, J., and
Brooks, B. J.: The Turbulent Structure of the Arctic Summer Boundary Layer
During The Arctic Summer Cloud-Ocean Study, J. Geophys. Res.-Atmos., 122, 9685–9704, https://doi.org/10.1002/2017jd027234, 2017.
Browell, E. V., Butler, C. F., Kooi, S. A., Fenn, M. A., Harriss, R. C., and
Gregory, G. L.: Large-scale variability of ozone and aerosols in the
summertime Arctic and sub-Arctic troposphere, J. Geophys. Res.-Atmos., 97, 16433–16450, https://doi.org/10.1029/92jd00159, 1992.
Browse, J., Carslaw, K. S., Arnold, S. R., Pringle, K., and Boucher, O.: The scavenging processes controlling the seasonal cycle in Arctic sulphate and black carbon aerosol, Atmos. Chem. Phys., 12, 6775–6798, https://doi.org/10.5194/acp-12-6775-2012, 2012.
Bryan, N. C., Stewart, M., Granger, D., Guzik, T. G., and Christner, B. C.:
A method for sampling microbial aerosols using high altitude balloons,
J. Microbiol. Meth., 107, 161–168,
https://doi.org/10.1016/j.mimet.2014.10.007, 2014.
Burkart, J., Willis, M. D., Bozem, H., Thomas, J. L., Law, K., Hoor, P., Aliabadi, A. A., Köllner, F., Schneider, J., Herber, A., Abbatt, J. P. D., and Leaitch, W. R.: Summertime observations of elevated levels of ultrafine particles in the high Arctic marine boundary layer, Atmos. Chem. Phys., 17, 5515–5535, https://doi.org/10.5194/acp-17-5515-2017, 2017.
Cadeddu, M.: Microwave Radiometer–3 channel (MWR3C) Handbook, ARM Climate
Research Facility, DOE/SC-ARM-TR-206, 2012.
Chuan, R. L.: AGASP II arctic haze aerosol characteristics – Influence of
volcanic eruption emissions, Atmos. Environ. A.-G., 27, 2901–2906,
https://doi.org/10.1016/0960-1686(93)90321-O, 1993.
Creamean, J. M., Dexheimer, D., and Mei, F.: Aerosol Vertical Profiling at
Oliktok Point (AVPOP) Field Campaign Report, U.S. Department of Energy,
Office of Science, Office of Biological and Environmental Research,
DOE/SC-ARM-18-032, 2018a.
Creamean, J. M., Kirpes, R. M., Pratt, K. A., Spada, N. J., Maahn, M., de Boer, G., Schnell, R. C., and China, S.: Marine and terrestrial influences on ice nucleating particles during continuous springtime measurements in an Arctic oilfield location, Atmos. Chem. Phys., 18, 18023–18042, https://doi.org/10.5194/acp-18-18023-2018, 2018b.
Creamean, J. M., Maahn, M., de Boer, G., McComiskey, A., Sedlacek, A. J., and Feng, Y.: The influence of local oil exploration and regional wildfires on summer 2015 aerosol over the North Slope of Alaska, Atmos. Chem. Phys., 18, 555–570, https://doi.org/10.5194/acp-18-555-2018, 2018c.
Creamean, J. M., Primm, K. M., Tolbert, M. A., Hall, E. G., Wendell, J., Jordan, A., Sheridan, P. J., Smith, J., and Schnell, R. C.: HOVERCAT: a novel aerial system for evaluation of aerosol–cloud interactions, Atmos. Meas. Tech., 11, 3969–3985, https://doi.org/10.5194/amt-11-3969-2018, 2018d.
Croft, B., Martin, R. V., Leaitch, W. R., Tunved, P., Breider, T. J., D'Andrea, S. D., and Pierce, J. R.: Processes controlling the annual cycle of Arctic aerosol number and size distributions, Atmos. Chem. Phys., 16, 3665–3682, https://doi.org/10.5194/acp-16-3665-2016, 2016.
Curry, J. A., Ebert, E. E., and Herman, G. F.: Mean and turbulence structure
of the summertime Arctic cloudy boundary layer, Q. J. Roy. Meteor. Soc., 114, 715–746, https://doi.org/10.1002/qj.49711448109, 1988.
Curry, J. A., Hobbs, P. V., King, M. D., Randall, D. A., Minnis, P., Isaac,
G. A., Pinto, J. O., Uttal, T., Bucholtz, A., Cripe, D. G., Gerber, H.,
Fairall, C. W., Garrett, T. J., Hudson, J., Intrieri, J. M., Jakob, C.,
Jensen, T., Lawson, P., Marcotte, D., Nguyen, L., Pilewskie, P., Rangno, A.,
Rogers, D. C., Strawbridge, K. B., Valero, F. P. J., Williams, A. G., and
Wylie, D.: FIRE Arctic Clouds Experiment, B. Am.
Meteorol. Soc., 81, 5–30, https://doi.org/10.1175/1520-0477(2000)081<0005:FACE>2.3.CO;2, 2000.
Dagsson-Waldhauserova, P., Renard, J.-B., Olafsson, H., Vignelles, D.,
Berthet, G., Verdier, N., and Duverger, V.: Vertical distribution of
aerosols in dust storms during the Arctic winter, Sci. Rep.-UK, 9,
16122, https://doi.org/10.1038/s41598-019-51764-y, 2019.
de Boer, G., Hashino, T., Tripoli, G. J., and Eloranta, E. W.: A numerical study of aerosol influence on mixed-phase stratiform clouds through modulation of the liquid phase, Atmos. Chem. Phys., 13, 1733–1749, https://doi.org/10.5194/acp-13-1733-2013, 2013.
de Boer, G., Ivey, M. D., Schmid, B., McFarlane, S., and Petty, R.: Unmanned
platforms monitor the Arctic atmosphere, EOS, 97, https://doi.org/10.1029/2016EO046441,
2015.
de Boer, G., Palo, S., Argrow, B., LoDolce, G., Mack, J., Gao, R.-S., Telg, H., Trussel, C., Fromm, J., Long, C. N., Bland, G., Maslanik, J., Schmid, B., and Hock, T.: The Pilatus unmanned aircraft system for lower atmospheric research, Atmos. Meas. Tech., 9, 1845–1857, https://doi.org/10.5194/amt-9-1845-2016, 2016.
de Boer, G., Ivey, M., Schmid, B., Lawrence, D., Dexheimer, D., Mei, F.,
Hubbe, J., Bendure, A., Hardesty, J., Shupe, M. D., McComiskey, A., Telg,
H., Schmitt, C., Matrosov, S. Y., Brooks, I., Creamean, J., Solomon, A.,
Turner, D. D., Williams, C., Maahn, M., Argrow, B., Palo, S., Long, C. N.,
Gao, R.-S., and Mather, J.: A Bird's-Eye View: Development of an Operational
ARM Unmanned Aerial Capability for Atmospheric Research in Arctic Alaska, B. Am. Meteorol. Soc.,
99, 1197–1212, https://doi.org/10.1175/bams-d-17-0156.1, 2018.
de Boer, G., Dexheimer, D., Mei, F., Hubbe, J., Longbottom, C., Carroll, P. J., Apple, M., Goldberger, L., Oaks, D., Lapierre, J., Crume, M., Bernard, N., Shupe, M. D., Solomon, A., Intrieri, J., Lawrence, D., Doddi, A., Holdridge, D. J., Hubbell, M., Ivey, M. D., and Schmid, B.: Atmospheric observations made at Oliktok Point, Alaska, as part of the Profiling at Oliktok Point to Enhance YOPP Experiments (POPEYE) campaign, Earth Syst. Sci. Data, 11, 1349–1362, https://doi.org/10.5194/essd-11-1349-2019, 2019a.
de Boer, G., Shupe, M., Solomon, A., and Intrieri, J.: Profiling at Oliktok
Point to Enhance Year of Polar Prediction (YOPP) Experiments (POPEYE) Field
Campaign Report, U.S. Department of Energy, Office of Science, Office of
Biological and Environmental Research, DOE/SC-ARM-19-010, 2019b.
