Articles | Volume 21, issue 19
https://doi.org/10.5194/acp-21-15259-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/acp-21-15259-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The Asian tropopause aerosol layer within the 2017 monsoon anticyclone: microphysical properties derived from aircraft-borne in situ measurements
Particle Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
now at: Institute of Energy and Climate Research – IEK8, Forschungszentrum Jülich, Jülich, Germany
Ralf Weigel
Institute for Atmospheric Physics, Johannes Gutenberg University, Mainz, Germany
Francesco Cairo
Institute of Atmospheric Sciences and Climate, ISAC-CNR, Rome, Italy
Jean-Paul Vernier
National Institute of Aerospace, Hampton, Virginia, USA
NASA Langley Research Center, Hampton, Virginia, USA
Armin Afchine
Institute of Energy and Climate Research – IEK7, Forschungszentrum Jülich, Jülich, Germany
Martina Krämer
Institute of Energy and Climate Research – IEK7, Forschungszentrum Jülich, Jülich, Germany
Institute for Atmospheric Physics, Johannes Gutenberg University, Mainz, Germany
Valentin Mitev
Centre Suisse d'Electronique et de Microtechnique, CSEM SA, Neuchâtel, Switzerland
Renaud Matthey
Institut de Physique, Université de Neuchâtel, Neuchâtel, Switzerland
Silvia Viciani
National Institute of Optics, CNR-INO, Sesto Fiorentino, Florence, Italy
Francesco D'Amato
National Institute of Optics, CNR-INO, Sesto Fiorentino, Florence, Italy
Felix Ploeger
Institute of Energy and Climate Research – IEK7, Forschungszentrum Jülich, Jülich, Germany
Terry Deshler
Department of Atmospheric Science, University of Wyoming, Laramie, Wyoming, USA
Stephan Borrmann
Particle Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
Institute for Atmospheric Physics, Johannes Gutenberg University, Mainz, Germany
Related authors
Yun Li, Christoph Mahnke, Susanne Rohs, Ulrich Bundke, Nicole Spelten, Georgios Dekoutsidis, Silke Groß, Christiane Voigt, Ulrich Schumann, Andreas Petzold, and Martina Krämer
Atmos. Chem. Phys., 23, 2251–2271, https://doi.org/10.5194/acp-23-2251-2023, https://doi.org/10.5194/acp-23-2251-2023, 2023
Short summary
Short summary
The radiative effect of aviation-induced cirrus is closely related to ambient conditions and its microphysical properties. Our study investigated the occurrence of contrail and natural cirrus measured above central Europe in spring 2014. It finds that contrail cirrus appears frequently in the pressure range 200 to 245 hPa and occurs more often in slightly ice-subsaturated environments than expected. Avoiding slightly ice-subsaturated regions by aviation might help mitigate contrail cirrus.
Oliver Appel, Franziska Köllner, Antonis Dragoneas, Andreas Hünig, Sergej Molleker, Hans Schlager, Christoph Mahnke, Ralf Weigel, Max Port, Christiane Schulz, Frank Drewnick, Bärbel Vogel, Fred Stroh, and Stephan Borrmann
Atmos. Chem. Phys., 22, 13607–13630, https://doi.org/10.5194/acp-22-13607-2022, https://doi.org/10.5194/acp-22-13607-2022, 2022
Short summary
Short summary
This paper clarifies the chemical composition of the Asian tropopause aerosol layer (ATAL) by means of airborne in situ aerosol mass spectrometry (AMS). Ammonium nitrate and organics are found to significantly contribute to the particle layer, while sulfate does not show a layered structure. An analysis of the single-particle mass spectra suggests that secondary particle formation and subsequent growth dominate the particle composition, rather than condensation on pre-existing primary particles.
Ralf Weigel, Christoph Mahnke, Manuel Baumgartner, Martina Krämer, Peter Spichtinger, Nicole Spelten, Armin Afchine, Christian Rolf, Silvia Viciani, Francesco D'Amato, Holger Tost, and Stephan Borrmann
Atmos. Chem. Phys., 21, 13455–13481, https://doi.org/10.5194/acp-21-13455-2021, https://doi.org/10.5194/acp-21-13455-2021, 2021
Short summary
Short summary
In July and August 2017, the StratoClim mission took place in Nepal with eight flights of the M-55 Geophysica at up to 20 km in the Asian monsoon anticyclone. New particle formation (NPF) next to cloud ice was detected in situ by abundant nucleation-mode aerosols (> 6 nm) along with ice particles (> 3 µm). NPF was observed mainly below the tropopause, down to 15 % being non-volatile residues. Observed intra-cloud NPF indicates its importance for the composition in the tropical tropopause layer.
Ralf Weigel, Christoph Mahnke, Manuel Baumgartner, Antonis Dragoneas, Bärbel Vogel, Felix Ploeger, Silvia Viciani, Francesco D'Amato, Silvia Bucci, Bernard Legras, Beiping Luo, and Stephan Borrmann
Atmos. Chem. Phys., 21, 11689–11722, https://doi.org/10.5194/acp-21-11689-2021, https://doi.org/10.5194/acp-21-11689-2021, 2021
Short summary
Short summary
In July and August 2017, eight StratoClim mission flights of the Geophysica reached up to 20 km in the Asian monsoon anticyclone. New particle formation (NPF) was identified in situ by abundant nucleation-mode aerosols (6–15 nm in diameter) with mixing ratios of up to 50 000 mg−1. NPF occurred most frequently at 12–16 km with fractions of non-volatile residues of down to 15 %. Abundance and productivity of observed NPF indicate its ability to promote the Asian tropopause aerosol layer.
Johannes Schneider, Ralf Weigel, Thomas Klimach, Antonis Dragoneas, Oliver Appel, Andreas Hünig, Sergej Molleker, Franziska Köllner, Hans-Christian Clemen, Oliver Eppers, Peter Hoppe, Peter Hoor, Christoph Mahnke, Martina Krämer, Christian Rolf, Jens-Uwe Grooß, Andreas Zahn, Florian Obersteiner, Fabrizio Ravegnani, Alexey Ulanovsky, Hans Schlager, Monika Scheibe, Glenn S. Diskin, Joshua P. DiGangi, John B. Nowak, Martin Zöger, and Stephan Borrmann
Atmos. Chem. Phys., 21, 989–1013, https://doi.org/10.5194/acp-21-989-2021, https://doi.org/10.5194/acp-21-989-2021, 2021
Short summary
Short summary
During five aircraft missions, we detected aerosol particles containing meteoric material in the lower stratosphere. The stratospheric measurements span a latitude range from 15 to 68° N, and we find that at potential temperature levels of more than 40 K above the tropopause; particles containing meteoric material occur at similar abundance fractions across latitudes and seasons. We conclude that meteoric material is efficiently distributed between high and low latitudes by isentropic mixing.
Fan Mei, Jian Wang, Jennifer M. Comstock, Ralf Weigel, Martina Krämer, Christoph Mahnke, John E. Shilling, Johannes Schneider, Christiane Schulz, Charles N. Long, Manfred Wendisch, Luiz A. T. Machado, Beat Schmid, Trismono Krisna, Mikhail Pekour, John Hubbe, Andreas Giez, Bernadett Weinzierl, Martin Zoeger, Mira L. Pöhlker, Hans Schlager, Micael A. Cecchini, Meinrat O. Andreae, Scot T. Martin, Suzane S. de Sá, Jiwen Fan, Jason Tomlinson, Stephen Springston, Ulrich Pöschl, Paulo Artaxo, Christopher Pöhlker, Thomas Klimach, Andreas Minikin, Armin Afchine, and Stephan Borrmann
Atmos. Meas. Tech., 13, 661–684, https://doi.org/10.5194/amt-13-661-2020, https://doi.org/10.5194/amt-13-661-2020, 2020
Short summary
Short summary
In 2014, the US DOE G1 aircraft and the German HALO aircraft overflew the Amazon basin to study how aerosols influence cloud cycles under a clean condition and around a tropical megacity. This paper describes how to meaningfully compare similar measurements from two research aircraft and identify the potential measurement issue. We also discuss the uncertainty range for each measurement for further usage in model evaluation and satellite data validation.
Pascal Polonik, Christoph Knote, Tobias Zinner, Florian Ewald, Tobias Kölling, Bernhard Mayer, Meinrat O. Andreae, Tina Jurkat-Witschas, Thomas Klimach, Christoph Mahnke, Sergej Molleker, Christopher Pöhlker, Mira L. Pöhlker, Ulrich Pöschl, Daniel Rosenfeld, Christiane Voigt, Ralf Weigel, and Manfred Wendisch
Atmos. Chem. Phys., 20, 1591–1605, https://doi.org/10.5194/acp-20-1591-2020, https://doi.org/10.5194/acp-20-1591-2020, 2020
Short summary
Short summary
A realistic representation of cloud–aerosol interactions is central to accurate climate projections. Here we combine observations collected during the ACRIDICON-CHUVA campaign with chemistry-transport simulations to evaluate the model’s ability to represent the indirect effects of biomass burning aerosol on cloud microphysics. We find an upper limit for the model sensitivity on cloud condensation nuclei concentrations well below the levels reached during the burning season in the Amazon Basin.
Trismono C. Krisna, Manfred Wendisch, André Ehrlich, Evelyn Jäkel, Frank Werner, Ralf Weigel, Stephan Borrmann, Christoph Mahnke, Ulrich Pöschl, Meinrat O. Andreae, Christiane Voigt, and Luiz A. T. Machado
Atmos. Chem. Phys., 18, 4439–4462, https://doi.org/10.5194/acp-18-4439-2018, https://doi.org/10.5194/acp-18-4439-2018, 2018
Short summary
Short summary
The optical thickness and particle effective radius of a cirrus above liquid water clouds and a DCC topped by an anvil cirrus are retrieved based on SMART and MODIS radiance measurements. For the cirrus, retrieved particle effective radius are validated with corresponding in situ data using a vertical weighting method. This approach allows to assess the measurements, retrieval algorithms, and derived cloud products.
Micael A. Cecchini, Luiz A. T. Machado, Manfred Wendisch, Anja Costa, Martina Krämer, Meinrat O. Andreae, Armin Afchine, Rachel I. Albrecht, Paulo Artaxo, Stephan Borrmann, Daniel Fütterer, Thomas Klimach, Christoph Mahnke, Scot T. Martin, Andreas Minikin, Sergej Molleker, Lianet H. Pardo, Christopher Pöhlker, Mira L. Pöhlker, Ulrich Pöschl, Daniel Rosenfeld, and Bernadett Weinzierl
Atmos. Chem. Phys., 17, 14727–14746, https://doi.org/10.5194/acp-17-14727-2017, https://doi.org/10.5194/acp-17-14727-2017, 2017
Short summary
Short summary
This study introduces and explores the concept of gamma phase space. This space is able to represent all possible variations in the cloud droplet size distributions (DSDs). The methodology was applied to recent in situ aircraft measurements over the Amazon. It is shown that the phase space is able to represent several processes occurring in the clouds in a simple manner. The consequences for cloud studies, modeling, and the representation of the transition from warm to mixed phase are discussed.
Ramon Campos Braga, Daniel Rosenfeld, Ralf Weigel, Tina Jurkat, Meinrat O. Andreae, Manfred Wendisch, Ulrich Pöschl, Christiane Voigt, Christoph Mahnke, Stephan Borrmann, Rachel I. Albrecht, Sergej Molleker, Daniel A. Vila, Luiz A. T. Machado, and Lucas Grulich
Atmos. Chem. Phys., 17, 14433–14456, https://doi.org/10.5194/acp-17-14433-2017, https://doi.org/10.5194/acp-17-14433-2017, 2017
Micael A. Cecchini, Luiz A. T. Machado, Meinrat O. Andreae, Scot T. Martin, Rachel I. Albrecht, Paulo Artaxo, Henrique M. J. Barbosa, Stephan Borrmann, Daniel Fütterer, Tina Jurkat, Christoph Mahnke, Andreas Minikin, Sergej Molleker, Mira L. Pöhlker, Ulrich Pöschl, Daniel Rosenfeld, Christiane Voigt, Bernadett Weinzierl, and Manfred Wendisch
Atmos. Chem. Phys., 17, 10037–10050, https://doi.org/10.5194/acp-17-10037-2017, https://doi.org/10.5194/acp-17-10037-2017, 2017
Short summary
Short summary
We study the effects of aerosol particles and updraft speed on the warm phase of Amazonian clouds. We expand the sensitivity analysis usually found in the literature by concomitantly considering cloud evolution and the effects on droplet size distribution (DSD) shape. The quantitative results show that particle concentration is the primary driver for the vertical profiles of effective diameter and droplet concentration in the warm phase of Amazonian convective clouds.
Ramon Campos Braga, Daniel Rosenfeld, Ralf Weigel, Tina Jurkat, Meinrat O. Andreae, Manfred Wendisch, Mira L. Pöhlker, Thomas Klimach, Ulrich Pöschl, Christopher Pöhlker, Christiane Voigt, Christoph Mahnke, Stephan Borrmann, Rachel I. Albrecht, Sergej Molleker, Daniel A. Vila, Luiz A. T. Machado, and Paulo Artaxo
Atmos. Chem. Phys., 17, 7365–7386, https://doi.org/10.5194/acp-17-7365-2017, https://doi.org/10.5194/acp-17-7365-2017, 2017
Ralf Weigel, Peter Spichtinger, Christoph Mahnke, Marcus Klingebiel, Armin Afchine, Andreas Petzold, Martina Krämer, Anja Costa, Sergej Molleker, Philipp Reutter, Miklós Szakáll, Max Port, Lucas Grulich, Tina Jurkat, Andreas Minikin, and Stephan Borrmann
Atmos. Meas. Tech., 9, 5135–5162, https://doi.org/10.5194/amt-9-5135-2016, https://doi.org/10.5194/amt-9-5135-2016, 2016
Short summary
Short summary
The subject of our study concerns measurements with optical array probes (OAPs) on fast-flying aircraft such as the G550 (HALO or HIAPER). At up to Mach 0.7 the effect of air compression upstream of underwing-mounted instruments and particles' inertia need consideration for determining ambient particle concentrations. Compared to conventional practices the introduced correction procedure eliminates ambiguities and exhibits consistency over flight speeds between 50 and 250 m s−.
Hongyue Wang, Mijeong Park, Mengchu Tao, Cristina Peña-Ortiz, Nuria Pilar Plaza, Felix Ploeger, and Paul Konopka
EGUsphere, https://doi.org/10.5194/egusphere-2024-3260, https://doi.org/10.5194/egusphere-2024-3260, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
We investigated how stratospheric water vapor behaves over the Asian and North American monsoons. Using a method that tracks air movement, we recreated the moisture patterns. Our results show that the moisture in monsoon regions is primarily controlled by largescale air temperatures, while the North American monsoon is influenced by distant transport. These findings enhance our understanding of summertime stratospheric water vapor changes and offer insights into climate feedback mechanisms.
Julia Pikmann, Frank Drewnick, Friederike Fachinger, and Stephan Borrmann
Atmos. Chem. Phys., 24, 12295–12321, https://doi.org/10.5194/acp-24-12295-2024, https://doi.org/10.5194/acp-24-12295-2024, 2024
Short summary
Short summary
Cooking activities can contribute substantially to indoor and ambient aerosol. We performed a comprehensive study with laboratory measurements cooking 19 different dishes and ambient measurements at two Christmas markets measuring various particle properties and trace gases of emissions in real time. Similar emission characteristics were observed for dishes with the same preparation method, mainly due to similar cooking temperature and use of oil, with barbecuing as an especially strong source.
Vadassery Neelamana Santhosh, Bomidi Lakshmi Madhavan, Sivan Thankamani Akhil Raj, Madineni Venkat Ratnam, Jean-Paul Vernier, and Frank Gunther Wienhold
EGUsphere, https://doi.org/10.5194/egusphere-2024-2861, https://doi.org/10.5194/egusphere-2024-2861, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Our study examines a lesser-known atmospheric feature, the Asian Tropopause Aerosol Layer, located high above Earth. We investigated how different aerosols, such as sulfates, nitrates, and pollutants, influence heat entering and leaving the atmosphere. The results show that these particles can alter temperature patterns, especially during the Asian summer monsoon. This research improves our understanding of how human activities may affect regional climate.
Felix Wrana, Terry Deshler, Christian Löns, Larry W. Thomason, and Christian von Savigny
EGUsphere, https://doi.org/10.5194/egusphere-2024-2942, https://doi.org/10.5194/egusphere-2024-2942, 2024
Short summary
Short summary
There is a natural and globally occurring layer of small droplets (aerosols) in roughly 20 km altitude in the atmosphere. In this work, the size of these aerosols is calculated from satellite measurements for the years 2002 to 2005, which is important for the aerosols cooling effect on Earth's climate. These years are interesting, because there were no large volcanic eruptions that would change the background state of the aerosols. The results are compared to reliable balloon-borne measurements.
Patrick Peter, Sigrun Matthes, Christine Frömming, Patrick Jöckel, Luca Bugliaro, Andreas Giez, Martina Krämer, and Volker Grewe
EGUsphere, https://doi.org/10.5194/egusphere-2024-2142, https://doi.org/10.5194/egusphere-2024-2142, 2024
Short summary
Short summary
Our study examines how temperature and humidity representations influence contrail (-cirrus) formation criteria. Using various model setups, we identified biases that lead to overestimation of contrail formation areas. By comparing simulations with in-flight and satellite observations, we confirmed that humidity threshold choices greatly affect contrail predictions. These findings can help develop strategies for climate-optimized flight routes, potentially reducing aviation's climate effect.
Florian Voet, Felix Plöger, Johannes Laube, Peter Preusse, Paul Konopka, Jens-Uwe Grooß, Jörn Ungermann, Björn-Martin Sinnhuber, Michael Hoepfner, Bernd Funke, Gerald Wetzel, Sören Johansson, Gabriele Stiller, Eric Ray, and Michaela Imelda Hegglin
EGUsphere, https://doi.org/10.5194/egusphere-2024-2624, https://doi.org/10.5194/egusphere-2024-2624, 2024
Short summary
Short summary
This study refines estimates of the stratospheric “age of air,” a measure of how long air circulates in the stratosphere. By analyzing correlations between trace gases measurable by satellites, the research introduces a method that reduces uncertainties and detects small-scale atmospheric features. This improved understanding of stratospheric circulation is crucial for better climate models and predictions, enhancing our ability to assess the impacts of climate change on the atmosphere.