Atmospheric Radiation Measurement (ARM) user facility: Arctic aerosol vertical profile data from the ICARUS, AVPOP, and POPEYE TBS campaigns, May 2017–September 2018, 70degree29′42′′ N, 149∘53′9.6′′ W: OLI M1 – Oliktok Point, Alaska, AMF3, edited by: Creamean, J. and Telg, H., Fort Collins and Boulder, Colorado, https://doi.org/10.5439/1651201, 1994 (updated daily).
Dexheimer, D.: Tethered Balloon System (TBS) Instrument Handbook, ARM
Climate Research Facility, DOE/SC-ARM-TR-206, 2018.
Dexheimer, D., Airey, M., Roesler, E., Longbottom, C., Nicoll, K., Kneifel, S., Mei, F., Harrison, R. G., Marlton, G., and Williams, P. D.: Evaluation of ARM tethered-balloon system instrumentation for supercooled liquid water and distributed temperature sensing in mixed-phase Arctic clouds, Atmos. Meas. Tech., 12, 6845–6864, https://doi.org/10.5194/amt-12-6845-2019, 2019.
Dimitrelos, A., Ekman, A. M. L., Caballero, R., and Savre, J.: A Sensitivity
Study of Arctic Air-Mass Transformation Using Large Eddy Simulation, J. Geophys. Res.-Atmos., 125,
e2019JD031738, https://doi.org/10.1029/2019jd031738, 2020.
Eirund, G. K., Possner, A., and Lohmann, U.: Response of Arctic mixed-phase clouds to aerosol perturbations under different surface forcings, Atmos. Chem. Phys., 19, 9847–9864, https://doi.org/10.5194/acp-19-9847-2019, 2019.
Ferrero, L., Ritter, C., Cappelletti, D., Moroni, B., Močnik, G.,
Mazzola, M., Lupi, A., Becagli, S., Traversi, R., Cataldi, M., Neuber, R.,
Vitale, V., and Bolzacchini, E.: Aerosol optical properties in the Arctic:
The role of aerosol chemistry and dust composition in a closure experiment
between Lidar and tethered balloon vertical profiles, Sci. Total
Environ., 686, 452–467,
https://doi.org/10.1016/j.scitotenv.2019.05.399, 2019.
Fisher, J. A., Jacob, D. J., Purdy, M. T., Kopacz, M., Le Sager, P., Carouge, C., Holmes, C. D., Yantosca, R. M., Batchelor, R. L., Strong, K., Diskin, G. S., Fuelberg, H. E., Holloway, J. S., Hyer, E. J., McMillan, W. W., Warner, J., Streets, D. G., Zhang, Q., Wang, Y., and Wu, S.: Source attribution and interannual variability of Arctic pollution in spring constrained by aircraft (ARCTAS, ARCPAC) and satellite (AIRS) observations of carbon monoxide, Atmos. Chem. Phys., 10, 977–996, https://doi.org/10.5194/acp-10-977-2010, 2010.
Freud, E., Krejci, R., Tunved, P., Leaitch, R., Nguyen, Q. T., Massling, A., Skov, H., and Barrie, L.: Pan-Arctic aerosol number size distributions: seasonality and transport patterns, Atmos. Chem. Phys., 17, 8101–8128, https://doi.org/10.5194/acp-17-8101-2017, 2017.
Fridlind, A. M., Ackerman, A. S., McFarquhar, G., Zhang, G., Poellot, M. R.,
DeMott, P. J., Prenni, A. J., and Heymsfield, A. J.: Ice properties of
single-layer stratocumulus during the Mixed-Phase Arctic Cloud Experiment:
2. Model results, 112, D24202, https://doi.org/10.1029/2007jd008646, 2007.
Fridlind, A. M. and Ackerman, A. S.: Chapter 7 – Simulations of Arctic
Mixed-Phase Boundary Layer Clouds: Advances in Understanding and Outstanding
Questions, in: Mixed-Phase Clouds, edited by: Andronache, C., Elsevier,
153–183, 2018.
Gabric, A., Matrai, P., Jones, G., and Middleton, J.: The Nexus between Sea Ice and Polar Emissions of Marine Biogenic Aerosols, B. Am. Meteorol. Soc., 99, 61–81, https://doi.org/10.1175/bams-d-16-0254.1, 2018.
Gamberg, M.: Threats to Arctic Ecosystems, in: Encyclopedia of the World's Biomes, edited by: Goldstein, M. I. and DellaSala, D. A., Elsevier, Oxford, 532–538, 2020.
Gao, R. S., Telg, H., McLaughlin, R. J., Ciciora, S. J., Watts, L. A.,
Richardson, M. S., Schwarz, J. P., Perring, A. E., Thornberry, T. D.,
Rollins, A. W., Markovic, M. Z., Bates, T. S., Johnson, J. E., and Fahey, D.
W.: A light-weight, high-sensitivity particle spectrometer for PM2.5 aerosol
measurements, Aerosol Sci. Tech., 50, 88–99, https://doi.org/10.1080/02786826.2015.1131809, 2016.
Garrett, T., Zhao, C., and Novelli, P.: Assessing the relative
contributions
of transport efficiency and scavenging to seasonal variability in Arctic
aerosol, Tellus B, 62, 190–196, https://doi.org/10.1111/j.1600-0889.2010.00453.x, 2010.
Garrett, T. J. and Zhao, C.: Increased Arctic cloud longwave emissivity
associated with pollution from mid-latitudes, Nature, 440, 787–789, https://doi.org/10.1038/nature04636, 2006.
Gierens, R., Kneifel, S., Shupe, M. D., Ebell, K., Maturilli, M., and Löhnert, U.: Low-level mixed-phase clouds in a complex Arctic environment, Atmos. Chem. Phys., 20, 3459–3481, https://doi.org/10.5194/acp-20-3459-2020, 2020.
Graversen, R. G., Mauritsen, T., Tjernström, M., Källén, E., and
Svensson, G.: Vertical structure of recent Arctic warming, Nature, 451,
53–56, https://doi.org/10.1038/nature06502, 2008.
Greenberg, J. R., Guenther, A. B., and Turnipseed, A.: Tethered
balloon-based soundings of ozone, aerosols, and solar radiation near Mexico
City during MIRAGE-MEX, Atmos. Environ., 43, 2672–2677, https://doi.org/10.1016/j.atmosenv.2009.02.019, 2009.
Gregory, G. L., Anderson, B. E., Warren, L. S., Browell, E. V., Bagwell, D.
R., and Hudgins, C. H.: Tropospheric ozone and aerosol observations: The
Alaskan Arctic, 97, 16451–16471, https://doi.org/10.1029/91jd01310, 1992.
Gui, K., Che, H., Chen, Q., Yu, J., Zheng, Y., Lu, S., Wang, H., Wang, Y., Zhang, X., and Shi, G.: Analysis of the Error in Retrievals of Aerosol Optical
Properties from Sunphotometer Measurements of CARSNET Due to a Variety of
Objective Factors, Atmosphere, 7, 9, https://doi.org/10.3390/atmos7010009, 2016.