Manfred Wendisch, Susanne Crewell, André Ehrlich, Andreas Herber, Benjamin Kirbus, Christof Lüpkes, Mario Mech, Steven J. Abel, Elisa F. Akansu, Felix Ament, Clémantyne Aubry, Sebastian Becker, Stephan Borrmann, Heiko Bozem, Marlen Brückner, Hans-Christian Clemen, Sandro Dahlke, Georgios Dekoutsidis, Julien Delanoë, Elena De La Torre Castro, Henning Dorff, Regis Dupuy, Oliver Eppers, Florian Ewald, Geet George, Irina V. Gorodetskaya, Sarah Grawe, Silke Groß, Jörg Hartmann, Silvia Henning, Lutz Hirsch, Evelyn Jäkel, Philipp Joppe, Olivier Jourdan, Zsofia Jurányi, Michail Karalis, Mona Kellermann, Marcus Klingebiel, Michael Lonardi, Johannes Lucke, Anna E. Luebke, Maximilian Maahn, Nina Maherndl, Marion Maturilli, Bernhard Mayer, Johanna Mayer, Stephan Mertes, Janosch Michaelis, Michel Michalkov, Guillaume Mioche, Manuel Moser, Hanno Müller, Roel Neggers, Davide Ori, Daria Paul, Fiona M. Paulus, Christian Pilz, Felix Pithan, Mira Pöhlker, Veronika Pörtge, Maximilian Ringel, Nils Risse, Gregory C. Roberts, Sophie Rosenburg, Johannes Röttenbacher, Janna Rückert, Michael Schäfer, Jonas Schaefer, Vera Schemann, Imke Schirmacher, Jörg Schmidt, Sebastian Schmidt, Johannes Schneider, Sabrina Schnitt, Anja Schwarz, Holger Siebert, Harald Sodemann, Tim Sperzel, Gunnar Spreen, Bjorn Stevens, Frank Stratmann, Gunilla Svensson, Christian Tatzelt, Thomas Tuch, Timo Vihma, Christiane Voigt, Lea Volkmer, Andreas Walbröl, Anna Weber, Birgit Wehner, Bruno Wetzel, Martin Wirth, and Tobias Zinner
Atmos. Chem. Phys., 24, 8865–8892, https://doi.org/10.5194/acp-24-8865-2024, https://doi.org/10.5194/acp-24-8865-2024, 2024
Short summary
Short summary
The Arctic is warming faster than the rest of the globe. Warm-air intrusions (WAIs) into the Arctic may play an important role in explaining this phenomenon. Cold-air outbreaks (CAOs) out of the Arctic may link the Arctic climate changes to mid-latitude weather. In our article, we describe how to observe air mass transformations during CAOs and WAIs using three research aircraft instrumented with state-of-the-art remote-sensing and in situ measurement devices.
Patrick Konjari, Christian Rolf, Michaela Imelda Hegglin, Susanne Rohs, Yun Li, Andreas Zahn, Harald Bönisch, Martina Krämer, and Andreas Petzold
EGUsphere, https://doi.org/10.5194/egusphere-2024-2360, https://doi.org/10.5194/egusphere-2024-2360, 2024
Short summary
Short summary
This study introduces a new method to deriving adjusted water vapor (H2O) climatologies for the upper tropopshere and lower statosphere (UT/LS) using data from 60,000 flights under the IAGOS program. Biases in the IAGOS water vapor dataset are adjusted, based on the more accurate IAGOS-CARIBIC data. The resulting highly resolved H2O climatologies will contribute to a better understanding of the H2O variability in the UT/LS and its connection to various transport and mixing processes.
Laura N. Saunders, Kaley A. Walker, Gabriele P. Stiller, Thomas von Clarmann, Florian Haenel, Hella Garny, Harald Bönisch, Chris D. Boone, Ariana E. Castillo, Andreas Engel, Johannes C. Laube, Marianna Linz, Felix Ploeger, David A. Plummer, Eric A. Ray, and Patrick E. Sheese
EGUsphere, https://doi.org/10.5194/egusphere-2024-2117, https://doi.org/10.5194/egusphere-2024-2117, 2024
Short summary
Short summary
We present a 17-year stratospheric age of air dataset derived from ACE-FTS satellite measurements of sulfur hexafluoride. This is the longest continuous, global, and vertically resolved age of air time series available to date. In this paper, we show that this dataset agrees well with age of air datasets based on measurements from other instruments. We also present trends in the midlatitude lower stratosphere that indicate changes in the global circulation that are predicted by climate models.
Kimberlee Dube, Susann Tegtmeier, Felix Ploeger, and Kaley A. Walker
EGUsphere, https://doi.org/10.5194/egusphere-2024-1736, https://doi.org/10.5194/egusphere-2024-1736, 2024
Short summary
Short summary
The transport rate of air in the stratosphere has changed in response to human emissions of greenhouse gases and ozone depleting substances. This transport rate can be approximated using measurements of long-lived traces gases. We use observations and model results to derive anomalies and trends in the mean rate of stratospheric air transport. We find that air in the northern hemisphere aged by up to 0.3 years/decade relative to air in the southern hemisphere over 2004–2017.
André Ehrlich, Susanne Crewell, Andreas Herber, Marcus Klingebiel, Christof Lüpkes, Mario Mech, Sebastian Becker, Stephan Borrmann, Heiko Bozem, Matthias Buschmann, Hans-Christian Clemen, Elena De La Torre Castro, Henning Dorff, Regis Dupuy, Oliver Eppers, Florian Ewald, Geet George, Andreas Giez, Sarah Grawe, Christophe Gourbeyre, Jörg Hartmann, Evelyn Jäkel, Philipp Joppe, Olivier Jourdan, Zsófia Jurányi, Benjamin Kirbus, Johannes Lucke, Anna E. Luebke, Maximilian Maahn, Nina Maherndl, Christian Mallaun, Johanna Mayer, Stephan Mertes, Guillaume Mioche, Manuel Moser, Hanno Müller, Veronika Pörtge, Nils Risse, Greg Roberts, Sophie Rosenburg, Johannes Röttenbacher, Michael Schäfer, Jonas Schaefer, Andreas Schäfler, Imke Schirmacher, Johannes Schneider, Sabrina Schnitt, Frank Stratmann, Christian Tatzelt, Christiane Voigt, Andreas Walbröl, Anna Weber, Bruno Wetzel, Martin Wirth, and Manfred Wendisch
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-281, https://doi.org/10.5194/essd-2024-281, 2024
Preprint under review for ESSD
Short summary
Short summary
This paper provides an overview of the HALO–(AC)3 aircraft campaign data sets, the campaign specific instrument operation, data processing, and data quality. The data set comprises in-situ and remote sensing observations from three research aircraft, HALO, Polar 5, and Polar 6. All data are published in the PANGAEA database by instrument-separated data subsets. It is highlighted how the scientific analysis of the HALO–(AC)3 data benefits from the coordinated operation of three aircraft.
Christine Pohl, Felix Wrana, Alexei Rozanov, Terry Deshler, Elizaveta Malinina, Christian von Savigny, Landon A. Rieger, Adam E. Bourassa, and John P. Burrows
Atmos. Meas. Tech., 17, 4153–4181, https://doi.org/10.5194/amt-17-4153-2024, https://doi.org/10.5194/amt-17-4153-2024, 2024
Short summary
Short summary
Knowledge of stratospheric aerosol characteristics is important for understanding chemical and climate aerosol feedbacks. Two particle size distribution parameters, the aerosol extinction coefficient and the effective radius, are obtained from SCIAMACHY limb observations. The aerosol characteristics show good agreement with independent data sets from balloon-borne and satellite observations. This data set expands the limited knowledge of stratospheric aerosol characteristics.
Philipp Joppe, Johannes Schneider, Katharina Kaiser, Horst Fischer, Peter Hoor, Daniel Kunkel, Hans-Christoph Lachnitt, Andreas Marsing, Lenard Röder, Hans Schlager, Laura Tomsche, Christiane Voigt, Andreas Zahn, and Stephan Borrmann
Atmos. Chem. Phys., 24, 7499–7522, https://doi.org/10.5194/acp-24-7499-2024, https://doi.org/10.5194/acp-24-7499-2024, 2024
Short summary
Short summary
From aircraft measurements in the upper troposphere/lower stratosphere, we find a correlation between the ozone and particulate sulfate in the lower stratosphere. The correlation exhibits some variability over the measurement period exceeding the background sulfate-to-ozone correlation. From our analysis, we conclude that gas-to-particle conversion of volcanic sulfur dioxide leads to observed enhanced sulfate aerosol mixing ratios.
Christine Borchers, Jackson Seymore, Martanda Gautam, Konstantin Dörholt, Yannik Müller, Andreas Arndt, Laura Gömmer, Florian Ungeheuer, Miklós Szakáll, Stephan Borrmann, Alexander Theis, Alexander Lucas Vogel, and Thorsten Hoffmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-1443, https://doi.org/10.5194/egusphere-2024-1443, 2024
Short summary
Short summary
Riming, a crucial process in cloud dynamics, influences the vertical distribution of compounds in the atmosphere. Experiments in Mainz's wind tunnel investigated retention coefficients of organic compounds under varying conditions. Findings suggest a correlation between Henry's law constant and retention, applicable even to complex organic molecules.
Franziska Weyland, Peter Hoor, Daniel Kunkel, Thomas Birner, Felix Plöger, and Katharina Turhal
EGUsphere, https://doi.org/10.5194/egusphere-2024-1700, https://doi.org/10.5194/egusphere-2024-1700, 2024
Short summary
Short summary
The lowermost stratosphere (LMS) plays an important role for the Earth’s climate, containing strong gradients of ozone and water vapor. Our results indicate that the thermodynamic structure of the LMS has been changing between 1979–2019 in response to anthropogenic climate change and the recovery of stratospheric ozone, also hinting towards large scale circulation changes. We find that both the upper and lower LMS boundaries show an (upward) trend, which has implications on the LMS mass.
Jean-Paul Vernier, Thomas J. Aubry, Claudia Timmreck, Anja Schmidt, Lieven Clarisse, Fred Prata, Nicolas Theys, Andrew T. Prata, Graham Mann, Hyundeok Choi, Simon Carn, Richard Rigby, Susan C. Loughlin, and John A. Stevenson
Atmos. Chem. Phys., 24, 5765–5782, https://doi.org/10.5194/acp-24-5765-2024, https://doi.org/10.5194/acp-24-5765-2024, 2024
Short summary
Short summary
The 2019 Raikoke eruption (Kamchatka, Russia) generated one of the largest emissions of particles and gases into the stratosphere since the 1991 Mt. Pinatubo eruption. The Volcano Response (VolRes) initiative, an international effort, provided a platform for the community to share information about this eruption and assess its climate impact. The eruption led to a minor global surface cooling of 0.02 °C in 2020 which is negligible relative to warming induced by human greenhouse gas emissions.
Cristina Peña-Ortiz, Nuria Pilar Plaza, David Gallego, and Felix Ploeger
Atmos. Chem. Phys., 24, 5457–5478, https://doi.org/10.5194/acp-24-5457-2024, https://doi.org/10.5194/acp-24-5457-2024, 2024
Short summary
Short summary
Although water vapour (H2O) in the lower stratosphere is only a few molecules among 1 million air molecules, atmospheric radiative forcing and surface temperature are sensitive to changes in its concentration. Monsoon regions play a key role in H2O transport and its concentration in the lower stratosphere. We show how the quasi-biennial oscillation (QBO) has a major impact on H2O over the Asian monsoon during August through changes in temperature caused by QBO modulation of tropical clouds.
Nicholas Ernest, Larry W. Thomason, and Terry Deshler
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-62, https://doi.org/10.5194/amt-2024-62, 2024
Revised manuscript has not been submitted
Short summary
Short summary
We use balloon-borne measurements of aerosol size distribution (ASD) made by the University of Wyoming (UW) to derive distributions which are representative of the ASDs that underlie measurements made by the Stratospheric Aerosol and Gas Experiment II (SAGE II). A simple single mode log-normal distribution has in the past been used to derive ASD from SAGE II data; here we derive bimodal log-normal distributions. Reproducing median aerosol properties, however sometimes with wide variance.
Martin Ebert, Ralf Weigel, Stephan Weinbruch, Lisa Schneider, Konrad Kandler, Stefan Lauterbach, Franziska Köllner, Felix Plöger, Gebhard Günther, Bärbel Vogel, and Stephan Borrmann
Atmos. Chem. Phys., 24, 4771–4788, https://doi.org/10.5194/acp-24-4771-2024, https://doi.org/10.5194/acp-24-4771-2024, 2024
Short summary
Short summary
Particles were collected during the flight campaign StratoClim 2017 within the Asian tropopause aerosol layer (ATAL). Refractory particles from seven different flights were characterized by scanning and transmission electron microscopy (SEM, TEM). The most abundant refractory particles are silicates and non-volatile organics. The most important sources are combustion processes at the ground and the agitation of soil material. During one flight, small cinnabar particles (HgS) were also detected.
Ella Gilbert, Jhaswantsing Purseed, Yun Li, Martina Krämer, Beatrice Altamura, and Nicolas Bellouin
EGUsphere, https://doi.org/10.5194/egusphere-2024-821, https://doi.org/10.5194/egusphere-2024-821, 2024
Preprint withdrawn
Short summary
Short summary
We use a simple experiment to explore the non-CO2 impacts of aviation on climate, which are considerably larger than the impact of the sector’s carbon emissions alone. We show that the main effect of our experiments – which intend to mimic the effect of aircraft soot emissions reaching existing high-altitude cirrus clouds – is to extend cloud lifetime, thereby enhancing their effect on climate.
Xiaolu Yan, Paul Konopka, Felix Ploeger, and Aurélien Podglajen
EGUsphere, https://doi.org/10.5194/egusphere-2024-782, https://doi.org/10.5194/egusphere-2024-782, 2024
Short summary
Short summary
Our study finds that the air mass fractions (AMFs) from the Asian boundary layer (ABL) to the polar regions are about 1.5 times larger than those from the same latitude band in the Southern Hemisphere. The transport of AMFs from the ABL to the polar vortex primarily occurs above 20 km and over timescales exceeding 2 years. Our analysis reveals a strong correlation between the polar pollutants and the AMFs from the ABL. About 20 % of SF6 in the polar stratosphere originates from the ABL.
Adrien Deroubaix, Marco Vountas, Benjamin Gaubert, Maria Dolores Andrés Hernández, Stephan Borrmann, Guy Brasseur, Bruna Holanda, Yugo Kanaya, Katharina Kaiser, Flora Kluge, Ovid Oktavian Krüger, Inga Labuhn, Michael Lichtenstern, Klaus Pfeilsticker, Mira Pöhlker, Hans Schlager, Johannes Schneider, Guillaume Siour, Basudev Swain, Paolo Tuccella, Kameswara S. Vinjamuri, Mihalis Vrekoussis, Benjamin Weyland, and John P. Burrows
EGUsphere, https://doi.org/10.5194/egusphere-2024-516, https://doi.org/10.5194/egusphere-2024-516, 2024
Preprint archived
Short summary
Short summary
This study assesses atmospheric composition using air quality models during aircraft campaigns in Europe and Asia, focusing on carbonaceous aerosols and trace gases. While carbon monoxide is well modeled, other pollutants have moderate to weak agreement with observations. Wind speed modeling is reliable for identifying pollution plumes, where models tend to overestimate concentrations. This highlights challenges in accurately modeling aerosol and trace gas composition, particularly in cities.
Adrien Deroubaix, Marco Vountas, Benjamin Gaubert, Maria Dolores Andrés Hernández, Stephan Borrmann, Guy Brasseur, Bruna Holanda, Yugo Kanaya, Katharina Kaiser, Flora Kluge, Ovid Oktavian Krüger, Inga Labuhn, Michael Lichtenstern, Klaus Pfeilsticker, Mira Pöhlker, Hans Schlager, Johannes Schneider, Guillaume Siour, Basudev Swain, Paolo Tuccella, Kameswara S. Vinjamuri, Mihalis Vrekoussis, Benjamin Weyland, and John P. Burrows
EGUsphere, https://doi.org/10.5194/egusphere-2024-521, https://doi.org/10.5194/egusphere-2024-521, 2024
Short summary
Short summary
This study explores the proportional relationships between carbonaceous aerosols (black and organic carbon) and trace gases using airborne measurements from two campaigns in Europe and East Asia. Differences between regions were found, but air quality models struggled to reproduce them accurately. We show that these proportional relationships can help to constrain models and can be used to infer aerosol concentrations from satellite observations of trace gases, especially in urban areas.
Katharina Turhal, Felix Plöger, Jan Clemens, Thomas Birner, Franziska Weyland, Paul Konopka, and Peter Hoor
EGUsphere, https://doi.org/10.5194/egusphere-2024-471, https://doi.org/10.5194/egusphere-2024-471, 2024
Short summary
Short summary
The tropopause separates the troposphere, the lowest atmospheric layer where weather occurs, from the stratosphere. We computed the PV-gradient (PVG) tropopause, which is based on transport barriers between both layers. In 1980–2017, the PVG tropopause shifted poleward at lower altitudes and equatorward above. These shifts may signify height-dependent changes in atmospheric transport, influencing the distribution of pollutants and, e.g., greenhouse gases responsible for global warming.
Felix Ploeger, Thomas Birner, Edward Charlesworth, Paul Konopka, and Rolf Müller
Atmos. Chem. Phys., 24, 2033–2043, https://doi.org/10.5194/acp-24-2033-2024, https://doi.org/10.5194/acp-24-2033-2024, 2024
Short summary
Short summary
We present a novel mechanism of how regional anomalies in water vapour concentrations in the upper troposphere and lower stratosphere impact regional atmospheric circulation systems. These impacts include a displaced upper-level Asian monsoon circulation and strengthened prevailing westerlies in the Pacific region. Current climate models have biases in simulating these regional water vapour anomalies and circulation impacts, but the biases can be avoided by improving the model transport.
Irene Bartolomé García, Odran Sourdeval, Reinhold Spang, and Martina Krämer
Atmos. Chem. Phys., 24, 1699–1716, https://doi.org/10.5194/acp-24-1699-2024, https://doi.org/10.5194/acp-24-1699-2024, 2024
Short summary
Short summary
How many ice crystals of each size are in a cloud is a key parameter for the retrieval of cloud properties. The distribution of ice crystals is obtained from in situ measurements and used to create parameterizations that can be used when analyzing the remote-sensing data. Current parameterizations are based on data sets that do not include reliable measurements of small crystals, but in our study we use a data set that includes very small ice crystals to improve these parameterizations.
Jan Clemens, Bärbel Vogel, Lars Hoffmann, Sabine Griessbach, Nicole Thomas, Suvarna Fadnavis, Rolf Müller, Thomas Peter, and Felix Ploeger
Atmos. Chem. Phys., 24, 763–787, https://doi.org/10.5194/acp-24-763-2024, https://doi.org/10.5194/acp-24-763-2024, 2024
Short summary
Short summary
The source regions of the Asian tropopause aerosol layer (ATAL) are debated. We use balloon-borne measurements of the layer above Nainital (India) in August 2016 and atmospheric transport models to find ATAL source regions. Most air originated from the Tibetan plateau. However, the measured ATAL was stronger when more air originated from the Indo-Gangetic Plain and weaker when more air originated from the Pacific. Hence, the results indicate important anthropogenic contributions to the ATAL.
Bärbel Vogel, C. Michael Volk, Johannes Wintel, Valentin Lauther, Jan Clemens, Jens-Uwe Grooß, Gebhard Günther, Lars Hoffmann, Johannes C. Laube, Rolf Müller, Felix Ploeger, and Fred Stroh
Atmos. Chem. Phys., 24, 317–343, https://doi.org/10.5194/acp-24-317-2024, https://doi.org/10.5194/acp-24-317-2024, 2024
Short summary
Short summary
Over the Indian subcontinent, polluted air is rapidly uplifted to higher altitudes during the Asian monsoon season. We present an assessment of vertical transport in this region using different wind data provided by the European Centre for Medium-Range Weather Forecasts (ECMWF), as well as high-resolution aircraft measurements. In general, our findings confirm that the newest ECMWF reanalysis product, ERA5, yields a better representation of transport compared to the predecessor, ERA-Interim.
Amit Kumar Pandit, Jean-Paul Vernier, Thomas Duncan Fairlie, Kristopher M. Bedka, Melody A. Avery, Harish Gadhavi, Madineni Venkat Ratnam, Sanjeev Dwivedi, Kasimahanthi Amar Jyothi, Frank G. Wienhold, Holger Vömel, Hongyu Liu, Bo Zhang, Buduru Suneel Kumar, Tra Dinh, and Achuthan Jayaraman
EGUsphere, https://doi.org/10.5194/egusphere-2023-2236, https://doi.org/10.5194/egusphere-2023-2236, 2023
Short summary
Short summary
This study investigates the formation mechanism of a tropopause cirrus cloud layer observed at extremely cold temperatures over Hyderabad in India during the 2017 Asian summer monsoon using balloon-borne sensors. Ice crystals smaller than 50 microns were found in this optically thin cirrus cloud layer. Combined analysis of back-trajectories, satellite, and model data revealed that the formation of this layer was influenced by gravity waves and stratospheric hydration induced by typhoon Hato.