Gunsch, M. J., Kirpes, R. M., Kolesar, K. R., Barrett, T. E., China, S., Sheesley, R. J., Laskin, A., Wiedensohler, A., Tuch, T., and Pratt, K. A.: Contributions of transported Prudhoe Bay oil field emissions to the aerosol population in Utqiaġvik, Alaska, Atmos. Chem. Phys., 17, 10879–10892, https://doi.org/10.5194/acp-17-10879-2017, 2017.
Gunsch, M. J., Liu, J., Moffett, C. E., Sheesley, R. J., Wang, N., Zhang,
Q., Watson, T. B., and Pratt, K. A.: Diesel Soot and Amine-Containing
Organic Sulfate Aerosols in an Arctic Oil Field, Environ. Sci. Technol., 54,
92–101, https://doi.org/10.1021/acs.est.9b04825, 2020.
Harriss, R. C., Wofsy, S. C., Bartlett, D. S., Shipham, M. C., Jacob, D. J.,
Hoell Jr., J. M., Bendura, R. J., Drewry, J. W., McNeal, R. J., Navarro, R.
L., Gidge, R. N., and Rabine, V. E.: The Arctic Boundary Layer Expedition
(ABLE 3A): July–August 1988, J. Geophys. Res.-Atmos., 97, 16383–16394, https://doi.org/10.1029/91jd02109, 1992.
Herbert, G. A., Sheridan, P. J., Schnell, R. C., Bieniulis, M. Z., and Bodhaine, B. A.: Analysis of meteorological conditions during AGASP-IV, 30 March–23 April 1992, Technical memo, United States, 1993.
Hoff, R. M.: Vertical Structure of Arctic Haze Observed by Lidar, J. Appl. Meteorol. Clim., 27,
125–139, https://doi.org/10.1175/1520-0450(1988)027<0125:Vsoaho>2.0.Co;2, 1988.
Hoffmann, F., Raasch, S., and Noh, Y.: Entrainment of aerosols and their
activation in a shallow cumulus cloud studied with a coupled LCM–LES
approach, Atmos. Res., 156, 43–57,
https://doi.org/10.1016/j.atmosres.2014.12.008, 2015.
Hofmann, D. J., Rosen, J. M., Harder, J. W., and Hereford, J. V.:
Balloon-borne measurements of aerosol, condensation nuclei, and cloud
particles in the stratosphere at McMurdo Station, Antarctica, during the
spring of 1987, J. Geophys. Res.-Atmos., 94,
11253–11269, https://doi.org/10.1029/JD094iD09p11253, 1989.
Hofmann, D. J., Deshler, T., Arnold, F., and Schlager, H.: Balloon
observations of nitric acid aerosol formation in the Arctic stratosphere:
II. Aerosol, Geophys. Res. Lett., 17, 1279–1282, https://doi.org/10.1029/GL017i009p01279, 1990.
Hofmann, D. J.: Twenty years of balloon-borne tropospheric aerosol
measurements at Laramie, Wyoming, J. Geophys. Res.-Atmos., 98, 12753–12766, https://doi.org/10.1029/93JD00466, 1993.
Huang, L., Gong, S. L., Jia, C. Q., and Lavoué, D.: Importance of
deposition processes in simulating the seasonality of the Arctic black
carbon aerosol, J. Geophys. Res-.Atmos., 115, D17207, https://doi.org/10.1029/2009JD013478, 2010.
Huntington, H. P., Quakenbush, L. T., and Nelson, M.: Evaluating the Effects of Climate Change on Indigenous Marine Mammal Hunting in Northern and Western Alaska Using Traditional Knowledge, Front. Mar. Sci., 4, 319, https://doi.org/10.3389/fmars.2017.00319, 2017.
Iwasaka, Y., Shi, G.-Y., Shen, Z., Kim, Y. S., Trochkine, D., Matsuki, A.,
Zhang, D., Shibata, T., Nagatani, M., and Nakata, H.: Nature of Atmospheric
Aerosols over the Desert Areas in the Asian Continent: Chemical State and
Number Concentration of Particles Measured at Dunhuang, China, Water Air Soil Poll., 3, 129–145, https://doi.org/10.1023/a:1023282221749, 2003.
Jacob, D. J., Crawford, J. H., Maring, H., Clarke, A. D., Dibb, J. E., Emmons, L. K., Ferrare, R. A., Hostetler, C. A., Russell, P. B., Singh, H. B., Thompson, A. M., Shaw, G. E., McCauley, E., Pederson, J. R., and Fisher, J. A.: The Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) mission: design, execution, and first results, Atmos. Chem. Phys., 10, 5191–5212, https://doi.org/10.5194/acp-10-5191-2010, 2010.
Jeffries, M. O., Overland, J. E., and Perovich, D. K.: THE ARCTIC shifts to
a new normal, Phys. Today, 66, 35–40, https://doi.org/10.1063/Pt.3.2147, 2013.
John, C. C. G., Huntington, H. P., Brewster, K., Eicken, H., Norton, D. W., and Glenn, R.: Observations on Shorefast Ice Dynamics in Arctic Alaska and the Responses of the Iñupiat Hunting Community, Arctic, 57, 363–374, 2004.
Kavaya, M. J. and Menzies, R. T.: Lidar aerosol backscatter measurements:
systematic, modeling, and calibration error considerations, Appl. Opt., 24,
3444–3453, https://doi.org/10.1364/AO.24.003444, 1985.
Khattatov, V., Yushkov, V., Khaplanov, M., Zaitzev, I., Rosen, J., and
Kjome, N.: Some results of water vapor, ozone and aerosol balloon borne
measurements during EASOE, Geophys. Res. Lett., 21, 1299–1302, https://doi.org/10.1029/93gl03559, 1994.
Kim, M.-H., Omar, A. H., Vaughan, M. A., Winker, D. M., Trepte, C. R., Hu,
Y., Liu, Z., and Kim, S.-W.: Quantifying the low bias of CALIPSO's column
aerosol optical depth due to undetected aerosol layers, J. Geophys. Res.-Atmos.,
122, 1098–1113, https://doi.org/10.1002/2016JD025797, 2017.
Kim, Y. S., Iwasaka, Y., Shi, G.-Y., Shen, Z., Trochkine, D., Matsuki, A.,
Zhang, D., Shibata, T., Nagatani, M., and Nakata, H.: Features in Number
Concentration-Size Distributions of Aerosols in the Free Atmosphere over the
Desert Areas in the Asian Continent: Balloon-Borne Measurements at Dunhuang,
China, Water Air Soil Poll., 3, 147–159, https://doi.org/10.1023/a:1023234305819, 2003.
Kirpes, R. M., Rodriguez, B., Kim, S., China, S., Laskin, A., Park, K.,
Jung, J., Ault, A. P., and Pratt, K. A.: Emerging investigator series:
influence of marine emissions and atmospheric processing on individual
particle composition of summertime Arctic aerosol over the Bering Strait and
Chukchi Sea, Environ. Sci., 22, 1201–1213, https://doi.org/10.1039/C9EM00495E, 2020.
Klein, S. A., McCoy, R. B., Morrison, H., Ackerman, A. S., Avramov, A.,
Boer, G. d., Chen, M., Cole, J. N. S., Del Genio, A. D., Falk, M., Foster,
M. J., Fridlind, A., Golaz, J.-C., Hashino, T., Harrington, J. Y., Hoose,
C., Khairoutdinov, M. F., Larson, V. E., Liu, X., Luo, Y., McFarquhar, G.
M., Menon, S., Neggers, R. A. J., Park, S., Poellot, M. R., Schmidt, J. M.,
Sednev, I., Shipway, B. J., Shupe, M. D., Spangenberg, D. A., Sud, Y. C.,
Turner, D. D., Veron, D. E., Salzen, K. v., Walker, G. K., Wang, Z., Wolf,
A. B., Xie, S., Xu, K.-M., Yang, F., and Zhang, G.: Intercomparison of model
simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic
Cloud Experiment. I: single-layer cloud, Q. J. Roy. Meteor. Soc., 135, 979–1002, https://doi.org/10.1002/qj.416,
2009.
Koenigk, T., Key, J., and Vihma, T.: Climate Change in the Arctic, Physics and Chemistry of the Arctic Atmosphere, Springer, Cham, 2020.
Kolesar, K. R., Cellini, J., Peterson, P. K., Jefferson, A., Tuch, T.,
Birmili, W., Wiedensohler, A., and Pratt, K. A.: Effect of Prudhoe Bay
emissions on atmospheric aerosol growth events observed in Utqiagvik
(Barrow), Alaska, Atmos. Environ., 152, 146–155,
https://doi.org/10.1016/j.atmosenv.2016.12.019, 2017.
Kondo, Y., Aimedieu, P., Matthews, W. A., Fahey, D. W., Murcray, D. G.,
Hofmann, D. J., Johnston, P. V., Iwasaka, Y., Iwata, A., and Sheldon, W. R.:
Balloon-borne measurements of total reactive nitrogen, nitric acid, and
aerosol in the cold Arctic stratosphere, Geophys. Res. Lett., 17, 437–440, https://doi.org/10.1029/GL017i004p00437, 1990.
Kovalev, V. A.: Sensitivity of the lidar solution to errors of the aerosol
backscatter-to-extinction ratio: influence of a monotonic change in the
aerosol extinction coefficient, Appl. Opt., 34, 3457–3462, https://doi.org/10.1364/AO.34.003457, 1995.
Kyrouac, J.: Aerosol Observing System Surface Meteorology (AOSMET)
Instrument Handbook, ARM Climate Research Facility, DOE/SC-ARM-TR-184, 2016.
Lange, R., Dall'Osto, M., Skov, H., Nøjgaard, J. K., Nielsen, I. E.,
Beddows, D. C. S., Simo, R., Harrison, R. M., and Massling, A.:
Characterization of distinct Arctic aerosol accumulation modes and their
sources, Atmos. Environ., 183, 1–10,
https://doi.org/10.1016/j.atmosenv.2018.03.060, 2018.
Lathem, T. L., Beyersdorf, A. J., Thornhill, K. L., Winstead, E. L., Cubison, M. J., Hecobian, A., Jimenez, J. L., Weber, R. J., Anderson, B. E., and Nenes, A.: Analysis of CCN activity of Arctic aerosol and Canadian biomass burning during summer 2008, Atmos. Chem. Phys., 13, 2735–2756, https://doi.org/10.5194/acp-13-2735-2013, 2013.
Law, K. S. and Stohl, A.: Arctic air pollution: Origins and impacts,
Science, 315, 1537–1540, https://doi.org/10.1126/science.1137695, 2007.
Leaitch, W. R., Korolev, A., Aliabadi, A. A., Burkart, J., Willis, M. D., Abbatt, J. P. D., Bozem, H., Hoor, P., Köllner, F., Schneider, J., Herber, A., Konrad, C., and Brauner, R.: Effects of 20–100 nm particles on liquid clouds in the clean summertime Arctic, Atmos. Chem. Phys., 16, 11107–11124, https://doi.org/10.5194/acp-16-11107-2016, 2016.
Limbeck, A. and Puxbaum, H.: Dependence of in-cloud scavenging of polar
organic aerosol compounds on the water solubility, J. Geophys.
Res.-Atmos., 105, 19857–19867, https://doi.org/10.1029/2000JD900123, 2000.
Liu, D., Quennehen, B., Darbyshire, E., Allan, J. D., Williams, P. I., Taylor, J. W., Bauguitte, S. J.-B., Flynn, M. J., Lowe, D., Gallagher, M. W., Bower, K. N., Choularton, T. W., and Coe, H.: The importance of Asia as a source of black carbon to the European Arctic during springtime 2013, Atmos. Chem. Phys., 15, 11537–11555, https://doi.org/10.5194/acp-15-11537-2015, 2015.
Lubin, D. and Vogelmann, A. M.: A climatologically significant aerosol
longwave indirect effect in the Arctic, Nature, 439, 453–456, https://doi.org/10.1038/nature04449, 2006.
Lubin, D. and Vogelmann, A. M.: Expected magnitude of the aerosol shortwave
indirect effect in springtime Arctic liquid water clouds, Geophys. Res. Lett.,
34, L11801, https://doi.org/10.1029/2006gl028750, 2007.
Lubin, D. and Vogelmann, A. M.: Observational quantification of a total
aerosol indirect effect in the Arctic, Tellus B, 62, 181–189, https://doi.org/10.1111/j.1600-0889.2010.00460.x, 2010.
Maahn, M., de Boer, G., Creamean, J. M., Feingold, G., McFarquhar, G. M., Wu, W., and Mei, F.: The observed influence of local anthropogenic pollution on northern Alaskan cloud properties, Atmos. Chem. Phys., 17, 14709–14726, https://doi.org/10.5194/acp-17-14709-2017, 2017.
Maenhaut, W., Cornille, P., Pacyna, J. M., and Vitols, V.: Trace element
composition and origin of the atmospheric aerosol in the Norwegian arctic,
Atmos. Environ., 23, 2551–2569,
https://doi.org/10.1016/0004-6981(89)90266-7, 1989.
Maletto, A., McKendry, I. G., and Strawbridge, K. B.: Profiles of
particulate matter size distributions using a balloon-borne lightweight
aerosol spectrometer in the planetary boundary layer, Atmos. Environ., 37,
661–670, https://doi.org/10.1016/S1352-2310(02)00860-9, 2003.
Marinou, E., Tesche, M., Nenes, A., Ansmann, A., Schrod, J., Mamali, D., Tsekeri, A., Pikridas, M., Baars, H., Engelmann, R., Voudouri, K.-A., Solomos, S., Sciare, J., Groß, S., Ewald, F., and Amiridis, V.: Retrieval of ice-nucleating particle concentrations from lidar observations and comparison with UAV in situ measurements, Atmos. Chem. Phys., 19, 11315–11342, https://doi.org/10.5194/acp-19-11315-2019, 2019.
Matsui, H., Kondo, Y., Moteki, N., Takegawa, N., Sahu, L. K., Koike, M.,
Zhao, Y., Fuelberg, H. E., Sessions, W. R., Diskin, G., Anderson, B. E.,
Blake, D. R., Wisthaler, A., Cubison, M. J., and Jimenez, J. L.:
Accumulation-mode aerosol number concentrations in the Arctic during the
ARCTAS aircraft campaign: Long-range transport of polluted and clean air
from the Asian continent, J. Geophys. Res.-Atmos., 116, D20217, https://doi.org/10.1029/2011JD016189, 2011a.
Matsui, H., Kondo, Y., Moteki, N., Takegawa, N., Sahu, L. K., Zhao, Y.,
Fuelberg, H. E., Sessions, W. R., Diskin, G., Blake, D. R., Wisthaler, A.,
and Koike, M.: Seasonal variation of the transport of black carbon aerosol
from the Asian continent to the Arctic during the ARCTAS aircraft campaign,
J. Geophys. Res.-Atmos., 116, D05202, https://doi.org/10.1029/2010JD015067,
2011b.