Simone Tilmes, Michael J. Mills, Yunqian Zhu, Charles G. Bardeen, Francis Vitt, Pengfei Yu, David Fillmore, Xiaohong Liu, Brian Toon, and Terry Deshler
Geosci. Model Dev., 16, 6087–6125, https://doi.org/10.5194/gmd-16-6087-2023, https://doi.org/10.5194/gmd-16-6087-2023, 2023
Short summary
Short summary
We implemented an alternative aerosol scheme in the high- and low-top model versions of the Community Earth System Model Version 2 (CESM2) with a more detailed description of tropospheric and stratospheric aerosol size distributions than the existing aerosol model. This development enables the comparison of different aerosol schemes with different complexity in the same model framework. It identifies improvements compared to a range of observations in both the troposphere and stratosphere.
Francesco Cairo, Martina Krämer, Armin Afchine, Guido Di Donfrancesco, Luca Di Liberto, Sergey Khaykin, Lorenza Lucaferri, Valentin Mitev, Max Port, Christian Rolf, Marcel Snels, Nicole Spelten, Ralf Weigel, and Stephan Borrmann
Atmos. Meas. Tech., 16, 4899–4925, https://doi.org/10.5194/amt-16-4899-2023, https://doi.org/10.5194/amt-16-4899-2023, 2023
Short summary
Short summary
Cirrus clouds have been observed over the Himalayan region between 10 km and the tropopause at 17–18 km. Data from backscattersonde, hygrometers, and particle cloud spectrometers have been compared to assess their consistency. Empirical relationships between optical parameters accessible with remote sensing lidars and cloud microphysical parameters (such as ice water content, particle number and surface area density, and particle aspherical fraction) have been established.
Pierre Grzegorczyk, Sudha Yadav, Florian Zanger, Alexander Theis, Subir K. Mitra, Stephan Borrmann, and Miklós Szakáll
Atmos. Chem. Phys., 23, 13505–13521, https://doi.org/10.5194/acp-23-13505-2023, https://doi.org/10.5194/acp-23-13505-2023, 2023
Short summary
Short summary
Secondary ice production generates high concentrations of ice crystals in clouds. These processes have been poorly understood. We conducted experiments at the wind tunnel laboratory of the Johannes Gutenberg University, Mainz, on graupel–graupel and graupel–snowflake collisions. From these experiments fragment number, size, cross-sectional area, and aspect ratio were determined.
Elena De La Torre Castro, Tina Jurkat-Witschas, Armin Afchine, Volker Grewe, Valerian Hahn, Simon Kirschler, Martina Krämer, Johannes Lucke, Nicole Spelten, Heini Wernli, Martin Zöger, and Christiane Voigt
Atmos. Chem. Phys., 23, 13167–13189, https://doi.org/10.5194/acp-23-13167-2023, https://doi.org/10.5194/acp-23-13167-2023, 2023
Short summary
Short summary
In this study, we show the differences in the microphysical properties between high-latitude (HL) cirrus and mid-latitude (ML) cirrus over the Arctic, North Atlantic, and central Europe during summer. The in situ measurements are combined with backward trajectories to investigate the influence of the region on cloud formation. We show that HL cirrus are characterized by a lower concentration of larger ice crystals when compared to ML cirrus.
Paul Konopka, Christian Rolf, Marc von Hobe, Sergey M. Khaykin, Benjamin Clouser, Elisabeth Moyer, Fabrizio Ravegnani, Francesco D'Amato, Silvia Viciani, Nicole Spelten, Armin Afchine, Martina Krämer, Fred Stroh, and Felix Ploeger
Atmos. Chem. Phys., 23, 12935–12947, https://doi.org/10.5194/acp-23-12935-2023, https://doi.org/10.5194/acp-23-12935-2023, 2023
Short summary
Short summary
We studied water vapor in a critical region of the atmosphere, the Asian summer monsoon anticyclone, using rare in situ observations. Our study shows that extremely high water vapor values observed in the stratosphere within the Asian monsoon anticyclone still undergo significant freeze-drying and that water vapor concentrations set by the Lagrangian dry point are a better proxy for the stratospheric water vapor budget than rare observations of enhanced water mixing ratios.
Frederik Harzer, Hella Garny, Felix Ploeger, Harald Bönisch, Peter Hoor, and Thomas Birner
Atmos. Chem. Phys., 23, 10661–10675, https://doi.org/10.5194/acp-23-10661-2023, https://doi.org/10.5194/acp-23-10661-2023, 2023
Short summary
Short summary
We study the statistical relation between year-by-year fluctuations in winter-mean ozone and the strength of the stratospheric polar vortex. In the latitude–pressure plane, regression analysis shows that anomalously weak polar vortex years are associated with three pronounced local ozone maxima over the polar cap relative to the winter climatology. These response maxima primarily reflect the non-trivial combination of different ozone transport processes with varying relative contributions.
Silke Groß, Tina Jurkat-Witschas, Qiang Li, Martin Wirth, Benedikt Urbanek, Martina Krämer, Ralf Weigel, and Christiane Voigt
Atmos. Chem. Phys., 23, 8369–8381, https://doi.org/10.5194/acp-23-8369-2023, https://doi.org/10.5194/acp-23-8369-2023, 2023
Short summary
Short summary
Aviation-emitted aerosol can have an impact on cirrus clouds. We present optical and microphysical properties of mid-latitude cirrus clouds which were formed under the influence of aviation-emitted aerosol or which were formed under rather pristine conditions. We find that cirrus clouds affected by aviation-emitted aerosol show larger values of the particle linear depolarization ratio, larger mean effective ice particle diameters and decreased ice particle number concentrations.
Manuel Moser, Christiane Voigt, Tina Jurkat-Witschas, Valerian Hahn, Guillaume Mioche, Olivier Jourdan, Régis Dupuy, Christophe Gourbeyre, Alfons Schwarzenboeck, Johannes Lucke, Yvonne Boose, Mario Mech, Stephan Borrmann, André Ehrlich, Andreas Herber, Christof Lüpkes, and Manfred Wendisch
Atmos. Chem. Phys., 23, 7257–7280, https://doi.org/10.5194/acp-23-7257-2023, https://doi.org/10.5194/acp-23-7257-2023, 2023
Short summary
Short summary
This study provides a comprehensive microphysical and thermodynamic phase analysis of low-level clouds in the northern Fram Strait, above the sea ice and the open ocean, during spring and summer. Using airborne in situ cloud data, we show that the properties of Arctic low-level clouds vary significantly with seasonal meteorological situations and surface conditions. The observations presented in this study can help one to assess the role of clouds in the Arctic climate system.
Robert Wagner, Alexander D. James, Victoria L. Frankland, Ottmar Möhler, Benjamin J. Murray, John M. C. Plane, Harald Saathoff, Ralf Weigel, and Martin Schnaiter
Atmos. Chem. Phys., 23, 6789–6811, https://doi.org/10.5194/acp-23-6789-2023, https://doi.org/10.5194/acp-23-6789-2023, 2023
Short summary
Short summary
Polar stratospheric clouds (PSCs) play an important role in the depletion of stratospheric ozone. They can consist of different chemical species, including crystalline nitric acid hydrates. We found that mineral dust or meteoric ablation material can efficiently catalyse the formation of a specific phase of nitric acid dihydrate crystals. We determined predominant particle shapes and infrared optical properties of these crystals, which are important inputs for remote sensing detection of PSCs.
Claudio Belotti, Flavio Barbara, Marco Barucci, Giovanni Bianchini, Francesco D'Amato, Samuele Del Bianco, Gianluca Di Natale, Marco Gai, Alessio Montori, Filippo Pratesi, Markus Rettinger, Christian Rolf, Ralf Sussmann, Thomas Trickl, Silvia Viciani, Hannes Vogelmann, and Luca Palchetti
Atmos. Meas. Tech., 16, 2511–2529, https://doi.org/10.5194/amt-16-2511-2023, https://doi.org/10.5194/amt-16-2511-2023, 2023
Short summary
Short summary
FIRMOS (Far-Infrared Radiation Mobile Observation System) is a spectroradiometer measuring in the far-infrared, developed to support the preparation of the FORUM (Far-infrared Outgoing Radiation Understanding and Monitoring) satellite mission. In this paper, we describe the instrument, its data products, and the results of the comparison with a suite of observations made from a high-altitude site during a field campaign, in winter 2018–2019.
Julia Pikmann, Lasse Moormann, Frank Drewnick, and Stephan Borrmann
Atmos. Meas. Tech., 16, 1323–1341, https://doi.org/10.5194/amt-16-1323-2023, https://doi.org/10.5194/amt-16-1323-2023, 2023
Short summary
Short summary
Aerosols measured in complex environments are usually a mixture of emissions from different sources. To characterize sources individually, we developed a sampling system for particles and organic trace gases which is coupled to real-time data of physical and chemical aerosol properties, gas concentrations, and meteorological variables. Using suitable sampling conditions for individual aerosols which are compared with the real-time data the desired aerosols are sampled separately from each other.
Georgios Dekoutsidis, Silke Groß, Martin Wirth, Martina Krämer, and Christian Rolf
Atmos. Chem. Phys., 23, 3103–3117, https://doi.org/10.5194/acp-23-3103-2023, https://doi.org/10.5194/acp-23-3103-2023, 2023
Short summary
Short summary
Cirrus clouds affect Earth's atmosphere, deeming our study important. Here we use water vapor measurements by lidar and study the relative humidity (RHi) within and around midlatitude cirrus clouds. We find high supersaturations in the cloud-free air and within the clouds, especially near the cloud top. We study two cloud types with different formation processes. Finally, we conclude that the shape of the distribution of RHi can be used as an indicator of different cloud evolutionary stages.
Fayçal Lamraoui, Martina Krämer, Armin Afchine, Adam B. Sokol, Sergey Khaykin, Apoorva Pandey, and Zhiming Kuang
Atmos. Chem. Phys., 23, 2393–2419, https://doi.org/10.5194/acp-23-2393-2023, https://doi.org/10.5194/acp-23-2393-2023, 2023
Short summary
Short summary
Cirrus in the tropical tropopause layer (TTL) can play a key role in vertical transport. We investigate the role of different cloud regimes and the associated ice habits in regulating the properties of the TTL. We use high-resolution numerical experiments at the scales of large-eddy simulations (LESs) and aircraft measurements. We found that LES-scale parameterizations that predict ice shape are crucial for an accurate representation of TTL cirrus and thus the associated (de)hydration process.
Yun Li, Christoph Mahnke, Susanne Rohs, Ulrich Bundke, Nicole Spelten, Georgios Dekoutsidis, Silke Groß, Christiane Voigt, Ulrich Schumann, Andreas Petzold, and Martina Krämer
Atmos. Chem. Phys., 23, 2251–2271, https://doi.org/10.5194/acp-23-2251-2023, https://doi.org/10.5194/acp-23-2251-2023, 2023
Short summary
Short summary
The radiative effect of aviation-induced cirrus is closely related to ambient conditions and its microphysical properties. Our study investigated the occurrence of contrail and natural cirrus measured above central Europe in spring 2014. It finds that contrail cirrus appears frequently in the pressure range 200 to 245 hPa and occurs more often in slightly ice-subsaturated environments than expected. Avoiding slightly ice-subsaturated regions by aviation might help mitigate contrail cirrus.
J. Douglas Goetz, Lars E. Kalnajs, Terry Deshler, Sean M. Davis, Martina Bramberger, and M. Joan Alexander
Atmos. Meas. Tech., 16, 791–807, https://doi.org/10.5194/amt-16-791-2023, https://doi.org/10.5194/amt-16-791-2023, 2023
Short summary
Short summary
An instrument for in situ continuous 2 km vertical profiles of temperature below high-altitude balloons was developed for high-temporal-resolution measurements within the upper troposphere and lower stratosphere using fiber-optic distributed temperature sensing. The mechanical, electrical, and temperature calibration systems were validated from a short mid-latitude constant-altitude balloon flight within the lower stratosphere. The instrument observed small-scale and inertial gravity waves.
Francesco Cairo, Terry Deshler, Luca Di Liberto, Andrea Scoccione, and Marcel Snels
Atmos. Meas. Tech., 16, 419–431, https://doi.org/10.5194/amt-16-419-2023, https://doi.org/10.5194/amt-16-419-2023, 2023
Short summary
Short summary
The T-matrix theory was used to compute the backscatter and depolarization of mixed-phase PSC, assuming that particles are solid (NAT or possibly ice) above a threshold radius R and liquid (STS) below, and a single shape is common to all solid particles. We used a dataset of coincident lidar and balloon-borne backscattersonde and OPC measurements. The agreement between modelled and measured backscatter is reasonable and allows us to constrain the parameters R and AR.
Andreas Marsing, Ralf Meerkötter, Romy Heller, Stefan Kaufmann, Tina Jurkat-Witschas, Martina Krämer, Christian Rolf, and Christiane Voigt
Atmos. Chem. Phys., 23, 587–609, https://doi.org/10.5194/acp-23-587-2023, https://doi.org/10.5194/acp-23-587-2023, 2023
Short summary
Short summary
We employ highly resolved aircraft measurements of profiles of the ice water content (IWC) in Arctic cirrus clouds in winter and spring, when solar irradiation is low. Using radiation transfer calculations, we assess the cloud radiative effect over different surfaces like snow or ocean. The variability in the IWC of the clouds affects their overall radiative effect and drives internal processes. This helps understand the role of cirrus in a rapidly changing Arctic environment.
Bernard Legras, Clair Duchamp, Pasquale Sellitto, Aurélien Podglajen, Elisa Carboni, Richard Siddans, Jens-Uwe Grooß, Sergey Khaykin, and Felix Ploeger
Atmos. Chem. Phys., 22, 14957–14970, https://doi.org/10.5194/acp-22-14957-2022, https://doi.org/10.5194/acp-22-14957-2022, 2022
Short summary
Short summary
The long-duration atmospheric impact of the Tonga eruption in January 2022 is a plume of water and sulfate aerosols in the stratosphere that persisted for more than 6 months. We study this evolution using several satellite instruments and analyse the unusual behaviour of this plume as sulfates and water first moved down rapidly and then separated into two layers. We also report the self-organization in compact and long-lived patches.
Mohamadou A. Diallo, Felix Ploeger, Michaela I. Hegglin, Manfred Ern, Jens-Uwe Grooß, Sergey Khaykin, and Martin Riese
Atmos. Chem. Phys., 22, 14303–14321, https://doi.org/10.5194/acp-22-14303-2022, https://doi.org/10.5194/acp-22-14303-2022, 2022
Short summary
Short summary
The quasi-biennial oacillation disruption events in both 2016 and 2020 decreased lower-stratospheric water vapour and ozone. Differences in the strength and depth of the anomalous lower-stratospheric circulation and ozone are due to differences in tropical upwelling and cold-point temperature induced by lower-stratospheric planetary and gravity wave breaking. The differences in water vapour are due to higher cold-point temperature in 2020 induced by Australian wildfire.
Oliver Appel, Franziska Köllner, Antonis Dragoneas, Andreas Hünig, Sergej Molleker, Hans Schlager, Christoph Mahnke, Ralf Weigel, Max Port, Christiane Schulz, Frank Drewnick, Bärbel Vogel, Fred Stroh, and Stephan Borrmann
Atmos. Chem. Phys., 22, 13607–13630, https://doi.org/10.5194/acp-22-13607-2022, https://doi.org/10.5194/acp-22-13607-2022, 2022
Short summary
Short summary
This paper clarifies the chemical composition of the Asian tropopause aerosol layer (ATAL) by means of airborne in situ aerosol mass spectrometry (AMS). Ammonium nitrate and organics are found to significantly contribute to the particle layer, while sulfate does not show a layered structure. An analysis of the single-particle mass spectra suggests that secondary particle formation and subsequent growth dominate the particle composition, rather than condensation on pre-existing primary particles.
Juan-Carlos Antuña-Marrero, Graham W. Mann, John Barnes, Abel Calle, Sandip S. Dhomse, Victoria E. Cachorro-Revilla, Terry Deshler, Li Zhengyao, Nimmi Sharma, and Louis Elterman
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-272, https://doi.org/10.5194/essd-2022-272, 2022
Revised manuscript not accepted
Short summary
Short summary
Tropospheric and stratospheric aerosol extinction profiles observations from a searchlight at New Mexico, US, were rescued and re-calibrated. Spanning between December 1963 and 1964, they measured the volcanic aerosols from the 1963 Agung eruption. Contemporary and state of the art information were used in the re-calibration. A unique and until the present forgotten/ignored dataset, it contributes current observational and modelling research on the impact of major volcanic eruptions on climate.
Antonis Dragoneas, Sergej Molleker, Oliver Appel, Andreas Hünig, Thomas Böttger, Markus Hermann, Frank Drewnick, Johannes Schneider, Ralf Weigel, and Stephan Borrmann
Atmos. Meas. Tech., 15, 5719–5742, https://doi.org/10.5194/amt-15-5719-2022, https://doi.org/10.5194/amt-15-5719-2022, 2022
Short summary
Short summary
The ERICA is a specially designed aerosol particle mass spectrometer for in situ, real-time chemical composition analysis of aerosols. It can operate completely autonomously, in the absence of an instrument operator. Its design has enabled its operation under harsh conditions, like those experienced in the upper troposphere and lower stratosphere, aboard unpressurized high-altitude research aircraft. The instrument has successfully participated in several aircraft operations around the world.
Paul Konopka, Mengchu Tao, Marc von Hobe, Lars Hoffmann, Corinna Kloss, Fabrizio Ravegnani, C. Michael Volk, Valentin Lauther, Andreas Zahn, Peter Hoor, and Felix Ploeger
Geosci. Model Dev., 15, 7471–7487, https://doi.org/10.5194/gmd-15-7471-2022, https://doi.org/10.5194/gmd-15-7471-2022, 2022
Short summary
Short summary
Pure trajectory-based transport models driven by meteorology derived from reanalysis products (ERA5) take into account only the resolved, advective part of transport. That means neither mixing processes nor unresolved subgrid-scale advective processes like convection are included. The Chemical Lagrangian Model of the Stratosphere (CLaMS) includes these processes. We show that isentropic mixing dominates unresolved transport. The second most important transport process is unresolved convection.
Hazel Vernier, Neeraj Rastogi, Hongyu Liu, Amit Kumar Pandit, Kris Bedka, Anil Patel, Madineni Venkat Ratnam, Buduru Suneel Kumar, Bo Zhang, Harish Gadhavi, Frank Wienhold, Gwenael Berthet, and Jean-Paul Vernier
Atmos. Chem. Phys., 22, 12675–12694, https://doi.org/10.5194/acp-22-12675-2022, https://doi.org/10.5194/acp-22-12675-2022, 2022
Short summary
Short summary
The chemical composition of the stratospheric aerosols collected aboard high-altitude balloons above the summer Asian monsoon reveals the presence of nitrate/nitrite. Using numerical simulations and satellite observations, we found that pollution as well as lightning could explain some of our observations.
Clare E. Singer, Benjamin W. Clouser, Sergey M. Khaykin, Martina Krämer, Francesco Cairo, Thomas Peter, Alexey Lykov, Christian Rolf, Nicole Spelten, Armin Afchine, Simone Brunamonti, and Elisabeth J. Moyer
Atmos. Meas. Tech., 15, 4767–4783, https://doi.org/10.5194/amt-15-4767-2022, https://doi.org/10.5194/amt-15-4767-2022, 2022
Short summary
Short summary
In situ measurements of water vapor in the upper troposphere are necessary to study cloud formation and hydration of the stratosphere but challenging due to cold–dry conditions. We compare measurements from three water vapor instruments from the StratoClim campaign in 2017. In clear sky (clouds), point-by-point differences were <1.5±8 % (<1±8 %). This excellent agreement allows detection of fine-scale structures required to understand the impact of convection on stratospheric water vapor.
Liubov Poshyvailo-Strube, Rolf Müller, Stephan Fueglistaler, Michaela I. Hegglin, Johannes C. Laube, C. Michael Volk, and Felix Ploeger
Atmos. Chem. Phys., 22, 9895–9914, https://doi.org/10.5194/acp-22-9895-2022, https://doi.org/10.5194/acp-22-9895-2022, 2022
Short summary
Short summary
Brewer–Dobson circulation (BDC) controls the composition of the stratosphere, which in turn affects radiation and climate. As the BDC cannot be measured directly, it is necessary to infer its strength and trends indirectly. In this study, we test in the
model worlddifferent methods for estimating the mean age of air trends based on a combination of stratospheric water vapour and methane data. We also provide simple practical advice of a more reliable estimation of the mean age of air trends.
Suvarna Fadnavis, Prashant Chavan, Akash Joshi, Sunil M. Sonbawne, Asutosh Acharya, Panuganti C. S. Devara, Alexandru Rap, Felix Ploeger, and Rolf Müller
Atmos. Chem. Phys., 22, 7179–7191, https://doi.org/10.5194/acp-22-7179-2022, https://doi.org/10.5194/acp-22-7179-2022, 2022
Short summary
Short summary
We show that large amounts of anthropogenic aerosols are transported from South Asia to the northern Indian Ocean. These aerosols are then lifted into the UTLS by the ascending branch of the Hadley circulation. They are further transported to the Southern Hemisphere and downward via westerly ducts over the tropical Atlantic and Pacific. These aerosols increase tropospheric heating, resulting in an increase in water vapor, which is then transported to the UTLS.
Andreas Hünig, Oliver Appel, Antonis Dragoneas, Sergej Molleker, Hans-Christian Clemen, Frank Helleis, Thomas Klimach, Franziska Köllner, Thomas Böttger, Frank Drewnick, Johannes Schneider, and Stephan Borrmann
Atmos. Meas. Tech., 15, 2889–2921, https://doi.org/10.5194/amt-15-2889-2022, https://doi.org/10.5194/amt-15-2889-2022, 2022
Short summary
Short summary
We have serially combined the two well-established methods for in situ real-time measurement of fine particle chemical composition, the single-particle laser ablation method and the flash evaporation with electron impact ionization method, into a novel instrument. Here we present the design; instrument characteristics, as derived from laboratory and field measurements; and results from the first field deployment during the 2017 StratoClim aircraft campaign.
M. Dolores Andrés Hernández, Andreas Hilboll, Helmut Ziereis, Eric Förster, Ovid O. Krüger, Katharina Kaiser, Johannes Schneider, Francesca Barnaba, Mihalis Vrekoussis, Jörg Schmidt, Heidi Huntrieser, Anne-Marlene Blechschmidt, Midhun George, Vladyslav Nenakhov, Theresa Harlass, Bruna A. Holanda, Jennifer Wolf, Lisa Eirenschmalz, Marc Krebsbach, Mira L. Pöhlker, Anna B. Kalisz Hedegaard, Linlu Mei, Klaus Pfeilsticker, Yangzhuoran Liu, Ralf Koppmann, Hans Schlager, Birger Bohn, Ulrich Schumann, Andreas Richter, Benjamin Schreiner, Daniel Sauer, Robert Baumann, Mariano Mertens, Patrick Jöckel, Markus Kilian, Greta Stratmann, Christopher Pöhlker, Monica Campanelli, Marco Pandolfi, Michael Sicard, José L. Gómez-Amo, Manuel Pujadas, Katja Bigge, Flora Kluge, Anja Schwarz, Nikos Daskalakis, David Walter, Andreas Zahn, Ulrich Pöschl, Harald Bönisch, Stephan Borrmann, Ulrich Platt, and John P. Burrows
Atmos. Chem. Phys., 22, 5877–5924, https://doi.org/10.5194/acp-22-5877-2022, https://doi.org/10.5194/acp-22-5877-2022, 2022
Short summary
Short summary
EMeRGe provides a unique set of in situ and remote sensing airborne measurements of trace gases and aerosol particles along selected flight routes in the lower troposphere over Europe. The interpretation uses also complementary collocated ground-based and satellite measurements. The collected data help to improve the current understanding of the complex spatial distribution of trace gases and aerosol particles resulting from mixing, transport, and transformation of pollution plumes over Europe.
Felix Ploeger and Hella Garny
Atmos. Chem. Phys., 22, 5559–5576, https://doi.org/10.5194/acp-22-5559-2022, https://doi.org/10.5194/acp-22-5559-2022, 2022
Short summary
Short summary
We investigate hemispheric asymmetries in stratospheric circulation changes in the last 2 decades in model simulations and atmospheric observations. We find that observed trace gas changes can be explained by a structural circulation change related to a deepening circulation in the Northern Hemisphere relative to the Southern Hemisphere. As this asymmetric signal is small compared to internal variability observed circulation trends over the recent past are not in contradiction to climate models.
Mireia Papke Chica, Valerian Hahn, Tiziana Braeuer, Elena de la Torre Castro, Florian Ewald, Mathias Gergely, Simon Kirschler, Luca Bugliaro Goggia, Stefanie Knobloch, Martina Kraemer, Johannes Lucke, Johanna Mayer, Raphael Maerkl, Manuel Moser, Laura Tomsche, Tina Jurkat-Witschas, Martin Zoeger, Christian von Savigny, and Christiane Voigt
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-255, https://doi.org/10.5194/acp-2022-255, 2022
Preprint withdrawn
Short summary
Short summary
The mixed-phase temperature regime in convective clouds challenges our understanding of microphysical and radiative cloud properties. We provide a rare and unique dataset of aircraft in situ measurements in a strong mid-latitude convective system. We find that mechanisms initiating ice nucleation and growth strongly depend on temperature, relative humidity, and vertical velocity and variate within the measured system, resulting in altitude dependent changes of the cloud liquid and ice fraction.
Jan Clemens, Felix Ploeger, Paul Konopka, Raphael Portmann, Michael Sprenger, and Heini Wernli
Atmos. Chem. Phys., 22, 3841–3860, https://doi.org/10.5194/acp-22-3841-2022, https://doi.org/10.5194/acp-22-3841-2022, 2022
Short summary
Short summary
Highly polluted air flows from the surface to higher levels of the atmosphere during the Asian summer monsoon. At high levels, the air is trapped within eddies. Here, we study how air masses can leave the eddy within its cutoff, how they distribute, and how their chemical composition changes. We found evidence for transport from the eddy to higher latitudes over the North Pacific and even Alaska. During transport, trace gas concentrations within cutoffs changed gradually, showing steady mixing.
Helmut Ziereis, Peter Hoor, Jens-Uwe Grooß, Andreas Zahn, Greta Stratmann, Paul Stock, Michael Lichtenstern, Jens Krause, Vera Bense, Armin Afchine, Christian Rolf, Wolfgang Woiwode, Marleen Braun, Jörn Ungermann, Andreas Marsing, Christiane Voigt, Andreas Engel, Björn-Martin Sinnhuber, and Hermann Oelhaf
Atmos. Chem. Phys., 22, 3631–3654, https://doi.org/10.5194/acp-22-3631-2022, https://doi.org/10.5194/acp-22-3631-2022, 2022
Short summary
Short summary
Airborne observations were conducted in the lowermost Arctic stratosphere during the winter of 2015/2016. The observed distribution of reactive nitrogen shows clear indications of nitrification in mid-winter and denitrification in late winter. This was caused by the formation of polar stratospheric cloud particles, which were observed during several flights. The sedimentation and evaporation of these particles and the descent of air masses cause a redistribution of reactive nitrogen.
Sergey M. Khaykin, Elizabeth Moyer, Martina Krämer, Benjamin Clouser, Silvia Bucci, Bernard Legras, Alexey Lykov, Armin Afchine, Francesco Cairo, Ivan Formanyuk, Valentin Mitev, Renaud Matthey, Christian Rolf, Clare E. Singer, Nicole Spelten, Vasiliy Volkov, Vladimir Yushkov, and Fred Stroh
Atmos. Chem. Phys., 22, 3169–3189, https://doi.org/10.5194/acp-22-3169-2022, https://doi.org/10.5194/acp-22-3169-2022, 2022
Short summary
Short summary
The Asian monsoon anticyclone is the key contributor to the global annual maximum in lower stratospheric water vapour. We investigate the impact of deep convection on the lower stratospheric water using a unique set of observations aboard the high-altitude M55-Geophysica aircraft deployed in Nepal in summer 2017 within the EU StratoClim project. We find that convective plumes of wet air can persist within the Asian anticyclone for weeks, thereby enhancing the occurrence of high-level clouds.
Francesco Cairo, Terry Deshler, Luca Di Liberto, Andrea Scoccione, and Marcel Snels
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-28, https://doi.org/10.5194/amt-2022-28, 2022
Publication in AMT not foreseen
Short summary
Short summary
We study Mie theory on aspherical scatterers, computing on coincident measurements of PSC by lidar and Particle Counters, the backscatter and depolarization of mixed phase PSC. WParticles are assumed solid if larger than R; for these, Mie results are reduced by C < 1 and only a common fraction X < 1 of the backscattering is polarized. We retrieve R, C and X. The match of model and measurement is good for backscattering, poor for depolarization. The hypothesis on X may be not fulfilled.
Dina Khordakova, Christian Rolf, Jens-Uwe Grooß, Rolf Müller, Paul Konopka, Andreas Wieser, Martina Krämer, and Martin Riese
Atmos. Chem. Phys., 22, 1059–1079, https://doi.org/10.5194/acp-22-1059-2022, https://doi.org/10.5194/acp-22-1059-2022, 2022
Short summary
Short summary
Extreme storms transport humidity from the troposphere to the stratosphere. Here it has a strong impact on the climate. With ongoing global warming, we expect more storms and, hence, an enhancement of this effect. A case study was performed in order to measure the impact of the direct injection of water vapor into the lower stratosphere. The measurements displayed a significant transport of water vapor into the lower stratosphere, and this was supported by satellite and reanalysis data.
Manuel Baumgartner, Christian Rolf, Jens-Uwe Grooß, Julia Schneider, Tobias Schorr, Ottmar Möhler, Peter Spichtinger, and Martina Krämer
Atmos. Chem. Phys., 22, 65–91, https://doi.org/10.5194/acp-22-65-2022, https://doi.org/10.5194/acp-22-65-2022, 2022
Short summary
Short summary
An important mechanism for the appearance of ice particles in the upper troposphere at low temperatures is homogeneous nucleation. This process is commonly described by the
Koop line, predicting the humidity at freezing. However, laboratory measurements suggest that the freezing humidities are above the Koop line, motivating the present study to investigate the influence of different physical parameterizations on the homogeneous freezing with the help of a detailed numerical model.
Yu-Wen Chen, Yi-Chun Chen, Charles C.-K. Chou, Hui-Ming Hung, Shih-Yu Chang, Lisa Eirenschmalz, Michael Lichtenstern, Helmut Ziereis, Hans Schlager, Greta Stratmann, Katharina Kaiser, Johannes Schneider, Stephan Borrmann, Florian Obersteiner, Eric Förster, Andreas Zahn, Wei-Nai Chen, Po-Hsiung Lin, Shuenn-Chin Chang, Maria Dolores Andrés Hernández, Pao-Kuan Wang, and John P. Burrows
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-788, https://doi.org/10.5194/acp-2021-788, 2021
Preprint withdrawn
Short summary
Short summary
By presenting an approach using EMeRGe-Asia airborne field measurements and surface observations, this study shows that the fraction of OH reactivity due to SO2-OH reaction has a significant correlation with the sulfate concentration. Approximately 30 % of sulfate is produced by SO2-OH reaction. Our results underline the importance of SO2-OH gas-phase oxidation in sulfate formation, and demonstrate that the method can be applied to other regions and under different meteorological conditions.
Gianluca Di Natale, Marco Barucci, Claudio Belotti, Giovanni Bianchini, Francesco D'Amato, Samuele Del Bianco, Marco Gai, Alessio Montori, Ralf Sussmann, Silvia Viciani, Hannes Vogelmann, and Luca Palchetti
Atmos. Meas. Tech., 14, 6749–6758, https://doi.org/10.5194/amt-14-6749-2021, https://doi.org/10.5194/amt-14-6749-2021, 2021
Short summary
Short summary
The importance of cirrus and mixed-phase clouds in the Earth radiation budget has been proven by many studies. In this paper the properties that characterize these clouds are retrieved from lidar and far-infrared spectral measurements performed in winter 2018/19 on the Zugspitze (Germany). The synergy of lidar and spectrometer measurements allowed us to assess the exponent k of the power-law relationship between the backscattering and the extinction coefficients.
Julia Schneider, Kristina Höhler, Robert Wagner, Harald Saathoff, Martin Schnaiter, Tobias Schorr, Isabelle Steinke, Stefan Benz, Manuel Baumgartner, Christian Rolf, Martina Krämer, Thomas Leisner, and Ottmar Möhler
Atmos. Chem. Phys., 21, 14403–14425, https://doi.org/10.5194/acp-21-14403-2021, https://doi.org/10.5194/acp-21-14403-2021, 2021
Short summary
Short summary
Homogeneous freezing is a relevant mechanism for the formation of cirrus clouds in the upper troposphere. Based on an extensive set of homogeneous freezing experiments at the AIDA chamber with aqueous sulfuric acid aerosol, we provide a new fit line for homogeneous freezing onset conditions of sulfuric acid aerosol focusing on cirrus temperatures. In the atmosphere, homogeneous freezing thresholds have important implications on the cirrus cloud occurrence and related cloud radiative effects.
Ralf Weigel, Christoph Mahnke, Manuel Baumgartner, Martina Krämer, Peter Spichtinger, Nicole Spelten, Armin Afchine, Christian Rolf, Silvia Viciani, Francesco D'Amato, Holger Tost, and Stephan Borrmann
Atmos. Chem. Phys., 21, 13455–13481, https://doi.org/10.5194/acp-21-13455-2021, https://doi.org/10.5194/acp-21-13455-2021, 2021
Short summary
Short summary
In July and August 2017, the StratoClim mission took place in Nepal with eight flights of the M-55 Geophysica at up to 20 km in the Asian monsoon anticyclone. New particle formation (NPF) next to cloud ice was detected in situ by abundant nucleation-mode aerosols (> 6 nm) along with ice particles (> 3 µm). NPF was observed mainly below the tropopause, down to 15 % being non-volatile residues. Observed intra-cloud NPF indicates its importance for the composition in the tropical tropopause layer.
Luca Palchetti, Marco Barucci, Claudio Belotti, Giovanni Bianchini, Bertrand Cluzet, Francesco D'Amato, Samuele Del Bianco, Gianluca Di Natale, Marco Gai, Dina Khordakova, Alessio Montori, Hilke Oetjen, Markus Rettinger, Christian Rolf, Dirk Schuettemeyer, Ralf Sussmann, Silvia Viciani, Hannes Vogelmann, and Frank Gunther Wienhold
Earth Syst. Sci. Data, 13, 4303–4312, https://doi.org/10.5194/essd-13-4303-2021, https://doi.org/10.5194/essd-13-4303-2021, 2021
Short summary
Short summary
The FIRMOS far-infrared (IR) prototype, developed for the preparation of the ESA FORUM mission, was deployed for the first time at Mt. Zugspitze at 3000 m altitude to measure the far-IR spectrum of atmospheric emissions. The measurements, including co-located radiometers, lidars, radio soundings, weather, and surface properties, provide a unique dataset to study radiative properties of water vapour, cirrus clouds, and snow emissivity over the IR emissions, including the under-explored far-IR.
Ralf Weigel, Christoph Mahnke, Manuel Baumgartner, Antonis Dragoneas, Bärbel Vogel, Felix Ploeger, Silvia Viciani, Francesco D'Amato, Silvia Bucci, Bernard Legras, Beiping Luo, and Stephan Borrmann
Atmos. Chem. Phys., 21, 11689–11722, https://doi.org/10.5194/acp-21-11689-2021, https://doi.org/10.5194/acp-21-11689-2021, 2021
Short summary
Short summary
In July and August 2017, eight StratoClim mission flights of the Geophysica reached up to 20 km in the Asian monsoon anticyclone. New particle formation (NPF) was identified in situ by abundant nucleation-mode aerosols (6–15 nm in diameter) with mixing ratios of up to 50 000 mg−1. NPF occurred most frequently at 12–16 km with fractions of non-volatile residues of down to 15 %. Abundance and productivity of observed NPF indicate its ability to promote the Asian tropopause aerosol layer.
Lukas Krasauskas, Jörn Ungermann, Peter Preusse, Felix Friedl-Vallon, Andreas Zahn, Helmut Ziereis, Christian Rolf, Felix Plöger, Paul Konopka, Bärbel Vogel, and Martin Riese
Atmos. Chem. Phys., 21, 10249–10272, https://doi.org/10.5194/acp-21-10249-2021, https://doi.org/10.5194/acp-21-10249-2021, 2021
Short summary
Short summary
A Rossby wave (RW) breaking event was observed over the North Atlantic during the WISE measurement campaign in October 2017. Infrared limb sounding measurements of trace gases in the lower stratosphere, including high-resolution 3-D tomographic reconstruction, revealed complex spatial structures in stratospheric tracers near the polar jet related to previous RW breaking events. Backward-trajectory analysis and tracer correlations were used to study mixing and stratosphere–troposphere exchange.
Nuria Pilar Plaza, Aurélien Podglajen, Cristina Peña-Ortiz, and Felix Ploeger
Atmos. Chem. Phys., 21, 9585–9607, https://doi.org/10.5194/acp-21-9585-2021, https://doi.org/10.5194/acp-21-9585-2021, 2021
Short summary
Short summary
We study the role of different processes in setting the lower stratospheric water vapour. We find that mechanisms involving ice microphysics and small-scale mixing produce the strongest increase in water vapour, in particular over the Asian Monsoon. Small-scale mixing has a special relevance as it improves the agreement with observations at seasonal and intra-seasonal timescales, contrary to the North American Monsoon case, in which large-scale temperatures still dominate its variability.
Felix Ploeger, Mohamadou Diallo, Edward Charlesworth, Paul Konopka, Bernard Legras, Johannes C. Laube, Jens-Uwe Grooß, Gebhard Günther, Andreas Engel, and Martin Riese
Atmos. Chem. Phys., 21, 8393–8412, https://doi.org/10.5194/acp-21-8393-2021, https://doi.org/10.5194/acp-21-8393-2021, 2021
Short summary
Short summary
We investigate the global stratospheric circulation (Brewer–Dobson circulation) in the new ECMWF ERA5 reanalysis based on age of air simulations, and we compare it to results from the preceding ERA-Interim reanalysis. Our results show a slower stratospheric circulation and higher age for ERA5. The age of air trend in ERA5 over the 1989–2018 period is negative throughout the stratosphere, related to multi-annual variability and a potential contribution from changes in the reanalysis system.