Mauritsen, T., Sedlar, J., Tjernström, M., Leck, C., Martin, M., Shupe, M., Sjogren, S., Sierau, B., Persson, P. O. G., Brooks, I. M., and Swietlicki, E.: An Arctic CCN-limited cloud-aerosol regime, Atmos. Chem. Phys., 11, 165–173, https://doi.org/10.5194/acp-11-165-2011, 2011.
May, N. W., Quinn, P. K., McNamara, S. M., and Pratt, K. A.: Multiyear study
of the dependence of sea salt aerosol on wind speed and sea ice conditions
in the coastal Arctic, J. Geophys. Res.-Atmos., 121,
9208–9219, https://doi.org/10.1002/2016JD025273, 2016.
May, R. M., Arms, S. C., Marsh, P., Bruning, E., Leeman, J. R., Goebbert,
K., Thielen, J. E., and Bruick, Z.: MetPy: A Python Package for
Meteorological Data, Version 0.12.1.post2, https://doi.org/10.5065/D6WW7G29, 2020.
McFarquhar, G. M., Zhang, G., Poellot, M. R., Kok, G. L., McCoy, R., Tooman,
T., Fridlind, A., and Heymsfield, A. J.: Ice properties of single-layer
stratocumulus during the Mixed-Phase Arctic Cloud Experiment: 1.
Observations, J. Geophys. Res.-Atmos., 112, D24201, https://doi.org/10.1029/2007jd008633, 2007.
McFarquhar, G. M., Ghan, S., Verlinde, J., Korolev, A., Strapp, J. W.,
Schmid, B., Tomlinson, J. M., Wolde, M., Brooks, S. D., Cziczo, D., Dubey,
M. K., Fan, J., Flynn, C., Gultepe, I., Hubbe, J., Gilles, M. K., Laskin,
A., Lawson, P., Leaitch, W. R., Liu, P., Liu, X., Lubin, D., Mazzoleni, C.,
Macdonald, A.-M., Moffet, R. C., Morrison, H., Ovchinnikov, M., Shupe, M.
D., Turner, D. D., Xie, S., Zelenyuk, A., Bae, K., Freer, M., and Glen, A.:
Indirect and Semi-direct Aerosol Campaign, B. Am. Meteorol. Soc., 92, 183–201, https://doi.org/10.1175/2010bams2935.1, 2011.
McNaughton, C. S., Clarke, A. D., Freitag, S., Kapustin, V. N., Kondo, Y., Moteki, N., Sahu, L., Takegawa, N., Schwarz, J. P., Spackman, J. R., Watts, L., Diskin, G., Podolske, J., Holloway, J. S., Wisthaler, A., Mikoviny, T., de Gouw, J., Warneke, C., Jimenez, J., Cubison, M., Howell, S. G., Middlebrook, A., Bahreini, R., Anderson, B. E., Winstead, E., Thornhill, K. L., Lack, D., Cozic, J., and Brock, C. A.: Absorbing aerosol in the troposphere of the Western Arctic during the 2008 ARCTAS/ARCPAC airborne field campaigns, Atmos. Chem. Phys., 11, 7561–7582, https://doi.org/10.5194/acp-11-7561-2011, 2011.
Mei, F., McMeeking, G., Pekour, M., Gao, R.-S., Kulkarni, G., China, S.,
Telg, H., Dexheimer, D., Tomlinson, J., and Schmid, B.: Performance
Assessment of Portable Optical Particle Spectrometer (POPS), Sensors, 20,
6269, https://doi.org/10.3390/s20216294, 2020.
Mei, L., Xue, Y., de Leeuw, G., von Hoyningen-Huene, W., Kokhanovsky, A. A.,
Istomina, L., Guang, J., and Burrows, J. P.: Aerosol optical depth retrieval
in the Arctic region using MODIS data over snow, Remote Sens.
Environ., 128, 234–245,
https://doi.org/10.1016/j.rse.2012.10.009, 2013.
Morris, V. R.: Ceilometer Instrument Handbook, U.S. Department of Energy,
Office of Science, Office of Biological and Environmental Research,
DOE/SC-ARM-TR-020, 2016.
Morrison, H., Pinto, J. O., Curry, J. A., and McFarquhar, G. M.: Sensitivity
of modeled arctic mixed-phase stratocumulus to cloud condensation and ice
nuclei over regionally varying surface conditions, J. Geophys. Res.-Atmos., 113, D05203, https://doi.org/10.1029/2007jd008729, 2008.
Morrison, H., de Boer, G., Feingold, G., Harrington, J., Shupe, M. D., and
Sulia, K.: Resilience of persistent Arctic mixed-phase clouds, Nat. Geosci.,
5, 11–17, https://doi.org/10.1038/ngeo1332, 2012.
Norgren, M. S., de Boer, G., and Shupe, M. D.: Observed aerosol suppression of cloud ice in low-level Arctic mixed-phase clouds, Atmos. Chem. Phys., 18, 13345–13361, https://doi.org/10.5194/acp-18-13345-2018, 2018.
Overland, J., Francis, J. A., Hall, R., Hanna, E., Kim, S.-J., and Vihma, T.: The Melting Arctic and Midlatitude Weather Patterns: Are They Connected?, J. Climate, 28, 7917–7932, https://doi.org/10.1175/jcli-d-14-00822.1, 2015.
Overland, J., Dunlea, E., Box, J. E., Corell, R., Forsius, M., Kattsov, V.,
Olsen, M. S., Pawlak, J., Reiersen, L.-O., and Wang, M.: The urgency of
Arctic change, Polar Sci., 21, 6–13,
https://doi.org/10.1016/j.polar.2018.11.008, 2018.
Pacyna, J. M., Vitols, V., and Hanssen, J. E.: Size-Differentiated
Composition of the Arctic Aerosol at Ny-Alesund, Spitsbergen, Atmos. Environ.,
18, 2447–2459, https://doi.org/10.1016/0004-6981(84)90015-5, 1984.
Parungo, F., Nagamoto, C., Herbert, G., Harris, J., Schnell, R., Sheridan,
P., and Zhang, N.: Individual particle analyses of arctic aerosol samples
collected during AGASP-III, Atmos. Environ. A.-Gen.,
27, 2825–2837, https://doi.org/10.1016/0960-1686(93)90314-O,
1993.
Parungo, F. P., Nagamoto, C. T., Sheridan, P. J., and Schnell, R. C.:
Aerosol characteristics of Arctic haze sampled during AGASP-II, Atmos.
Environ. A-Gen., 24, 937–949,
https://doi.org/10.1016/0960-1686(90)90296-Y, 1990.
Persson, P. O. G., Fairall, C. W., Andreas, E. L., Guest, P. S., and
Perovich, D. K.: Measurements near the Atmospheric Surface Flux Group tower
at SHEBA: Near-surface conditions and surface energy budget, J. Geophys. Res.-Oceans, 107, SHE
21-21–SHE 21-35, https://doi.org/10.1029/2000jc000705, 2002.
Pilewskie, P. and Valero, F. P. J.: Optical depths and haze particle sizes
during AGASP III, Atmos. Environ. A-Gen., 27,
2895–2899, https://doi.org/10.1016/0960-1686(93)90320-X, 1993.
Polissar, A. V., Hopke, P. K., and Harris, J. M.: Source regions for
atmospheric aerosol measured at Barrow, Alaska, Environ. Sci. Technol., 35,
4214–4226, https://doi.org/10.1021/es0107529, 2001.
Porter, G. C. E., Sikora, S. N. F., Adams, M. P., Proske, U., Harrison, A. D., Tarn, M. D., Brooks, I. M., and Murray, B. J.: Resolving the size of ice-nucleating particles with a balloon deployable aerosol sampler: the SHARK, Atmos. Meas. Tech., 13, 2905–2921, https://doi.org/10.5194/amt-13-2905-2020, 2020.