Francesco Cairo, Mauro De Muro, Marcel Snels, Luca Di Liberto, Silvia Bucci, Bernard Legras, Ajil Kottayil, Andrea Scoccione, and Stefano Ghisu
Atmos. Chem. Phys., 21, 7947–7961, https://doi.org/10.5194/acp-21-7947-2021, https://doi.org/10.5194/acp-21-7947-2021, 2021
Short summary
Short summary
A lidar was used in Palau from February–March 2016. Clouds were observed peaking at 3 km below the high cold-point tropopause (CPT). Their occurrence was linked with cold anomalies, while in warm cases, cirrus clouds were restricted to 5 km below the CPT. Thin subvisible cirrus (SVC) near the CPT had distinctive characteristics. They were linked to wave-induced cold anomalies. Back trajectories are mostly compatible with convective outflow, while some distinctive SVC may originate in situ.
Mohamadou Diallo, Manfred Ern, and Felix Ploeger
Atmos. Chem. Phys., 21, 7515–7544, https://doi.org/10.5194/acp-21-7515-2021, https://doi.org/10.5194/acp-21-7515-2021, 2021
Short summary
Short summary
Despite good agreement in the spatial structure, there are substantial differences in the strength of the Brewer–Dobson circulation (BDC) and its modulations in the UTLS and upper stratosphere. The tropical upwelling is generally weaker in ERA5 than in ERAI due to weaker planetary and gravity wave breaking in the UTLS. Analysis of the BDC trend shows an acceleration of the BDC of about 1.5 % decade-1 due to the long-term intensification in wave breaking, consistent with climate predictions.
Xiaolu Yan, Paul Konopka, Marius Hauck, Aurélien Podglajen, and Felix Ploeger
Atmos. Chem. Phys., 21, 6627–6645, https://doi.org/10.5194/acp-21-6627-2021, https://doi.org/10.5194/acp-21-6627-2021, 2021
Short summary
Short summary
Inter-hemispheric transport is important for understanding atmospheric tracers because of the asymmetry in emissions between the Southern Hemisphere (SH) and Northern Hemisphere (NH). This study finds that the air masses from the NH extratropics to the atmosphere are about 5 times larger than those from the SH extratropics. The interplay between the Asian summer monsoon and westerly ducts triggers the cross-Equator transport from the NH to the SH in boreal summer and fall.
Franziska Köllner, Johannes Schneider, Megan D. Willis, Hannes Schulz, Daniel Kunkel, Heiko Bozem, Peter Hoor, Thomas Klimach, Frank Helleis, Julia Burkart, W. Richard Leaitch, Amir A. Aliabadi, Jonathan P. D. Abbatt, Andreas B. Herber, and Stephan Borrmann
Atmos. Chem. Phys., 21, 6509–6539, https://doi.org/10.5194/acp-21-6509-2021, https://doi.org/10.5194/acp-21-6509-2021, 2021
Short summary
Short summary
We present in situ observations of vertically resolved particle chemical composition in the summertime Arctic lower troposphere. Our analysis demonstrates the strong vertical contrast between particle properties within the boundary layer and aloft. Emissions from vegetation fires and anthropogenic sources in northern Canada, Europe, and East Asia influenced particle composition in the free troposphere. Organics detected in Arctic aerosol particles can partly be identified as dicarboxylic acids.
Irene Bartolome Garcia, Reinhold Spang, Jörn Ungermann, Sabine Griessbach, Martina Krämer, Michael Höpfner, and Martin Riese
Atmos. Meas. Tech., 14, 3153–3168, https://doi.org/10.5194/amt-14-3153-2021, https://doi.org/10.5194/amt-14-3153-2021, 2021
Short summary
Short summary
Cirrus clouds contribute to the general radiation budget of the Earth. Measuring optically thin clouds is challenging but the IR limb sounder GLORIA possesses the necessary technical characteristics to make it possible. This study analyses data from the WISE campaign obtained with GLORIA. We developed a cloud detection method and derived characteristics of the observed cirrus-like cloud top, cloud bottom or position with respect to the tropopause.
Lars E. Kalnajs, Sean M. Davis, J. Douglas Goetz, Terry Deshler, Sergey Khaykin, Alex St. Clair, Albert Hertzog, Jerome Bordereau, and Alexey Lykov
Atmos. Meas. Tech., 14, 2635–2648, https://doi.org/10.5194/amt-14-2635-2021, https://doi.org/10.5194/amt-14-2635-2021, 2021
Short summary
Short summary
This work introduces a novel instrument system for high-resolution atmospheric profiling, which lowers and retracts a suspended instrument package beneath drifting long-duration balloons. During a 100 d circumtropical flight, the instrument collected over a hundred 2 km profiles of temperature, water vapor, clouds, and aerosol at 1 m resolution, yielding unprecedented geographic sampling and vertical resolution measurements of the tropical tropopause layer.
Sebastian O'Shea, Jonathan Crosier, James Dorsey, Louis Gallagher, Waldemar Schledewitz, Keith Bower, Oliver Schlenczek, Stephan Borrmann, Richard Cotton, Christopher Westbrook, and Zbigniew Ulanowski
Atmos. Meas. Tech., 14, 1917–1939, https://doi.org/10.5194/amt-14-1917-2021, https://doi.org/10.5194/amt-14-1917-2021, 2021
Short summary
Short summary
The number, shape, and size of ice crystals in clouds are important properties that influence the Earth's radiation budget, cloud evolution, and precipitation formation. This work suggests that one of the most widely used methods for in situ measurements of these properties has significant uncertainties and biases. We suggest methods that dramatically improve these measurements, which can be applied to past and future datasets from these instruments.
Miklós Szakáll, Michael Debertshäuser, Christian Philipp Lackner, Amelie Mayer, Oliver Eppers, Karoline Diehl, Alexander Theis, Subir Kumar Mitra, and Stephan Borrmann
Atmos. Chem. Phys., 21, 3289–3316, https://doi.org/10.5194/acp-21-3289-2021, https://doi.org/10.5194/acp-21-3289-2021, 2021
Short summary
Short summary
The freezing of cloud drops is promoted by ice-nucleating particles immersed in the drops. This process is essential to understand ice and subsequent precipitation formation in clouds. We investigated the efficiency of several particle types to trigger immersion freezing with two single-drop levitation techniques: a wind tunnel and an acoustic levitator. The evaluation accounted for different conditions during our two series of experiments, which is also applicable to future comparison studies.
Marcel Snels, Francesco Colao, Francesco Cairo, Ilir Shuli, Andrea Scoccione, Mauro De Muro, Michael Pitts, Lamont Poole, and Luca Di Liberto
Atmos. Chem. Phys., 21, 2165–2178, https://doi.org/10.5194/acp-21-2165-2021, https://doi.org/10.5194/acp-21-2165-2021, 2021
Short summary
Short summary
A total of 5 years of polar stratospheric cloud (PSC) observations by ground-based lidar at Concordia station (Antarctica) are presented. These data have been recorded in coincidence with the overpasses of the CALIOP lidar on the CALIPSO satellite. First we demonstrate that both lidars observe essentially the same thing, in terms of detection and composition of the PSCs. Then we use both datasets to study seasonal and interannual variations in the formation temperature of NAT mixtures.
Marc von Hobe, Felix Ploeger, Paul Konopka, Corinna Kloss, Alexey Ulanowski, Vladimir Yushkov, Fabrizio Ravegnani, C. Michael Volk, Laura L. Pan, Shawn B. Honomichl, Simone Tilmes, Douglas E. Kinnison, Rolando R. Garcia, and Jonathon S. Wright
Atmos. Chem. Phys., 21, 1267–1285, https://doi.org/10.5194/acp-21-1267-2021, https://doi.org/10.5194/acp-21-1267-2021, 2021
Short summary
Short summary
The Asian summer monsoon (ASM) is known to foster transport of polluted tropospheric air into the stratosphere. To test and amend our picture of ASM vertical transport, we analyse distributions of airborne trace gas observations up to 20 km altitude near the main ASM vertical conduit south of the Himalayas. We also show that a new high-resolution version of the global chemistry climate model WACCM is able to reproduce the observations well.
Johannes Schneider, Ralf Weigel, Thomas Klimach, Antonis Dragoneas, Oliver Appel, Andreas Hünig, Sergej Molleker, Franziska Köllner, Hans-Christian Clemen, Oliver Eppers, Peter Hoppe, Peter Hoor, Christoph Mahnke, Martina Krämer, Christian Rolf, Jens-Uwe Grooß, Andreas Zahn, Florian Obersteiner, Fabrizio Ravegnani, Alexey Ulanovsky, Hans Schlager, Monika Scheibe, Glenn S. Diskin, Joshua P. DiGangi, John B. Nowak, Martin Zöger, and Stephan Borrmann
Atmos. Chem. Phys., 21, 989–1013, https://doi.org/10.5194/acp-21-989-2021, https://doi.org/10.5194/acp-21-989-2021, 2021
Short summary
Short summary
During five aircraft missions, we detected aerosol particles containing meteoric material in the lower stratosphere. The stratospheric measurements span a latitude range from 15 to 68° N, and we find that at potential temperature levels of more than 40 K above the tropopause; particles containing meteoric material occur at similar abundance fractions across latitudes and seasons. We conclude that meteoric material is efficiently distributed between high and low latitudes by isentropic mixing.
Corinna Kloss, Gwenaël Berthet, Pasquale Sellitto, Felix Ploeger, Ghassan Taha, Mariam Tidiga, Maxim Eremenko, Adriana Bossolasco, Fabrice Jégou, Jean-Baptiste Renard, and Bernard Legras
Atmos. Chem. Phys., 21, 535–560, https://doi.org/10.5194/acp-21-535-2021, https://doi.org/10.5194/acp-21-535-2021, 2021
Short summary
Short summary
The year 2019 was particularly rich for the stratospheric aerosol layer due to two volcanic eruptions (at Raikoke and Ulawun) and wildfire events. With satellite observations and models, we describe the exceptionally complex situation following the Raikoke eruption. The respective plume overwhelmed the Northern Hemisphere stratosphere in terms of aerosol load and resulted in the highest climate impact throughout the past decade.
Jörn Ungermann, Irene Bartolome, Sabine Griessbach, Reinhold Spang, Christian Rolf, Martina Krämer, Michael Höpfner, and Martin Riese
Atmos. Meas. Tech., 13, 7025–7045, https://doi.org/10.5194/amt-13-7025-2020, https://doi.org/10.5194/amt-13-7025-2020, 2020
Short summary
Short summary
This study examines the potential of new IR limb imager instruments and tomographic methods for cloud detection purposes. Simple color-ratio-based methods are examined and compared against more involved nonlinear convex optimization. In a second part, 3-D measurements of the airborne limb sounder GLORIA taken during the Wave-driven ISentropic Exchange campaign are used to exemplarily derive the location and extent of small-scale cirrus clouds with high spatial accuracy.
Manuel Baumgartner, Ralf Weigel, Allan H. Harvey, Felix Plöger, Ulrich Achatz, and Peter Spichtinger
Atmos. Chem. Phys., 20, 15585–15616, https://doi.org/10.5194/acp-20-15585-2020, https://doi.org/10.5194/acp-20-15585-2020, 2020
Short summary
Short summary
The potential temperature is routinely used in atmospheric science. We review its derivation and suggest a new potential temperature, based on a temperature-dependent parameterization of the dry air's specific heat capacity. Moreover, we compare the new potential temperature to the common one and discuss the differences which become more important at higher altitudes. Finally, we indicate some consequences of using the new potential temperature in typical applications.
Edward J. Charlesworth, Ann-Kristin Dugstad, Frauke Fritsch, Patrick Jöckel, and Felix Plöger
Atmos. Chem. Phys., 20, 15227–15245, https://doi.org/10.5194/acp-20-15227-2020, https://doi.org/10.5194/acp-20-15227-2020, 2020
Short summary
Short summary
Modeling the stratosphere requires models with good representations of chemical transport. To do this, nearly all models divide the atmosphere into boxes. This creates some unwanted problems. However, the only other option is to divide the atmosphere into balloons, and this method is very complicated. Here, we use a model which uses this balloon-like method to estimate the impacts of this method on chemical transport. We find significant differences in sensitive regions of the stratosphere.
Maximilian Weitzel, Subir K. Mitra, Miklós Szakáll, Jacob P. Fugal, and Stephan Borrmann
Atmos. Chem. Phys., 20, 14889–14901, https://doi.org/10.5194/acp-20-14889-2020, https://doi.org/10.5194/acp-20-14889-2020, 2020
Short summary
Short summary
The properties of ice crystals smaller than 150 µm in diameter were investigated in a cold-room laboratory using digital holography and microscopy. Automated image processing has been used to determine the track of falling ice crystals, and collected crystals were melted and scanned under a microscope to infer particle mass. A parameterization relating particle size and mass was determined which describes ice crystals in this size range more accurately than existing relationships.
Hans-Christian Clemen, Johannes Schneider, Thomas Klimach, Frank Helleis, Franziska Köllner, Andreas Hünig, Florian Rubach, Stephan Mertes, Heike Wex, Frank Stratmann, André Welti, Rebecca Kohl, Fabian Frank, and Stephan Borrmann
Atmos. Meas. Tech., 13, 5923–5953, https://doi.org/10.5194/amt-13-5923-2020, https://doi.org/10.5194/amt-13-5923-2020, 2020
Short summary
Short summary
We improved the efficiency of a single-particle mass spectrometer with a newly developed aerodynamic lens system, delayed ion extraction, and better electric shielding. The new components result in significantly improved particle analysis and sample statistics. This is particularly important for measurements of low-number-density particles, such as ice-nucleating particles, and for aircraft-based measurements at high altitudes or where high temporal and spatial resolution is required.
Martina Krämer, Christian Rolf, Nicole Spelten, Armin Afchine, David Fahey, Eric Jensen, Sergey Khaykin, Thomas Kuhn, Paul Lawson, Alexey Lykov, Laura L. Pan, Martin Riese, Andrew Rollins, Fred Stroh, Troy Thornberry, Veronika Wolf, Sarah Woods, Peter Spichtinger, Johannes Quaas, and Odran Sourdeval
Atmos. Chem. Phys., 20, 12569–12608, https://doi.org/10.5194/acp-20-12569-2020, https://doi.org/10.5194/acp-20-12569-2020, 2020
Short summary
Short summary
To improve the representations of cirrus clouds in climate predictions, extended knowledge of their properties and geographical distribution is required. This study presents extensive airborne in situ and satellite remote sensing climatologies of cirrus and humidity, which serve as a guide to cirrus clouds. Further, exemplary radiative characteristics of cirrus types and also in situ observations of tropical tropopause layer cirrus and humidity in the Asian monsoon anticyclone are shown.
Silvia Bucci, Bernard Legras, Pasquale Sellitto, Francesco D'Amato, Silvia Viciani, Alessio Montori, Antonio Chiarugi, Fabrizio Ravegnani, Alexey Ulanovsky, Francesco Cairo, and Fred Stroh
Atmos. Chem. Phys., 20, 12193–12210, https://doi.org/10.5194/acp-20-12193-2020, https://doi.org/10.5194/acp-20-12193-2020, 2020
Short summary
Short summary
The paper presents and evaluates a transport analysis method to study the convective injection of air in the upper troposphere–lower stratosphere of the Asian monsoon anticyclone region. The approach is thereby used to analyse the trace gas data collected during the StratoClim aircraft campaign. The results showed that fresh convective air can be injected fast at a high level of the atmosphere (above 17 km), with potential impacts on the stratospheric chemistry of the Northern Hemisphere.
David L. Mitchell, John Mejia, Anne Garnier, Yuta Tomii, Martina Krämer, and Farnaz Hosseinpour
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-846, https://doi.org/10.5194/acp-2020-846, 2020
Publication in ACP not foreseen
Short summary
Short summary
This may be the first estimate of the radiative contribution of homogeneous ice nucleation in cirrus clouds on a global, regional and seasonal scale. This is achieved by constraining an atmospheric global climate model with measured cirrus cloud properties via satellite remote sensing. The results show that the overall radiative warming contributed by homogeneous ice nucleation at the top of the atmosphere is 2.4 W m-2 outside the ± 30° latitude zone during non-summer months (JJA).
Johannes C. Laube, Emma C. Leedham Elvidge, Karina E. Adcock, Bianca Baier, Carl A. M. Brenninkmeijer, Huilin Chen, Elise S. Droste, Jens-Uwe Grooß, Pauli Heikkinen, Andrew J. Hind, Rigel Kivi, Alexander Lojko, Stephen A. Montzka, David E. Oram, Steve Randall, Thomas Röckmann, William T. Sturges, Colm Sweeney, Max Thomas, Elinor Tuffnell, and Felix Ploeger
Atmos. Chem. Phys., 20, 9771–9782, https://doi.org/10.5194/acp-20-9771-2020, https://doi.org/10.5194/acp-20-9771-2020, 2020
Short summary
Short summary
We demonstrate that AirCore technology, which is based on small low-cost balloons, can provide access to trace gas measurements such as CFCs at ultra-low abundances. This is a new way to quantify ozone-depleting, and related, substances in the stratosphere, which is largely inaccessible to aircraft. We show two potential uses: (a) tracking the stratospheric circulation, which is predicted to change, and (b) assessing three common meteorological reanalyses driving a global stratospheric model.
Marius Hauck, Harald Bönisch, Peter Hoor, Timo Keber, Felix Ploeger, Tanja J. Schuck, and Andreas Engel
Atmos. Chem. Phys., 20, 8763–8785, https://doi.org/10.5194/acp-20-8763-2020, https://doi.org/10.5194/acp-20-8763-2020, 2020
Short summary
Short summary
This study features an extended inversion method that includes transport across the extratropical tropopause to derive age spectra in the lowermost stratosphere from in situ trace gas measurements. The refined method is validated in a model setup and applied to data gained with the HALO research aircraft. Results are congruent with the findings of previous studies so that the method provides a promising toolset for the analysis of stratospheric dynamics based on observations in the future.
Andreas Petzold, Patrick Neis, Mihal Rütimann, Susanne Rohs, Florian Berkes, Herman G. J. Smit, Martina Krämer, Nicole Spelten, Peter Spichtinger, Philippe Nédélec, and Andreas Wahner
Atmos. Chem. Phys., 20, 8157–8179, https://doi.org/10.5194/acp-20-8157-2020, https://doi.org/10.5194/acp-20-8157-2020, 2020
Short summary
Short summary
The first analysis of 15 years of global-scale water vapour and relative humidity observations by passenger aircraft in the MOZAIC and IAGOS programmes resolves detailed features of water vapour and ice-supersaturated air in the mid-latitude tropopause. Key results provide in-depth insight into seasonal and regional variability and chemical signatures of ice-supersaturated air masses, including trend analyses, and show a close link to cirrus clouds and their highly important effects on climate.
Sergej Molleker, Frank Helleis, Thomas Klimach, Oliver Appel, Hans-Christian Clemen, Antonis Dragoneas, Christian Gurk, Andreas Hünig, Franziska Köllner, Florian Rubach, Christiane Schulz, Johannes Schneider, and Stephan Borrmann
Atmos. Meas. Tech., 13, 3651–3660, https://doi.org/10.5194/amt-13-3651-2020, https://doi.org/10.5194/amt-13-3651-2020, 2020
Short summary
Short summary
A novel constant-pressure-inlet design for use in airborne aerosol particle mass spectrometry – an aerodynamic lens focuses aerosol particles into a vacuum chamber – is presented. The pressure of a few hectopascals at the lens is precisely controlled over a large flight altitude range up to 21 km. The constant pressure is achieved by changing the inner diameter of a properly scaled flexible O-ring acting as a critical orifice. Particle transmission at various inlet pressures is characterized.
Bruna A. Holanda, Mira L. Pöhlker, David Walter, Jorge Saturno, Matthias Sörgel, Jeannine Ditas, Florian Ditas, Christiane Schulz, Marco Aurélio Franco, Qiaoqiao Wang, Tobias Donth, Paulo Artaxo, Henrique M. J. Barbosa, Stephan Borrmann, Ramon Braga, Joel Brito, Yafang Cheng, Maximilian Dollner, Johannes W. Kaiser, Thomas Klimach, Christoph Knote, Ovid O. Krüger, Daniel Fütterer, Jošt V. Lavrič, Nan Ma, Luiz A. T. Machado, Jing Ming, Fernando G. Morais, Hauke Paulsen, Daniel Sauer, Hans Schlager, Johannes Schneider, Hang Su, Bernadett Weinzierl, Adrian Walser, Manfred Wendisch, Helmut Ziereis, Martin Zöger, Ulrich Pöschl, Meinrat O. Andreae, and Christopher Pöhlker
Atmos. Chem. Phys., 20, 4757–4785, https://doi.org/10.5194/acp-20-4757-2020, https://doi.org/10.5194/acp-20-4757-2020, 2020
Short summary
Short summary
Biomass burning smoke from African savanna and grassland is transported across the South Atlantic Ocean in defined layers within the free troposphere. The combination of in situ aircraft and ground-based measurements aided by satellite observations showed that these layers are transported into the Amazon Basin during the early dry season. The influx of aged smoke, enriched in black carbon and cloud condensation nuclei, has important implications for the Amazonian aerosol and cloud cycling.
Siddika Celik, Frank Drewnick, Friederike Fachinger, James Brooks, Eoghan Darbyshire, Hugh Coe, Jean-Daniel Paris, Philipp G. Eger, Jan Schuladen, Ivan Tadic, Nils Friedrich, Dirk Dienhart, Bettina Hottmann, Horst Fischer, John N. Crowley, Hartwig Harder, and Stephan Borrmann
Atmos. Chem. Phys., 20, 4713–4734, https://doi.org/10.5194/acp-20-4713-2020, https://doi.org/10.5194/acp-20-4713-2020, 2020
Short summary
Short summary
Analysis of 252 ship emission plumes in the Mediterranean Sea and around the Arabian Peninsula examined particulate- and gas-phase characteristics. By identifying the corresponding ships, source features and plume age were determined. Emission factors (amount of pollutant per kilogram of fuel burned) were calculated and investigated for dependencies on source characteristics, atmospheric conditions, and transport time, providing insight into the most relevant influences on ship emissions.
Dan Li, Bärbel Vogel, Rolf Müller, Jianchun Bian, Gebhard Günther, Felix Ploeger, Qian Li, Jinqiang Zhang, Zhixuan Bai, Holger Vömel, and Martin Riese
Atmos. Chem. Phys., 20, 4133–4152, https://doi.org/10.5194/acp-20-4133-2020, https://doi.org/10.5194/acp-20-4133-2020, 2020
Short summary
Short summary
Low ozone and low water vapour signatures in the UTLS were investigated using balloon-borne measurements and trajectory calculations. The results show that deep convection in tropical cyclones over the western Pacific transports boundary air parcels with low ozone into the tropopause region. Subsequently, these air parcels are dehydrated when passing the lowest temperature region (< 190 K) during quasi-horizontal advection.
Gary Lloyd, Thomas Choularton, Keith Bower, Jonathan Crosier, Martin Gallagher, Michael Flynn, James Dorsey, Dantong Liu, Jonathan W. Taylor, Oliver Schlenczek, Jacob Fugal, Stephan Borrmann, Richard Cotton, Paul Field, and Alan Blyth
Atmos. Chem. Phys., 20, 3895–3904, https://doi.org/10.5194/acp-20-3895-2020, https://doi.org/10.5194/acp-20-3895-2020, 2020
Short summary
Short summary
Measurements of liquid and ice cloud particles were made using an aircraft to penetrate fresh growing convective clouds in the tropical Atlantic. We found small ice particles at surprisingly high temperatures just below freezing. At colder temperatures secondary ice processes rapidly generated high concentrations of ice crystals.
Mattia Righi, Johannes Hendricks, Ulrike Lohmann, Christof Gerhard Beer, Valerian Hahn, Bernd Heinold, Romy Heller, Martina Krämer, Michael Ponater, Christian Rolf, Ina Tegen, and Christiane Voigt
Geosci. Model Dev., 13, 1635–1661, https://doi.org/10.5194/gmd-13-1635-2020, https://doi.org/10.5194/gmd-13-1635-2020, 2020
Short summary
Short summary
A new cloud microphysical scheme is implemented in the global EMAC-MADE3 aerosol model and evaluated. The new scheme features a detailed parameterization for aerosol-driven ice formation in cirrus clouds, accounting for the competition between homogeneous and heterogeneous ice formation processes. The comparison against satellite data and in situ measurements shows that the model performance is in line with similar global coupled models featuring ice cloud parameterizations.
Sabine Griessbach, Lars Hoffmann, Reinhold Spang, Peggy Achtert, Marc von Hobe, Nina Mateshvili, Rolf Müller, Martin Riese, Christian Rolf, Patric Seifert, and Jean-Paul Vernier
Atmos. Meas. Tech., 13, 1243–1271, https://doi.org/10.5194/amt-13-1243-2020, https://doi.org/10.5194/amt-13-1243-2020, 2020
Short summary
Short summary
In this paper we study the cloud top height derived from MIPAS measurements. Previous studies showed contradictory results with respect to MIPAS, both underestimating and overestimating cloud top height. We used simulations and found that overestimation and/or underestimation depend on cloud extinction. To support our findings we compared MIPAS cloud top heights of volcanic sulfate aerosol with measurements from CALIOP, ground-based lidar, and ground-based twilight measurements.
Ernest Nyaku, Robert Loughman, Pawan K. Bhartia, Terry Deshler, Zhong Chen, and Peter R. Colarco
Atmos. Meas. Tech., 13, 1071–1087, https://doi.org/10.5194/amt-13-1071-2020, https://doi.org/10.5194/amt-13-1071-2020, 2020
Short summary
Short summary
This paper shows the importance of the nature of the aerosol phase function used in the retrieval of the stratospheric aerosol extinction from limb scattering measurements. The aerosol phase function is derived from the parameters using either a unimodal lognormal or gamma aerosol size distribution. These two distributions were fitted to the same aerosol concentration measurements at two altitudes, and depending on the nature of the measurements, each distribution shows its strengths.
Fan Mei, Jian Wang, Jennifer M. Comstock, Ralf Weigel, Martina Krämer, Christoph Mahnke, John E. Shilling, Johannes Schneider, Christiane Schulz, Charles N. Long, Manfred Wendisch, Luiz A. T. Machado, Beat Schmid, Trismono Krisna, Mikhail Pekour, John Hubbe, Andreas Giez, Bernadett Weinzierl, Martin Zoeger, Mira L. Pöhlker, Hans Schlager, Micael A. Cecchini, Meinrat O. Andreae, Scot T. Martin, Suzane S. de Sá, Jiwen Fan, Jason Tomlinson, Stephen Springston, Ulrich Pöschl, Paulo Artaxo, Christopher Pöhlker, Thomas Klimach, Andreas Minikin, Armin Afchine, and Stephan Borrmann
Atmos. Meas. Tech., 13, 661–684, https://doi.org/10.5194/amt-13-661-2020, https://doi.org/10.5194/amt-13-661-2020, 2020
Short summary
Short summary
In 2014, the US DOE G1 aircraft and the German HALO aircraft overflew the Amazon basin to study how aerosols influence cloud cycles under a clean condition and around a tropical megacity. This paper describes how to meaningfully compare similar measurements from two research aircraft and identify the potential measurement issue. We also discuss the uncertainty range for each measurement for further usage in model evaluation and satellite data validation.
Pascal Polonik, Christoph Knote, Tobias Zinner, Florian Ewald, Tobias Kölling, Bernhard Mayer, Meinrat O. Andreae, Tina Jurkat-Witschas, Thomas Klimach, Christoph Mahnke, Sergej Molleker, Christopher Pöhlker, Mira L. Pöhlker, Ulrich Pöschl, Daniel Rosenfeld, Christiane Voigt, Ralf Weigel, and Manfred Wendisch
Atmos. Chem. Phys., 20, 1591–1605, https://doi.org/10.5194/acp-20-1591-2020, https://doi.org/10.5194/acp-20-1591-2020, 2020
Short summary
Short summary
A realistic representation of cloud–aerosol interactions is central to accurate climate projections. Here we combine observations collected during the ACRIDICON-CHUVA campaign with chemistry-transport simulations to evaluate the model’s ability to represent the indirect effects of biomass burning aerosol on cloud microphysics. We find an upper limit for the model sensitivity on cloud condensation nuclei concentrations well below the levels reached during the burning season in the Amazon Basin.
Xiaolu Yan, Paul Konopka, Felix Ploeger, Aurélien Podglajen, Jonathon S. Wright, Rolf Müller, and Martin Riese
Atmos. Chem. Phys., 19, 15629–15649, https://doi.org/10.5194/acp-19-15629-2019, https://doi.org/10.5194/acp-19-15629-2019, 2019
Short summary
Short summary
The Asian and North American summer monsoons (ASM and NASM) have considerable influence on stratospheric chemistry and physics. More air mass is transported from the monsoon regions to the tropical stratosphere when the tracers are released clearly below the tropopause than when they are released close to the tropopause. Results for different altitudes of air origin reveal two transport pathways (monsoon and tropical) from the upper troposphere over the monsoon regions to the tropical pipe.
Sophie L. Haslett, Jonathan W. Taylor, Mathew Evans, Eleanor Morris, Bernhard Vogel, Alima Dajuma, Joel Brito, Anneke M. Batenburg, Stephan Borrmann, Johannes Schneider, Christiane Schulz, Cyrielle Denjean, Thierry Bourrianne, Peter Knippertz, Régis Dupuy, Alfons Schwarzenböck, Daniel Sauer, Cyrille Flamant, James Dorsey, Ian Crawford, and Hugh Coe
Atmos. Chem. Phys., 19, 15217–15234, https://doi.org/10.5194/acp-19-15217-2019, https://doi.org/10.5194/acp-19-15217-2019, 2019
Short summary
Short summary
Three aircraft datasets from the DACCIWA campaign in summer 2016 are used here to show there is a background mass of pollution present in the lower atmosphere in southern West Africa. We suggest that this likely comes from biomass burning in central and southern Africa, which has been carried into the region over the Atlantic Ocean. This would have a negative health impact on populations living near the coast and may alter the impact of growing city emissions on cloud formation and the monsoon.
Corinna Kloss, Gwenaël Berthet, Pasquale Sellitto, Felix Ploeger, Silvia Bucci, Sergey Khaykin, Fabrice Jégou, Ghassan Taha, Larry W. Thomason, Brice Barret, Eric Le Flochmoen, Marc von Hobe, Adriana Bossolasco, Nelson Bègue, and Bernard Legras
Atmos. Chem. Phys., 19, 13547–13567, https://doi.org/10.5194/acp-19-13547-2019, https://doi.org/10.5194/acp-19-13547-2019, 2019
Short summary
Short summary
With satellite measurements and transport models, we show that a plume resulting from strong Canadian fires in July/August 2017 was not only distributed throughout the northern/higher latitudes, but also reached the faraway tropics, aided by the circulation of Asian monsoon anticyclone. The regional climate impact in the wider Asian monsoon area in September exceeds the impact of the Asian tropopause aerosol layer by a factor of ~ 3 and compares to that of an advected moderate volcanic eruption.
Keun-Ok Lee, Thibaut Dauhut, Jean-Pierre Chaboureau, Sergey Khaykin, Martina Krämer, and Christian Rolf
Atmos. Chem. Phys., 19, 11803–11820, https://doi.org/10.5194/acp-19-11803-2019, https://doi.org/10.5194/acp-19-11803-2019, 2019
Short summary
Short summary
This study focuses on the hydration patch that was measured during the StratoClim field campaign and the corresponding convective overshoots over the Sichuan Basin. Through analysis using airborne and spaceborne measurements and the numerical simulation using a non-hydrostatic model, we show the key hydration process and pathway of the hydration patch in tropical tropopause layer.
Matthias Nützel, Aurélien Podglajen, Hella Garny, and Felix Ploeger
Atmos. Chem. Phys., 19, 8947–8966, https://doi.org/10.5194/acp-19-8947-2019, https://doi.org/10.5194/acp-19-8947-2019, 2019
Short summary
Short summary
We investigate the transport pathways of water vapour from the upper troposphere in the Asian monsoon region to the stratosphere. In the employed chemistry-transport model we use a tagging method, such that the impact of different source regions on the stratospheric water vapour budget can be quantified. A key finding is that the Asian monsoon (compared to other source regions) is very efficient in transporting air masses and water vapour to the tropical and extratropical stratosphere.
Paul Konopka, Mengchu Tao, Felix Ploeger, Mohamadou Diallo, and Martin Riese
Geosci. Model Dev., 12, 2441–2462, https://doi.org/10.5194/gmd-12-2441-2019, https://doi.org/10.5194/gmd-12-2441-2019, 2019
Short summary
Short summary
CLaMS is a Lagrangian transport model suitable for simulating atmospheric transport and chemistry. The novel approach of CLaMS is its description of atmospheric mixing. Whereas the common approach is to minimize the numerical diffusion ever present in the modeling of transport, CLaMS is a first attempt to apply this
undesirable disturbing effectto parametrize the true physical mixing. In this paper, we show how this concept works both in the stratosphere and in the troposphere.
Sebastian J. O'Shea, Jonathan Crosier, James Dorsey, Waldemar Schledewitz, Ian Crawford, Stephan Borrmann, Richard Cotton, and Aaron Bansemer
Atmos. Meas. Tech., 12, 3067–3079, https://doi.org/10.5194/amt-12-3067-2019, https://doi.org/10.5194/amt-12-3067-2019, 2019
Short summary
Short summary
Optical array probe measurements of clouds are widely used to inform and validate numerical weather and climate models. In this paper, we discuss artefacts which may bias data from these instruments. Using laboratory and synthetic datasets, we demonstrate how greyscale analysis can be used to filter data, constraining the sample volume and improving data quality particularly at small sizes where their measurements are considered unreliable.
Mengchu Tao, Paul Konopka, Felix Ploeger, Xiaolu Yan, Jonathon S. Wright, Mohamadou Diallo, Stephan Fueglistaler, and Martin Riese
Atmos. Chem. Phys., 19, 6509–6534, https://doi.org/10.5194/acp-19-6509-2019, https://doi.org/10.5194/acp-19-6509-2019, 2019
Short summary
Short summary
This paper examines the annual and interannual variations as well as long-term trend of modeled stratospheric water vapor with a Lagrangian chemical transport model driven by ERA-I, MERRA-2 and JRA-55. We find reasonable consistency among the annual cycle, QBO and the variabilities induced by ENSO and volcanic aerosols. The main discrepancies are linked to the differences in reanalysis upwelling rates in the lower stratosphere. The trends are sensitive to the reanalyses that drives the model.
Felix Ploeger, Bernard Legras, Edward Charlesworth, Xiaolu Yan, Mohamadou Diallo, Paul Konopka, Thomas Birner, Mengchu Tao, Andreas Engel, and Martin Riese
Atmos. Chem. Phys., 19, 6085–6105, https://doi.org/10.5194/acp-19-6085-2019, https://doi.org/10.5194/acp-19-6085-2019, 2019
Short summary
Short summary
We analyse the change in the circulation of the middle atmosphere based on current generation meteorological reanalysis data sets. We find that long-term changes from 1989 to 2015 are similar for the chosen reanalyses, mainly resembling the forced response in climate model simulations to climate change. For shorter periods circulation changes are less robust, and the representation of decadal variability appears to be a major uncertainty for modelling the circulation of the middle atmosphere.
Sabine Robrecht, Bärbel Vogel, Jens-Uwe Grooß, Karen Rosenlof, Troy Thornberry, Andrew Rollins, Martina Krämer, Lance Christensen, and Rolf Müller
Atmos. Chem. Phys., 19, 5805–5833, https://doi.org/10.5194/acp-19-5805-2019, https://doi.org/10.5194/acp-19-5805-2019, 2019
Short summary
Short summary
The potential destruction of stratospheric ozone in the mid-latitudes has been discussed recently. We analysed this ozone loss mechanism and its sensitivities. In a certain temperature range, we found a threshold in water vapour, which has to be exceeded for ozone loss to occur. We show the dependence of this water vapour threshold on temperature, sulfate content and air composition. This study provides a basis to estimate the impact of potential sulphate geoengineering on stratospheric ozone.
Aurélien Podglajen and Felix Ploeger
Atmos. Chem. Phys., 19, 1767–1783, https://doi.org/10.5194/acp-19-1767-2019, https://doi.org/10.5194/acp-19-1767-2019, 2019
Short summary
Short summary
The age spectrum (distribution of transit times) provides a compact description of transport from the surface to a given point in the atmosphere. It also determines the surface-emitted tracer content of an air parcel. We propose a method to invert this relation in order to retrieve age spectra from tracer concentrations and demonstrate its feasibility in idealized and model setups. Applied to observations, the approach might help to better constrain atmospheric transport timescales.
Marcel Snels, Andrea Scoccione, Luca Di Liberto, Francesco Colao, Michael Pitts, Lamont Poole, Terry Deshler, Francesco Cairo, Chiara Cagnazzo, and Federico Fierli
Atmos. Chem. Phys., 19, 955–972, https://doi.org/10.5194/acp-19-955-2019, https://doi.org/10.5194/acp-19-955-2019, 2019
Short summary
Short summary
Polar stratospheric clouds are important for stratospheric chemistry and ozone depletion. Here we statistically compare ground-based and satellite-borne lidar measurements at McMurdo (Antarctica) in order to better understand the differences between ground-based and satellite-borne observations. The satellite observations have also been compared to models used in CCMVAL-2 and CCMI studies, with the goal of testing different diagnostic methods for comparing observations with model outputs.
Mohamadou Diallo, Paul Konopka, Michelle L. Santee, Rolf Müller, Mengchu Tao, Kaley A. Walker, Bernard Legras, Martin Riese, Manfred Ern, and Felix Ploeger
Atmos. Chem. Phys., 19, 425–446, https://doi.org/10.5194/acp-19-425-2019, https://doi.org/10.5194/acp-19-425-2019, 2019
Short summary
Short summary
This paper assesses the structural changes in the shallow and transition branches of the BDC induced by El Nino using the Lagrangian model simulations driven by ERAi and JRA-55 combined with MLS observations. We found a clear evidence of a weakening of the transition branch due to an upward shift in the dissipation height of the planetary and gravity waves and a strengthening of the shallow branch due to enhanced GW breaking in the tropics–subtropics and PW breaking at high latitudes.
Michael Weger, Bernd Heinold, Christa Engler, Ulrich Schumann, Axel Seifert, Romy Fößig, Christiane Voigt, Holger Baars, Ulrich Blahak, Stephan Borrmann, Corinna Hoose, Stefan Kaufmann, Martina Krämer, Patric Seifert, Fabian Senf, Johannes Schneider, and Ina Tegen
Atmos. Chem. Phys., 18, 17545–17572, https://doi.org/10.5194/acp-18-17545-2018, https://doi.org/10.5194/acp-18-17545-2018, 2018
Short summary
Short summary
The impact of desert dust on cloud formation is investigated for a major Saharan dust event over Europe by interactive regional dust modeling. Dust particles are very efficient ice-nucleating particles promoting the formation of ice crystals in clouds. The simulations show that the observed extensive cirrus development was likely related to the above-average dust load. The interactive dust–cloud feedback in the model significantly improves the agreement with aircraft and satellite observations.