Quennehen, B., Schwarzenboeck, A., Schmale, J., Schneider, J., Sodemann, H., Stohl, A., Ancellet, G., Crumeyrolle, S., and Law, K. S.: Physical and chemical properties of pollution aerosol particles transported from North America to Greenland as measured during the POLARCAT summer campaign, Atmos. Chem. Phys., 11, 10947–10963, https://doi.org/10.5194/acp-11-10947-2011, 2011.
Quinn, P. K., Bates, T. S., Miller, T. L., Coffman, D. J., Johnson, J. E.,
Harris, J. M., Ogren, J. A., Forbes, G., Anderson, T. L., Covert, D. S., and
Rood, M. J.: Surface submicron aerosol chemical composition: What fraction
is not sulfate?, J. Geophys. Res.-Atmos., 105, 6785–6805, https://doi.org/10.1029/1999jd901034, 2000.
Quinn, P. K., Miller, T. L., Bates, T. S., Ogren, J. A., Andrews, E., and
Shaw, G. E.: A 3-year record of simultaneously measured aerosol chemical and
optical properties at Barrow, Alaska, J. Geophys. Res.-Atmos., 107, 4130,
https://doi.org/10.1029/2001jd001248, 2002.
Quinn, P. K., Shaw, G., Andrews, E., Dutton, E. G., Ruoho-Airola, T., and
Gong, S. L.: Arctic haze: current trends and knowledge gaps, Tellus B, 59,
99–114, https://doi.org/10.1111/j.1600-0889.2006.00238.x, 2007.
Quinn, P. K., Bates, T. S., Baum, E., Doubleday, N., Fiore, A. M., Flanner, M., Fridlind, A., Garrett, T. J., Koch, D., Menon, S., Shindell, D., Stohl, A., and Warren, S. G.: Short-lived pollutants in the Arctic: their climate impact and possible mitigation strategies, Atmos. Chem. Phys., 8, 1723–1735, https://doi.org/10.5194/acp-8-1723-2008, 2008.
Quinn, P. K., Bates, T. S., Schulz, K., and Shaw, G. E.: Decadal trends in aerosol chemical composition at Barrow, Alaska: 1976–2008, Atmos. Chem. Phys., 9, 8883–8888, https://doi.org/10.5194/acp-9-8883-2009, 2009.
Renard, J.-B., Dulac, F., Berthet, G., Lurton, T., Vignelles, D., Jégou, F., Tonnelier, T., Jeannot, M., Couté, B., Akiki, R., Verdier, N., Mallet, M., Gensdarmes, F., Charpentier, P., Mesmin, S., Duverger, V., Dupont, J.-C., Elias, T., Crenn, V., Sciare, J., Zieger, P., Salter, M., Roberts, T., Giacomoni, J., Gobbi, M., Hamonou, E., Olafsson, H., Dagsson-Waldhauserova, P., Camy-Peyret, C., Mazel, C., Décamps, T., Piringer, M., Surcin, J., and Daugeron, D.: LOAC: a small aerosol optical counter/sizer for ground-based and balloon measurements of the size distribution and nature of atmospheric particles – Part 2: First results from balloon and unmanned aerial vehicle flights, Atmos. Meas. Tech., 9, 3673–3686, https://doi.org/10.5194/amt-9-3673-2016, 2016.
Schmeisser, L., Backman, J., Ogren, J. A., Andrews, E., Asmi, E., Starkweather, S., Uttal, T., Fiebig, M., Sharma, S., Eleftheriadis, K., Vratolis, S., Bergin, M., Tunved, P., and Jefferson, A.: Seasonality of aerosol optical properties in the Arctic, Atmos. Chem. Phys., 18, 11599–11622, https://doi.org/10.5194/acp-18-11599-2018, 2018.
Schnell, R. C.: Arctic haze and the Arctic Gas and Aerosol Sampling Program
(AGASP), Geophys. Res. Lett., 11, 361–364, https://doi.org/10.1029/GL011i005p00361, 1984.
Schrod, J., Weber, D., Drücke, J., Keleshis, C., Pikridas, M., Ebert, M., Cvetković, B., Nickovic, S., Marinou, E., Baars, H., Ansmann, A., Vrekoussis, M., Mihalopoulos, N., Sciare, J., Curtius, J., and Bingemer, H. G.: Ice nucleating particles over the Eastern Mediterranean measured by unmanned aircraft systems, Atmos. Chem. Phys., 17, 4817–4835, https://doi.org/10.5194/acp-17-4817-2017, 2017.
Schulz, H., Zanatta, M., Bozem, H., Leaitch, W. R., Herber, A. B., Burkart, J., Willis, M. D., Kunkel, D., Hoor, P. M., Abbatt, J. P. D., and Gerdes, R.: High Arctic aircraft measurements characterising black carbon vertical variability in spring and summer, Atmos. Chem. Phys., 19, 2361–2384, https://doi.org/10.5194/acp-19-2361-2019, 2019.
Sedlar, J., Tjernström, M., Rinke, A., Orr, A., Cassano, J., Fettweis,
X., Heinemann, G., Seefeldt, M., Solomon, A., Matthes, H., Phillips, T., and
Webster, S.: Confronting Arctic Troposphere, Clouds, and Surface Energy
Budget Representations in Regional Climate Models With Observations, J. Geophys. Res.-Atmos., 125,
e2019JD031783, https://doi.org/10.1029/2019jd031783, 2020.
Sharma, S., Barrie, L. A., Magnusson, E., Brattström, G., Leaitch, W.
R., Steffen, A., and Landsberger, S.: A Factor and Trends Analysis of
Multidecadal Lower Tropospheric Observations of Arctic Aerosol Composition,
Black Carbon, Ozone, and Mercury at Alert, Canada, J. Geophys. Res.-Atmos., 124, 14133–14161, https://doi.org/10.1029/2019jd030844, 2019.
Shaw, G. E.: The Arctic Haze Phenomenon, B. Am.
Meteorol. Soc., 76, 2403–2413, https://doi.org/10.1175/1520-0477(1995)076<2403:tahp>2.0.co;2, 1995.
Shupe, M. D.: Clouds at Arctic Atmospheric Observatories. Part II:
Thermodynamic Phase Characteristics, J. Appl. Meteorol. Clim., 50, 645–661, https://doi.org/10.1175/2010jamc2468.1,
2011.
Shupe, M. D., Walden, V. P., Eloranta, E., Uttal, T., Campbell, J. R.,
Starkweather, S. M., and Shiobara, M.: Clouds at Arctic Atmospheric
Observatories. Part I: Occurrence and Macrophysical Properties, J. Appl. Meteorol. Clim., 50, 626–644, https://doi.org/10.1175/2010jamc2467.1, 2011.
Shupe, M. D., Persson, P. O. G., Brooks, I. M., Tjernström, M., Sedlar, J., Mauritsen, T., Sjogren, S., and Leck, C.: Cloud and boundary layer interactions over the Arctic sea ice in late summer, Atmos. Chem. Phys., 13, 9379–9399, https://doi.org/10.5194/acp-13-9379-2013, 2013.
Siebert, H., Stratmann, F., and Wehner, B.: First observations of increased
ultrafine particle number concentrations near the inversion of a continental
planetary boundary layer and its relation to ground-based measurements,
Geophys. Res. Lett., 31, L09102, https://doi.org/10.1029/2003gl019086, 2004.
Solomon, A., Feingold, G., and Shupe, M. D.: The role of ice nuclei recycling in the maintenance of cloud ice in Arctic mixed-phase stratocumulus, Atmos. Chem. Phys., 15, 10631–10643, https://doi.org/10.5194/acp-15-10631-2015, 2015.
Solomon, A., de Boer, G., Creamean, J. M., McComiskey, A., Shupe, M. D., Maahn, M., and Cox, C.: The relative impact of cloud condensation nuclei and ice nucleating particle concentrations on phase partitioning in Arctic mixed-phase stratocumulus clouds, Atmos. Chem. Phys., 18, 17047–17059, https://doi.org/10.5194/acp-18-17047-2018, 2018.
Sotiropoulou, G., Sedlar, J., Tjernström, M., Shupe, M. D., Brooks, I. M., and Persson, P. O. G.: The thermodynamic structure of summer Arctic stratocumulus and the dynamic coupling to the surface, Atmos. Chem. Phys., 14, 12573–12592, https://doi.org/10.5194/acp-14-12573-2014, 2014.
Spanu, A., Dollner, M., Gasteiger, J., Bui, T. P., and Weinzierl, B.: Flow-induced errors in airborne in situ measurements of aerosols and clouds, Atmos. Meas. Tech., 13, 1963–1987, https://doi.org/10.5194/amt-13-1963-2020, 2020.
Stephenson, S. R., Wang, W., Zender, C. S., Wang, H., Davis, S. J., and Rasch, P. J.: Climatic Responses to Future Trans-Arctic Shipping, Geophys. Res. Lett., 45, 9898–9908, https://doi.org/10.1029/2018gl078969, 2018.
Stohl, A.: Characteristics of atmospheric transport into the Arctic
troposphere, J. Geophys. Res.-Atmos., 111, D11306, https://doi.org/10.1029/2005JD006888, 2006.
Stone, R. S., Herber, A., Vitale, V., Mazzola, M., Lupi, A., Schnell, R. C.,
Dutton, E. G., Liu, P. S. K., Li, S. M., Dethloff, K., Lampert, A., Ritter,
C., Stock, M., Neuber, R., and Maturilli, M.: A three-dimensional
characterization of Arctic aerosols from airborne Sun photometer
observations: PAM-ARCMIP, April 2009, J. Geophys. Res.-Atmos., 115, D13203, https://doi.org/10.1029/2009JD013605, 2010.
Suortti, T., Karhu, J., Kivi, R., Kyrö, E., Rosen, J., Kjome, N.,
Larsen, N., Neuber, R., Khattatov, V., Rudakov, V., Yushkov, V., and Nakane,
H.: Evolution of the Arctic stratospheric aerosol mixing ratio measured with
balloon-borne aerosol backscatter sondes for years 1988–2000, J. Geophys. Res.-Atmos., 106,
20759–20766, https://doi.org/10.1029/2000jd000180, 2001.
Taylor, P. C., Boeke, R. C., Li, Y., and Thompson, D. W. J.: Arctic cloud annual cycle biases in climate models, Atmos. Chem. Phys., 19, 8759–8782, https://doi.org/10.5194/acp-19-8759-2019, 2019.
Techy, L., Schmale III, D. G., and Woolsey, C. A.: Coordinated
aerobiological sampling of a plant pathogen in the lower atmosphere using
two autonomous unmanned aerial vehicles, J. Field Robot., 27, 335–343, https://doi.org/10.1002/rob.20335,
2010.
Telg, H., Murphy, D. M., Bates, T. S., Johnson, J. E., Quinn, P. K., Giardi,
F., and Gao, R.-S.: A practical set of miniaturized instruments for vertical
profiling of aerosol physical properties, Aerosol Sci. Tech.,
51, 715–723, https://doi.org/10.1080/02786826.2017.1296103, 2017.
Thomas, J. L., Raut, J.-C., Law, K. S., Marelle, L., Ancellet, G., Ravetta, F., Fast, J. D., Pfister, G., Emmons, L. K., Diskin, G. S., Weinheimer, A., Roiger, A., and Schlager, H.: Pollution transport from North America to Greenland during summer 2008, Atmos. Chem. Phys., 13, 3825–3848, https://doi.org/10.5194/acp-13-3825-2013, 2013.
Thorsen, T. J. and Fu, Q.: CALIPSO-inferred aerosol direct radiative
effects: Bias estimates using ground-based Raman lidars, J. Geophys. Res.-Atmos., 120,
12209–212220, https://doi.org/10.1002/2015jd024095, 2015.
Tobo, Y., Iwasaka, Y., Shi, G. Y., Kim, Y. S., Ohashi, T., Tamura, K., and
Zhang, D. Z.: Balloon-borne observations of high aerosol concentrations near
the summertime tropopause over the Tibetan Plateau, Atmos. Res., 84, 233–241,
https://doi.org/10.1016/j.atmosres.2006.08.003, 2007.
Udisti, R., Bazzano, A., Becagli, S., Bolzacchini, E., Caiazzo, L.,
Cappelletti, D., Ferrero, L., Frosini, D., Giardi, F., Grotti, M., Lupi, A.,
Malandrino, M., Mazzola, M., Moroni, B., Severi, M., Traversi, R., Viola,
A., and Vitale, V.: Sulfate source apportionment in the Ny-Ålesund
(Svalbard Islands) Arctic aerosol, Rend. Lincei, 27, 85–94, https://doi.org/10.1007/s12210-016-0517-7, 2016.
Uin, J.: Ultra-High-Sensitivity Aerosol Spectrometer Instrument Handbook,
U.S. Department of Energy, Office of Science, Office of Biological and
Environmental Research, DOE/SC-ARM-TR-163, 2016.
Uttal, T., Starkweather, S., Drummond, J. R., Vihma, T., Makshtas, A. P.,
Darby, L. S., Burkhart, J. F., Cox, C. J., Schmeisser, L. N., Haiden, T.,
Maturilli, M., Shupe, M. D., Boer, G. D., Saha, A., Grachev, A. A.,
Crepinsek, S. M., Bruhwiler, L., Goodison, B., McArthur, B., Walden, V. P.,
Dlugokencky, E. J., Persson, P. O. G., Lesins, G., Laurila, T., Ogren, J.
A., Stone, R., Long, C. N., Sharma, S., Massling, A., Turner, D. D.,
Stanitski, D. M., Asmi, E., Aurela, M., Skov, H., Eleftheriadis, K.,
Virkkula, A., Platt, A., Førland, E. J., Iijima, Y., Nielsen, I. E.,
Bergin, M. H., Candlish, L., Zimov, N. S., Zimov, S. A., O'Neill, N. T.,
Fogal, P. F., Kivi, R., Konopleva-Akish, E. A., Verlinde, J., Kustov, V. Y.,
Vasel, B., Ivakhov, V. M., Viisanen, Y., and Intrieri, J. M.: International
Arctic Systems for Observing the Atmosphere: An International Polar Year
Legacy Consortium, 97, 1033-1056, https://doi.org/10.1175/bams-d-14-00145.1, 2016.
Vüllers, J., Achtert, P., Brooks, I. M., Tjernström, M., Prytherch, J., Burzik, A., and Neely III, R.: Meteorological and cloud conditions during the Arctic Ocean 2018 expedition, Atmos. Chem. Phys., 21, 289–314, https://doi.org/10.5194/acp-21-289-2021, 2021.
Wang, Q., Jacob, D. J., Fisher, J. A., Mao, J., Leibensperger, E. M., Carouge, C. C., Le Sager, P., Kondo, Y., Jimenez, J. L., Cubison, M. J., and Doherty, S. J.: Sources of carbonaceous aerosols and deposited black carbon in the Arctic in winter-spring: implications for radiative forcing, Atmos. Chem. Phys., 11, 12453–12473, https://doi.org/10.5194/acp-11-12453-2011, 2011.