Veronika Wolf, Thomas Kuhn, Mathias Milz, Peter Voelger, Martina Krämer, and Christian Rolf
Atmos. Chem. Phys., 18, 17371–17386, https://doi.org/10.5194/acp-18-17371-2018, https://doi.org/10.5194/acp-18-17371-2018, 2018
Short summary
Short summary
Balloon-borne measurements of microphysical properties of Arctic ice clouds have been performed with an in situ particle imager and been analyzed for the first time with respect to how the ice particles have formed. Ice particle size, shape and number show large variations from cloud to cloud, which cannot be explained with local conditions only, and rather depend on conditions at cloud formation. Taking this into account when parametrizing ice cloud properties may improve retrievals and models.
Stefan Kaufmann, Christiane Voigt, Romy Heller, Tina Jurkat-Witschas, Martina Krämer, Christian Rolf, Martin Zöger, Andreas Giez, Bernhard Buchholz, Volker Ebert, Troy Thornberry, and Ulrich Schumann
Atmos. Chem. Phys., 18, 16729–16745, https://doi.org/10.5194/acp-18-16729-2018, https://doi.org/10.5194/acp-18-16729-2018, 2018
Short summary
Short summary
We present an intercomparison of the airborne water vapor measurements during the ML-CIRRUS mission. Although the agreement of the hygrometers significantly improved compared to studies from recent decades, systematic differences remain under specific meteorological conditions. We compare the measurements to model data, where we observe a model wet bias in the lower stratosphere close to the tropopause, likely caused by a blurred humidity gradient in the model tropopause.
Michael Höpfner, Terry Deshler, Michael Pitts, Lamont Poole, Reinhold Spang, Gabriele Stiller, and Thomas von Clarmann
Atmos. Meas. Tech., 11, 5901–5923, https://doi.org/10.5194/amt-11-5901-2018, https://doi.org/10.5194/amt-11-5901-2018, 2018
Short summary
Short summary
Polar stratospheric clouds (PSC) have major relevance to the processes leading to polar ozone depletion. A good understanding of these particles is a prerequisite to predict their role in a changing climate. We present the first global set of PSC volume density profiles derived from the MIPAS satellite measurements covering the entire mission period between 2002 and 2012. A comparison to CALIOP lidar measurements is provided. The dataset can serve as a basis for evaluation of atmospheric models.
Christiane Schulz, Johannes Schneider, Bruna Amorim Holanda, Oliver Appel, Anja Costa, Suzane S. de Sá, Volker Dreiling, Daniel Fütterer, Tina Jurkat-Witschas, Thomas Klimach, Christoph Knote, Martina Krämer, Scot T. Martin, Stephan Mertes, Mira L. Pöhlker, Daniel Sauer, Christiane Voigt, Adrian Walser, Bernadett Weinzierl, Helmut Ziereis, Martin Zöger, Meinrat O. Andreae, Paulo Artaxo, Luiz A. T. Machado, Ulrich Pöschl, Manfred Wendisch, and Stephan Borrmann
Atmos. Chem. Phys., 18, 14979–15001, https://doi.org/10.5194/acp-18-14979-2018, https://doi.org/10.5194/acp-18-14979-2018, 2018
Short summary
Short summary
Aerosol chemical composition measurements in the tropical upper troposphere over the Amazon region show that 78 % of the aerosol in the upper troposphere consists of organic matter. Up to 20 % of the organic aerosol can be attributed to isoprene epoxydiol secondary organic aerosol (IEPOX-SOA). Furthermore, organic nitrates were identified, suggesting a connection to the IEPOX-SOA formation.
Odran Sourdeval, Edward Gryspeerdt, Martina Krämer, Tom Goren, Julien Delanoë, Armin Afchine, Friederike Hemmer, and Johannes Quaas
Atmos. Chem. Phys., 18, 14327–14350, https://doi.org/10.5194/acp-18-14327-2018, https://doi.org/10.5194/acp-18-14327-2018, 2018
Short summary
Short summary
The number concentration of ice crystals (Ni) is a key cloud property that remains very uncertain due to difficulties in determining it using satellites. This lack of global observational constraints limits our ability to constrain this property in models responsible for predicting future climate. This pair of papers fills this gap by showing and analyzing the first rigorously evaluated global climatology of Ni, leading to new information shedding light on the processes that control high clouds.
Edward Gryspeerdt, Odran Sourdeval, Johannes Quaas, Julien Delanoë, Martina Krämer, and Philipp Kühne
Atmos. Chem. Phys., 18, 14351–14370, https://doi.org/10.5194/acp-18-14351-2018, https://doi.org/10.5194/acp-18-14351-2018, 2018
Short summary
Short summary
The concentration of ice crystals in a cloud affects both the properties and the life cycle of the cloud. This work uses a new satellite retrieval to investigate controls on the ice crystal concentration at a global scale. Both temperature and vertical wind speed in a cloud have a strong impact on the concentration of ice crystals. The ice crystal number is also related to the aerosol environment; defining this relation opens up new ways to investigate human impacts on clouds and the climate.
Sara Bacer, Sylvia C. Sullivan, Vlassis A. Karydis, Donifan Barahona, Martina Krämer, Athanasios Nenes, Holger Tost, Alexandra P. Tsimpidi, Jos Lelieveld, and Andrea Pozzer
Geosci. Model Dev., 11, 4021–4041, https://doi.org/10.5194/gmd-11-4021-2018, https://doi.org/10.5194/gmd-11-4021-2018, 2018
Short summary
Short summary
The complexity of ice nucleation mechanisms and aerosol--ice interactions makes their representation still challenging in atmospheric models. We have implemented a comprehensive ice crystal formation parameterization in the global chemistry-climate model EMAC to improve the representation of ice crystal number concentrations. The newly implemented parameterization takes into account processes which were previously neglected by the standard version of the model.
Annette Filges, Christoph Gerbig, Chris W. Rella, John Hoffnagle, Herman Smit, Martina Krämer, Nicole Spelten, Christian Rolf, Zoltán Bozóki, Bernhard Buchholz, and Volker Ebert
Atmos. Meas. Tech., 11, 5279–5297, https://doi.org/10.5194/amt-11-5279-2018, https://doi.org/10.5194/amt-11-5279-2018, 2018
Mohamadou Diallo, Martin Riese, Thomas Birner, Paul Konopka, Rolf Müller, Michaela I. Hegglin, Michelle L. Santee, Mark Baldwin, Bernard Legras, and Felix Ploeger
Atmos. Chem. Phys., 18, 13055–13073, https://doi.org/10.5194/acp-18-13055-2018, https://doi.org/10.5194/acp-18-13055-2018, 2018
Short summary
Short summary
The unprecedented timing of an El Niño event aligned with the disrupted QBO in 2015–2016 caused a perturbation to the stratospheric circulation, affecting trace gases. This paper resolves the puzzling response of the lower stratospheric water vapor by showing that the QBO disruption reversed the lower stratosphere moistening triggered by the alignment of the El Niño event with a westerly QBO in early boreal winter.
Sören Johansson, Wolfgang Woiwode, Michael Höpfner, Felix Friedl-Vallon, Anne Kleinert, Erik Kretschmer, Thomas Latzko, Johannes Orphal, Peter Preusse, Jörn Ungermann, Michelle L. Santee, Tina Jurkat-Witschas, Andreas Marsing, Christiane Voigt, Andreas Giez, Martina Krämer, Christian Rolf, Andreas Zahn, Andreas Engel, Björn-Martin Sinnhuber, and Hermann Oelhaf
Atmos. Meas. Tech., 11, 4737–4756, https://doi.org/10.5194/amt-11-4737-2018, https://doi.org/10.5194/amt-11-4737-2018, 2018
Short summary
Short summary
We present two-dimensional cross sections of temperature, HNO3, O3, ClONO2, H2O and CFC-12 from measurements of the GLORIA infrared limb imager during the POLSTRACC/GW-LCYCLE/SALSA aircraft campaigns in the Arctic winter 2015/2016. GLORIA sounded the atmosphere between 5 and 14 km with vertical resolutions of 0.4–1 km. Estimated errors are in the range of 1–2 K (temperature) and 10 %–20 % (trace gases). Comparisons to in situ instruments onboard the aircraft and to Aura/MLS are shown.
Aurélien Chauvigné, Olivier Jourdan, Alfons Schwarzenboeck, Christophe Gourbeyre, Jean François Gayet, Christiane Voigt, Hans Schlager, Stefan Kaufmann, Stephan Borrmann, Sergej Molleker, Andreas Minikin, Tina Jurkat, and Ulrich Schumann
Atmos. Chem. Phys., 18, 9803–9822, https://doi.org/10.5194/acp-18-9803-2018, https://doi.org/10.5194/acp-18-9803-2018, 2018
Short summary
Short summary
This paper demonstrates a new form of statistical analysis of contrail to cirrus evolution. The authors show well-separated analyses of the different stages of the contrail's evolution, which allows us to study their optical, microphysical, and chemical properties. These results could be used to develop representative parameterizations of the scattering and geometrical properties of the ice crystals’ shapes and sizes, observed in the visible wavelength range.
Armin Afchine, Christian Rolf, Anja Costa, Nicole Spelten, Martin Riese, Bernhard Buchholz, Volker Ebert, Romy Heller, Stefan Kaufmann, Andreas Minikin, Christiane Voigt, Martin Zöger, Jessica Smith, Paul Lawson, Alexey Lykov, Sergey Khaykin, and Martina Krämer
Atmos. Meas. Tech., 11, 4015–4031, https://doi.org/10.5194/amt-11-4015-2018, https://doi.org/10.5194/amt-11-4015-2018, 2018
Short summary
Short summary
The ice water content (IWC) of cirrus clouds is an essential parameter that determines their radiative properties and is thus important for climate simulations. Experimental investigations of IWCs measured on board research aircraft reveal that their accuracy is influenced by the sampling position. IWCs detected at the aircraft roof deviate significantly from wing, side or bottom IWCs. The reasons are deflections of the gas streamlines and ice particle trajectories behind the aircraft cockpit.
Liubov Poshyvailo, Rolf Müller, Paul Konopka, Gebhard Günther, Martin Riese, Aurélien Podglajen, and Felix Ploeger
Atmos. Chem. Phys., 18, 8505–8527, https://doi.org/10.5194/acp-18-8505-2018, https://doi.org/10.5194/acp-18-8505-2018, 2018
Short summary
Short summary
Water vapour (H2O) in the UTLS is a key player for global radiation, which is critical for predictions of future climate change. We investigate the effects of current uncertainties in tropopause temperature, horizontal transport and small-scale mixing on simulated H2O, using the Chemical Lagrangian Model of the Stratosphere. Our sensitivity studies provide new insights into the leading processes controlling stratospheric H2O, important for assessing and improving climate model projections.
Stefan Lossow, Dale F. Hurst, Karen H. Rosenlof, Gabriele P. Stiller, Thomas von Clarmann, Sabine Brinkop, Martin Dameris, Patrick Jöckel, Doug E. Kinnison, Johannes Plieninger, David A. Plummer, Felix Ploeger, William G. Read, Ellis E. Remsberg, James M. Russell, and Mengchu Tao
Atmos. Chem. Phys., 18, 8331–8351, https://doi.org/10.5194/acp-18-8331-2018, https://doi.org/10.5194/acp-18-8331-2018, 2018
Short summary
Short summary
Trend estimates of lower stratospheric H2O derived from the FPH observations at Boulder and a merged zonal mean satellite data set clearly differ for the time period from the late 1980s to 2010. We investigate if a sampling bias between Boulder and the zonal mean around the Boulder latitude can explain these trend discrepancies. Typically they are small and not sufficient to explain the trend discrepancies in the observational database.
Xiaolu Yan, Paul Konopka, Felix Ploeger, Mengchu Tao, Rolf Müller, Michelle L. Santee, Jianchun Bian, and Martin Riese
Atmos. Chem. Phys., 18, 8079–8096, https://doi.org/10.5194/acp-18-8079-2018, https://doi.org/10.5194/acp-18-8079-2018, 2018
Short summary
Short summary
Many works investigate the impact of ENSO on the troposphere. However, only a few works check the impact of ENSO at higher altitudes.
Here, we analyse the impact of ENSO on the vicinity of the tropopause using reanalysis, satellite, in situ and model data. We find that ENSO shows the strongest signal in winter, but its impact can last until early the next summer. The ENSO anomaly is insignificant in late summer. Our study can help to understand the atmosphere propagation after ENSO.
Luiz A. T. Machado, Alan J. P. Calheiros, Thiago Biscaro, Scott Giangrande, Maria A. F. Silva Dias, Micael A. Cecchini, Rachel Albrecht, Meinrat O. Andreae, Wagner F. Araujo, Paulo Artaxo, Stephan Borrmann, Ramon Braga, Casey Burleyson, Cristiano W. Eichholz, Jiwen Fan, Zhe Feng, Gilberto F. Fisch, Michael P. Jensen, Scot T. Martin, Ulrich Pöschl, Christopher Pöhlker, Mira L. Pöhlker, Jean-François Ribaud, Daniel Rosenfeld, Jaci M. B. Saraiva, Courtney Schumacher, Ryan Thalman, David Walter, and Manfred Wendisch
Atmos. Chem. Phys., 18, 6461–6482, https://doi.org/10.5194/acp-18-6461-2018, https://doi.org/10.5194/acp-18-6461-2018, 2018
Short summary
Short summary
This overview discuss the main precipitation processes and their sensitivities to environmental conditions in the Central Amazon Basin. It presents a review of the knowledge acquired about cloud processes and rainfall formation in Amazonas. In addition, this study provides a characterization of the seasonal variation and rainfall sensitivities to topography, surface cover, and aerosol concentration. Airplane measurements were evaluated to characterize and contrast cloud microphysical properties.
Jens Krause, Peter Hoor, Andreas Engel, Felix Plöger, Jens-Uwe Grooß, Harald Bönisch, Timo Keber, Björn-Martin Sinnhuber, Wolfgang Woiwode, and Hermann Oelhaf
Atmos. Chem. Phys., 18, 6057–6073, https://doi.org/10.5194/acp-18-6057-2018, https://doi.org/10.5194/acp-18-6057-2018, 2018
Short summary
Short summary
We present tracer measurements of CO and N2O measured during the POLSTRACC aircraft campaign in winter 2015–2016. We found enhanced CO values relative to N2O in the polar lower stratosphere in addition to the ageing of this region during winter. By using model simulations it was possible to link this enhancement to an increased mixing of the tropical tropopause. We thus conclude that the polar lower stratosphere in late winter is strongly influenced by quasi-isentropic mixing from the tropics.
Silvia Bucci, Paolo Cristofanelli, Stefano Decesari, Angela Marinoni, Silvia Sandrini, Johannes Größ, Alfred Wiedensohler, Chiara F. Di Marco, Eiko Nemitz, Francesco Cairo, Luca Di Liberto, and Federico Fierli
Atmos. Chem. Phys., 18, 5371–5389, https://doi.org/10.5194/acp-18-5371-2018, https://doi.org/10.5194/acp-18-5371-2018, 2018
Short summary
Short summary
This paper analyses some of the processes affecting PM levels over the Po Valley, one of the most polluted regions of Europe, during the 2012 summer campaigns. Under conditions of air transport from the Sahara, data show that desert dust can rapidly penetrate into the lower atmosphere, directly affecting the PM concentration at the ground. Processes of particles growth in high relative humidity and uplift of local soil particles, potentially affecting PM level, are also analysed.
Paul Herenz, Heike Wex, Silvia Henning, Thomas Bjerring Kristensen, Florian Rubach, Anja Roth, Stephan Borrmann, Heiko Bozem, Hannes Schulz, and Frank Stratmann
Atmos. Chem. Phys., 18, 4477–4496, https://doi.org/10.5194/acp-18-4477-2018, https://doi.org/10.5194/acp-18-4477-2018, 2018
Short summary
Short summary
The Arctic climate is changing much faster than other regions on Earth. Hence, it is necessary to investigate the processes that are liable for this phenomena and to document the current situation in the Arctic. Therefore, we measured the number and also the size of aerosol particles. It turned out that we captured the transition from the Arctic spring to the Arctic summer and that the according air masses show differences in particle properties. Also, the particles have a low water receptivity.
Trismono C. Krisna, Manfred Wendisch, André Ehrlich, Evelyn Jäkel, Frank Werner, Ralf Weigel, Stephan Borrmann, Christoph Mahnke, Ulrich Pöschl, Meinrat O. Andreae, Christiane Voigt, and Luiz A. T. Machado
Atmos. Chem. Phys., 18, 4439–4462, https://doi.org/10.5194/acp-18-4439-2018, https://doi.org/10.5194/acp-18-4439-2018, 2018
Short summary
Short summary
The optical thickness and particle effective radius of a cirrus above liquid water clouds and a DCC topped by an anvil cirrus are retrieved based on SMART and MODIS radiance measurements. For the cirrus, retrieved particle effective radius are validated with corresponding in situ data using a vertical weighting method. This approach allows to assess the measurements, retrieval algorithms, and derived cloud products.
Jayanta Kar, Mark A. Vaughan, Kam-Pui Lee, Jason L. Tackett, Melody A. Avery, Anne Garnier, Brian J. Getzewich, William H. Hunt, Damien Josset, Zhaoyan Liu, Patricia L. Lucker, Brian Magill, Ali H. Omar, Jacques Pelon, Raymond R. Rogers, Travis D. Toth, Charles R. Trepte, Jean-Paul Vernier, David M. Winker, and Stuart A. Young
Atmos. Meas. Tech., 11, 1459–1479, https://doi.org/10.5194/amt-11-1459-2018, https://doi.org/10.5194/amt-11-1459-2018, 2018
Short summary
Short summary
We present the motivation for and the implementation of the version 4.1 nighttime 532 nm parallel-channel calibration of the CALIOP lidar. The accuracy of calibration is significantly improved by raising the molecular normalization altitude from 30–34 km to 36–39 km to substantially reduce stratospheric aerosol contamination. The new calibration procedure eliminates biases in earlier versions and leads to an improved representation of stratospheric aerosols.
Larry W. Thomason, Nicholas Ernest, Luis Millán, Landon Rieger, Adam Bourassa, Jean-Paul Vernier, Gloria Manney, Beiping Luo, Florian Arfeuille, and Thomas Peter
Earth Syst. Sci. Data, 10, 469–492, https://doi.org/10.5194/essd-10-469-2018, https://doi.org/10.5194/essd-10-469-2018, 2018
Short summary
Short summary
We describe the construction of a continuous 38-year record of stratospheric aerosol optical properties. The Global Space-based Stratospheric Aerosol Climatology, or GloSSAC, provided the input data to the construction of the Climate Model Intercomparison Project stratospheric aerosol forcing data set (1979 to 2014) and is now extended through 2016. GloSSAC focuses on the the SAGE series of instruments through mid-2005 and on OSIRIS and CALIPSO after that time.
Christian Rolf, Bärbel Vogel, Peter Hoor, Armin Afchine, Gebhard Günther, Martina Krämer, Rolf Müller, Stefan Müller, Nicole Spelten, and Martin Riese
Atmos. Chem. Phys., 18, 2973–2983, https://doi.org/10.5194/acp-18-2973-2018, https://doi.org/10.5194/acp-18-2973-2018, 2018
Short summary
Short summary
The Asian monsoon is a pronounced circulation system linked to rapid vertical transport of surface air from India and east Asia in the summer months. We found, based on aircraft measurements, higher concentration of water vapor in the lowermost stratosphere caused by the Asian monsoon. Enrichment of water vapor concentrations in the lowermost stratosphere impacts the radiation budget and thus climate. Understanding those variations in water vapor is important for climate projections.