Wehner, B., Siebert, H., Stratmann, F., Tuch, T., Wiedensohler, A., Petaja,
T., Dal Maso, M., and Kulmala, M.: Horizontal homogeneity and vertical
extent of new particle formation events, Tellus B, 59, 362–371, https://doi.org/10.1111/j.1600-0889.2007.00260.x, 2007.
Wei, L., Qin, T., and Li, C.: Seasonal and inter-annual variations of Arctic cyclones and their linkage with Arctic sea ice and atmospheric teleconnections, Acta Oceanol. Sin., 36, 1–7, https://doi.org/10.1007/s13131-017-1117-9, 2017.
Welton, E. J. and Campbell, J. R.: Micropulse Lidar Signals: Uncertainty
Analysis, J. Atmos. Ocean. Tech., 19, 2089–2094, https://doi.org/10.1175/1520-0426(2002)019<2089:Mlsua>2.0.Co;2, 2002.
Wendisch, M., Macke, A., Ehrlich, A., Lüpkes, C., Mech, M., Chechin, D.,
Dethloff, K., Velasco, C. B., Bozem, H., Brückner, M., Clemen, H.-C.,
Crewell, S., Donth, T., Dupuy, R., Ebell, K., Egerer, U., Engelmann, R.,
Engler, C., Eppers, O., Gehrmann, M., Gong, X., Gottschalk, M., Gourbeyre,
C., Griesche, H., Hartmann, J., Hartmann, M., Heinold, B., Herber, A.,
Herrmann, H., Heygster, G., Hoor, P., Jafariserajehlou, S., Jäkel, E.,
Järvinen, E., Jourdan, O., Kästner, U., Kecorius, S., Knudsen, E.
M., Köllner, F., Kretzschmar, J., Lelli, L., Leroy, D., Maturilli, M.,
Mei, L., Mertes, S., Mioche, G., Neuber, R., Nicolaus, M., Nomokonova, T.,
Notholt, J., Palm, M., Pinxteren, M. v., Quaas, J., Richter, P.,
Ruiz-Donoso, E., Schäfer, M., Schmieder, K., Schnaiter, M., Schneider,
J., Schwarzenböck, A., Seifert, P., Shupe, M. D., Siebert, H., Spreen,
G., Stapf, J., Stratmann, F., Vogl, T., Welti, A., Wex, H., Wiedensohler,
A., Zanatta, M., and Zeppenfeld, S.: The Arctic Cloud Puzzle: Using
ACLOUD/PASCAL Multiplatform Observations to Unravel the Role of Clouds and
Aerosol Particles in Arctic Amplification, B. Am. Meteorol. Soc., 100, 841–871, https://doi.org/10.1175/bams-d-18-0072.1, 2019.
Widener, K., Bharadwaj, N., and Johnson, K.: Ka-Band ARM Zenith Radar (KAZR)
Handbook, U.S. Department of Energy, Office of Science, Office of Biological
and Environmental Research, DOE/SC-ARM/TR-106, 2012.
Willis, M. D., Leaitch, W. R., and Abbatt, J. P. D.: Processes Controlling
the Composition and Abundance of Arctic Aerosol, Rev. Geophys., 56, 621–671, https://doi.org/10.1029/2018rg000602, 2018
Willis, M. D., Bozem, H., Kunkel, D., Lee, A. K. Y., Schulz, H., Burkart, J., Aliabadi, A. A., Herber, A. B., Leaitch, W. R., and Abbatt, J. P. D.: Aircraft-based measurements of High Arctic springtime aerosol show evidence for vertically varying sources, transport and composition, Atmos. Chem. Phys., 19, 57–76, https://doi.org/10.5194/acp-19-57-2019, 2019.
Winiger, P., Barrett, T. E., Sheesley, R. J., Huang, L., Sharma, S., Barrie,
L. A., Yttri, K. E., Evangeliou, N., Eckhardt, S., Stohl, A., Klimont, Z.,
Heyes, C., Semiletov, I. P., Dudarev, O. V., Charkin, A., Shakhova, N.,
Holmstrand, H., Andersson, A., and Gustafsson, Ö.: Source apportionment
of circum-Arctic atmospheric black carbon from isotopes and modeling, J. Sci. Adv., 5,
eaau8052, https://doi.org/10.1126/sciadv.aau8052, 2019.
Young, G., Jones, H. M., Choularton, T. W., Crosier, J., Bower, K. N., Gallagher, M. W., Davies, R. S., Renfrew, I. A., Elvidge, A. D., Darbyshire, E., Marenco, F., Brown, P. R. A., Ricketts, H. M. A., Connolly, P. J., Lloyd, G., Williams, P. I., Allan, J. D., Taylor, J. W., Liu, D., and Flynn, M. J.: Observed microphysical changes in Arctic mixed-phase clouds when transitioning from sea ice to open ocean, Atmos. Chem. Phys., 16, 13945–13967, https://doi.org/10.5194/acp-16-13945-2016, 2016a.
Young, G., Jones, H. M., Darbyshire, E., Baustian, K. J., McQuaid, J. B., Bower, K. N., Connolly, P. J., Gallagher, M. W., and Choularton, T. W.: Size-segregated compositional analysis of aerosol particles collected in the European Arctic during the ACCACIA campaign, Atmos. Chem. Phys., 16, 4063–4079, https://doi.org/10.5194/acp-16-4063-2016, 2016b.
Young, G., Connolly, P. J., Jones, H. M., and Choularton, T. W.: Microphysical sensitivity of coupled springtime Arctic stratocumulus to modelled primary ice over the ice pack, marginal ice, and ocean, Atmos. Chem. Phys., 17, 4209–4227, https://doi.org/10.5194/acp-17-4209-2017, 2017.
Yum, S. S., and Hudson, J. G.: Vertical distributions of cloud condensation
nuclei spectra over the springtime Arctic Ocean, J. Geophys.
Res.-Atmos., 106, 15045–15052, https://doi.org/10.1029/2000JD900357, 2001.
Zamora, L. M., Kahn, R. A., Cubison, M. J., Diskin, G. S., Jimenez, J. L., Kondo, Y., McFarquhar, G. M., Nenes, A., Thornhill, K. L., Wisthaler, A., Zelenyuk, A., and Ziemba, L. D.: Aircraft-measured indirect cloud effects from biomass burning smoke in the Arctic and subarctic, Atmos. Chem. Phys., 16, 715–738, https://doi.org/10.5194/acp-16-715-2016, 2016.
Zelinka, M. D., Myers, T. A., McCoy, D. T., Po-Chedley, S., Caldwell, P. M.,
Ceppi, P., Klein, S. A., and Taylor, K. E.: Causes of Higher Climate
Sensitivity in CMIP6 Models, Geophys. Res. Lett., 47, e2019GL085782, https://doi.org/10.1029/2019GL085782, 2020.
Short summary
Arctic clouds play a role in modulating sea ice extent. Importantly, aerosols facilitate cloud formation, and thus it is crucial to understand the interactions between aerosols and clouds. Vertical measurements of aerosols and clouds are needed to tackle this issue. We present results from balloon-borne measurements of aerosols and clouds over the course of 2 years in northern Alaska. These data shed light onto the vertical distributions of aerosols relative to clouds spanning multiple seasons.
Arctic clouds play a role in modulating sea ice extent. Importantly, aerosols facilitate cloud...
Altmetrics
Final-revised paper
Preprint