Annika Günther, Michael Höpfner, Björn-Martin Sinnhuber, Sabine Griessbach, Terry Deshler, Thomas von Clarmann, and Gabriele Stiller
Atmos. Chem. Phys., 18, 1217–1239, https://doi.org/10.5194/acp-18-1217-2018, https://doi.org/10.5194/acp-18-1217-2018, 2018
Short summary
Short summary
Satellite-borne data of sulfur dioxide and a new data set of sulfate aerosol volume densities, as retrieved from MIPAS measurements, are studied in the upper-troposphere–lower-stratosphere region. General patterns of enhanced aerosol are in agreement with SO2. Via chemical transport model simulations for two volcanic eruptions in the Northern Hemisphere midlatitudes, we show that the volcanic enhancements in MIPAS SO2 and sulfate aerosol are consistent in terms of mass and transport patterns.
Meinrat O. Andreae, Armin Afchine, Rachel Albrecht, Bruna Amorim Holanda, Paulo Artaxo, Henrique M. J. Barbosa, Stephan Borrmann, Micael A. Cecchini, Anja Costa, Maximilian Dollner, Daniel Fütterer, Emma Järvinen, Tina Jurkat, Thomas Klimach, Tobias Konemann, Christoph Knote, Martina Krämer, Trismono Krisna, Luiz A. T. Machado, Stephan Mertes, Andreas Minikin, Christopher Pöhlker, Mira L. Pöhlker, Ulrich Pöschl, Daniel Rosenfeld, Daniel Sauer, Hans Schlager, Martin Schnaiter, Johannes Schneider, Christiane Schulz, Antonio Spanu, Vinicius B. Sperling, Christiane Voigt, Adrian Walser, Jian Wang, Bernadett Weinzierl, Manfred Wendisch, and Helmut Ziereis
Atmos. Chem. Phys., 18, 921–961, https://doi.org/10.5194/acp-18-921-2018, https://doi.org/10.5194/acp-18-921-2018, 2018
Short summary
Short summary
We made airborne measurements of aerosol particle concentrations and properties over the Amazon Basin. We found extremely high concentrations of very small particles in the region between 8 and 14 km altitude all across the basin, which had been recently formed by gas-to-particle conversion at these altitudes. This makes the upper troposphere a very important source region of atmospheric particles with significant implications for the Earth's climate system.
Joel Brito, Evelyn Freney, Pamela Dominutti, Agnes Borbon, Sophie L. Haslett, Anneke M. Batenburg, Aurelie Colomb, Regis Dupuy, Cyrielle Denjean, Frederic Burnet, Thierry Bourriane, Adrien Deroubaix, Karine Sellegri, Stephan Borrmann, Hugh Coe, Cyrille Flamant, Peter Knippertz, and Alfons Schwarzenboeck
Atmos. Chem. Phys., 18, 757–772, https://doi.org/10.5194/acp-18-757-2018, https://doi.org/10.5194/acp-18-757-2018, 2018
Short summary
Short summary
This work focuses on sources of submicron aerosol particles over southern West Africa (SWA). Results have shown that isoprene, a gas-phase compound of biogenic origin, is responsible for roughly 25 % of the organic aerosol (OA) loading, under most background or urban plumes alike. This fraction represents a lower estimate from the biogenic contribution in this fairly polluted region. This work sheds light upon the role of anthropogenic and biogenic emissions on the pollution burden over SWA.
Antonio Chiarugi, Silvia Viciani, Francesco D'Amato, and Mike Burton
Atmos. Meas. Tech., 11, 329–339, https://doi.org/10.5194/amt-11-329-2018, https://doi.org/10.5194/amt-11-329-2018, 2018
Short summary
Short summary
Assessing emissions of volcanos has a three-fold importance: providing input for climate evolution models (CO2 is one of the major constituents of emissions), quantifying pollutant emissions (HCl, HF and SO2 are released in hundreds of tons/day) and monitoring the status of the magmatic chambers. For these purposes we realized gas analysers based on spectroscopic techniques, which must be sensitive, light and resistant to the emitted gases. This paper reports on the measurement of CO2 and HF.
Nelson Bègue, Damien Vignelles, Gwenaël Berthet, Thierry Portafaix, Guillaume Payen, Fabrice Jégou, Hassan Benchérif, Julien Jumelet, Jean-Paul Vernier, Thibaut Lurton, Jean-Baptiste Renard, Lieven Clarisse, Vincent Duverger, Françoise Posny, Jean-Marc Metzger, and Sophie Godin-Beekmann
Atmos. Chem. Phys., 17, 15019–15036, https://doi.org/10.5194/acp-17-15019-2017, https://doi.org/10.5194/acp-17-15019-2017, 2017
Short summary
Short summary
The space–time evolutions of the Calbuco plume are investigated by combining satellite, in situ aerosol counting and lidar observations, and a numerical model. All the data at Reunion Island reveal a twofold increase in the amount of aerosol with respect to the values observed before the eruption. The dynamic context has favored the spread of the plume exclusively in the Southern Hemisphere. This study highlights the role played by dynamical barriers in the transport of atmospheric species.
Micael A. Cecchini, Luiz A. T. Machado, Manfred Wendisch, Anja Costa, Martina Krämer, Meinrat O. Andreae, Armin Afchine, Rachel I. Albrecht, Paulo Artaxo, Stephan Borrmann, Daniel Fütterer, Thomas Klimach, Christoph Mahnke, Scot T. Martin, Andreas Minikin, Sergej Molleker, Lianet H. Pardo, Christopher Pöhlker, Mira L. Pöhlker, Ulrich Pöschl, Daniel Rosenfeld, and Bernadett Weinzierl
Atmos. Chem. Phys., 17, 14727–14746, https://doi.org/10.5194/acp-17-14727-2017, https://doi.org/10.5194/acp-17-14727-2017, 2017
Short summary
Short summary
This study introduces and explores the concept of gamma phase space. This space is able to represent all possible variations in the cloud droplet size distributions (DSDs). The methodology was applied to recent in situ aircraft measurements over the Amazon. It is shown that the phase space is able to represent several processes occurring in the clouds in a simple manner. The consequences for cloud studies, modeling, and the representation of the transition from warm to mixed phase are discussed.
Ramon Campos Braga, Daniel Rosenfeld, Ralf Weigel, Tina Jurkat, Meinrat O. Andreae, Manfred Wendisch, Ulrich Pöschl, Christiane Voigt, Christoph Mahnke, Stephan Borrmann, Rachel I. Albrecht, Sergej Molleker, Daniel A. Vila, Luiz A. T. Machado, and Lucas Grulich
Atmos. Chem. Phys., 17, 14433–14456, https://doi.org/10.5194/acp-17-14433-2017, https://doi.org/10.5194/acp-17-14433-2017, 2017
Franziska Köllner, Johannes Schneider, Megan D. Willis, Thomas Klimach, Frank Helleis, Heiko Bozem, Daniel Kunkel, Peter Hoor, Julia Burkart, W. Richard Leaitch, Amir A. Aliabadi, Jonathan P. D. Abbatt, Andreas B. Herber, and Stephan Borrmann
Atmos. Chem. Phys., 17, 13747–13766, https://doi.org/10.5194/acp-17-13747-2017, https://doi.org/10.5194/acp-17-13747-2017, 2017
Short summary
Short summary
We conducted aircraft-based single particle chemical composition measurements in the Canadian high Arctic during summer. Our results provide evidence for a marine-biogenic influence on secondary formation of particulate trimethylamine in the Arctic boundary layer. Understanding emission sources and further processes controlling aerosol number concentration and chemical composition in the pristine Arctic summer is crucial for modeling future climate in the area.
Katharina Schütze, James Charles Wilson, Stephan Weinbruch, Nathalie Benker, Martin Ebert, Gebhard Günther, Ralf Weigel, and Stephan Borrmann
Atmos. Chem. Phys., 17, 12475–12493, https://doi.org/10.5194/acp-17-12475-2017, https://doi.org/10.5194/acp-17-12475-2017, 2017
Short summary
Short summary
Stratospheric particles were collected in the polar stratosphere in winter 1999/2000. Besides the well-studied volatile particles from that region, the main findings of this study are stable carbonaceous particles in the sub-micrometer size range. In addition to carbon, many particles show the elements Si, Fe, Cr and Ni to a minor amount. Based on exclusion, carbonaceous material from IDPs and residues from meteoric ablation and fragmentation remain as the most probable sources.
Anja Costa, Jessica Meyer, Armin Afchine, Anna Luebke, Gebhard Günther, James R. Dorsey, Martin W. Gallagher, Andre Ehrlich, Manfred Wendisch, Darrel Baumgardner, Heike Wex, and Martina Krämer
Atmos. Chem. Phys., 17, 12219–12238, https://doi.org/10.5194/acp-17-12219-2017, https://doi.org/10.5194/acp-17-12219-2017, 2017
Short summary
Short summary
The paper presents 38 h of in situ cloud spectrometer observations of microphysical cloud properties in the Arctic, midlatitudes and tropics. The clouds are classified via particle concentrations, size distributions, and – as a novelty – small particle aspherical fractions. Cloud-type profiles are given for different temperatures and locations. The results confine regions where different cloud transformation processes occurred and emphasise the importance of small particle shape detection.
Marcus Klingebiel, André Ehrlich, Fanny Finger, Timo Röschenthaler, Suad Jakirlić, Matthias Voigt, Stefan Müller, Rolf Maser, Manfred Wendisch, Peter Hoor, Peter Spichtinger, and Stephan Borrmann
Atmos. Meas. Tech., 10, 3485–3498, https://doi.org/10.5194/amt-10-3485-2017, https://doi.org/10.5194/amt-10-3485-2017, 2017
Short summary
Short summary
Microphysical and radiation measurements were collected with the unique AIRcraft TOwed Sensor Shuttle (AIRTOSS) – Learjet tandem platform. It is a combination of a Learjet 35A research aircraft and an instrumented aerodynamic bird, which can be detached from and retracted back to the aircraft during flight.
AIRTOSS and Learjet are equipped with radiative, cloud microphysical, trace gas,
and meteorological instruments to study cirrus clouds.
Gabriele P. Stiller, Federico Fierli, Felix Ploeger, Chiara Cagnazzo, Bernd Funke, Florian J. Haenel, Thomas Reddmann, Martin Riese, and Thomas von Clarmann
Atmos. Chem. Phys., 17, 11177–11192, https://doi.org/10.5194/acp-17-11177-2017, https://doi.org/10.5194/acp-17-11177-2017, 2017
Short summary
Short summary
The discrepancy between modelled and observed 25-year trends of the strength of the stratospheric Brewer–Dobson circulation (BDC) is still not resolved. With our paper we trace the observed hemispheric dipole structure of age of air trends back to natural variability in shorter-term (decadal) time frames. Beyond this we demonstrate that after correction for the decadal natural variability the remaining trend for the first decade of the 21st century is consistent with model simulations.
Micael A. Cecchini, Luiz A. T. Machado, Meinrat O. Andreae, Scot T. Martin, Rachel I. Albrecht, Paulo Artaxo, Henrique M. J. Barbosa, Stephan Borrmann, Daniel Fütterer, Tina Jurkat, Christoph Mahnke, Andreas Minikin, Sergej Molleker, Mira L. Pöhlker, Ulrich Pöschl, Daniel Rosenfeld, Christiane Voigt, Bernadett Weinzierl, and Manfred Wendisch
Atmos. Chem. Phys., 17, 10037–10050, https://doi.org/10.5194/acp-17-10037-2017, https://doi.org/10.5194/acp-17-10037-2017, 2017
Short summary
Short summary
We study the effects of aerosol particles and updraft speed on the warm phase of Amazonian clouds. We expand the sensitivity analysis usually found in the literature by concomitantly considering cloud evolution and the effects on droplet size distribution (DSD) shape. The quantitative results show that particle concentration is the primary driver for the vertical profiles of effective diameter and droplet concentration in the warm phase of Amazonian convective clouds.
Alexander Jost, Miklós Szakáll, Karoline Diehl, Subir K. Mitra, and Stephan Borrmann
Atmos. Chem. Phys., 17, 9717–9732, https://doi.org/10.5194/acp-17-9717-2017, https://doi.org/10.5194/acp-17-9717-2017, 2017
Short summary
Short summary
During riming of graupel and hail, soluble chemical trace constituents contained in the liquid droplets could be retained while freezing onto the glaciated particle, or released back to the air potentially at other altitudes as retained. Quantification of retention constitutes a major uncertainty in numerical models for atmospheric chemistry and improvements hinge upon experimental determination of retention for carboxylic acids, aldehydes, SO2, H2O2, NH2, and others, as presented in this paper.
Evelyn Jäkel, Manfred Wendisch, Trismono C. Krisna, Florian Ewald, Tobias Kölling, Tina Jurkat, Christiane Voigt, Micael A. Cecchini, Luiz A. T. Machado, Armin Afchine, Anja Costa, Martina Krämer, Meinrat O. Andreae, Ulrich Pöschl, Daniel Rosenfeld, and Tianle Yuan
Atmos. Chem. Phys., 17, 9049–9066, https://doi.org/10.5194/acp-17-9049-2017, https://doi.org/10.5194/acp-17-9049-2017, 2017
Short summary
Short summary
Vertical profiles of the cloud particle phase state in tropical deep convective clouds (DCCs) were investigated using airborne imaging spectrometer measurements during the ACRIDICON-CHUVA campaign, which was conducted over the Brazilian rainforest in September 2014. A phase discrimination retrieval was applied to observations of clouds formed in different aerosol conditions. The profiles were compared to in situ and satellite measurements.
Simone Dietmüller, Hella Garny, Felix Plöger, Patrick Jöckel, and Duy Cai
Atmos. Chem. Phys., 17, 7703–7719, https://doi.org/10.5194/acp-17-7703-2017, https://doi.org/10.5194/acp-17-7703-2017, 2017
Ramon Campos Braga, Daniel Rosenfeld, Ralf Weigel, Tina Jurkat, Meinrat O. Andreae, Manfred Wendisch, Mira L. Pöhlker, Thomas Klimach, Ulrich Pöschl, Christopher Pöhlker, Christiane Voigt, Christoph Mahnke, Stephan Borrmann, Rachel I. Albrecht, Sergej Molleker, Daniel A. Vila, Luiz A. T. Machado, and Paulo Artaxo
Atmos. Chem. Phys., 17, 7365–7386, https://doi.org/10.5194/acp-17-7365-2017, https://doi.org/10.5194/acp-17-7365-2017, 2017
Felix Ploeger, Paul Konopka, Kaley Walker, and Martin Riese
Atmos. Chem. Phys., 17, 7055–7066, https://doi.org/10.5194/acp-17-7055-2017, https://doi.org/10.5194/acp-17-7055-2017, 2017
Short summary
Short summary
Pollution transport from the surface to the stratosphere within the Asian summer monsoon circulation may cause harmful effects on stratospheric chemistry and climate. We investigate air mass transport from the monsoon anticyclone into the stratosphere, combining model simulations with satellite trace gas measurements. We show evidence for two transport pathways from the monsoon: (i) into the tropical stratosphere and (ii) into the Northern Hemisphere extratropical lower stratosphere.
Terry Deshler, Rene Stübi, Francis J. Schmidlin, Jennifer L. Mercer, Herman G. J. Smit, Bryan J. Johnson, Rigel Kivi, and Bruno Nardi
Atmos. Meas. Tech., 10, 2021–2043, https://doi.org/10.5194/amt-10-2021-2017, https://doi.org/10.5194/amt-10-2021-2017, 2017
Short summary
Short summary
Ozonesondes, small balloon-borne instruments to measure ozone profiles, are used once and lost. Quality control is thus essential. From the mid-1990s to late 2000s differences in manufacturers' (Science Pump and ENSCI) recommended sensor solution concentrations, 1.0 % and 0.5 % potassium iodide, led to some confusion. This paper uses comparison measurements to derive transfer functions to homogenize the measurements made with non-standard combinations of instrument and sensor solution.
Johannes R. W. Fachinger, Stéphane J. Gallavardin, Frank Helleis, Friederike Fachinger, Frank Drewnick, and Stephan Borrmann
Atmos. Meas. Tech., 10, 1623–1637, https://doi.org/10.5194/amt-10-1623-2017, https://doi.org/10.5194/amt-10-1623-2017, 2017
Short summary
Short summary
The design of an ion trap aerosol mass spectrometer was improved, allowing for the instrument's first field deployment. Detection limits were found to be sufficiently low for ambient measurements. Via MS-MS measurements the instrument is capable of differentiating ion fragments of different elemental compositions, but also fragments which only differ in their molecular structures. This could allow for e.g. the differentiation between sugars and carboxylic acids by MS–MS studies on m/z 60 and 73.
Ulrich Schumann, Christoph Kiemle, Hans Schlager, Ralf Weigel, Stephan Borrmann, Francesco D'Amato, Martina Krämer, Renaud Matthey, Alain Protat, Christiane Voigt, and C. Michael Volk
Atmos. Chem. Phys., 17, 2311–2346, https://doi.org/10.5194/acp-17-2311-2017, https://doi.org/10.5194/acp-17-2311-2017, 2017
Short summary
Short summary
A long-lived (1 h) contrail and overshooting convection were observed in the tropics, near Darwin, Australia. The data are used to study the contrail life cycle at low temperatures and cirrus from deep overturning convection in the lower tropical stratosphere. Airborne in situ, lidar, profiler, radar, and satellite data, as well as a photo, are used to distinguish contrail cirrus from convective cirrus and to study the origin of the observed ice and aerosol, up to 2.3 km above the tropopause.
Sergey M. Khaykin, Sophie Godin-Beekmann, Philippe Keckhut, Alain Hauchecorne, Julien Jumelet, Jean-Paul Vernier, Adam Bourassa, Doug A. Degenstein, Landon A. Rieger, Christine Bingen, Filip Vanhellemont, Charles Robert, Matthew DeLand, and Pawan K. Bhartia
Atmos. Chem. Phys., 17, 1829–1845, https://doi.org/10.5194/acp-17-1829-2017, https://doi.org/10.5194/acp-17-1829-2017, 2017
Short summary
Short summary
The article is devoted to the long-term evolution and variability of stratospheric aerosol, which plays an important role in climate change and the ozone layer. We use 22-year long continuous observations using laser radar soundings in southern France and satellite-based observations to distinguish between natural aerosol variability (caused by volcanic eruptions) and human-induced change in aerosol concentration. An influence of growing pollution above Asia on stratospheric aerosol is found.
Johannes Schneider, Stephan Mertes, Dominik van Pinxteren, Hartmut Herrmann, and Stephan Borrmann
Atmos. Chem. Phys., 17, 1571–1593, https://doi.org/10.5194/acp-17-1571-2017, https://doi.org/10.5194/acp-17-1571-2017, 2017
Short summary
Short summary
We analyzed the composition of cloud droplet residuals and of aerosol particles sampled on a mountaintop site. The data show that about 85 % of the submicron aerosol mass partitions into the cloud phase, and that the uptake of soluble compounds (nitric acid, ammonia, and organic gases) from the gas phase into the cloud droplets is very effective. This will lead to a redistribution of these compounds among the aerosol particles and thereby to a more uniform aerosol after cloud evaporation.
Chaitri Roy, Suvarna Fadnavis, Rolf Müller, D. C. Ayantika, Felix Ploeger, and Alexandru Rap
Atmos. Chem. Phys., 17, 1297–1311, https://doi.org/10.5194/acp-17-1297-2017, https://doi.org/10.5194/acp-17-1297-2017, 2017
Short summary
Short summary
In the monsoon season, Asian NOx emissions are rapidly transported to the UTLS and can impact ozone in the UTLS. From chemistry–climate model simulations, we show that increasing Asian NOx emissions have enhanced ozone radiative forcing over Southeast Asia, which leads to significant warming over the Tibetan Plateau and increase precipitation over India. However, a further increase in NOx emissions elicited negative precipitation due to reversal of monsoon Hadley circulation.
Susan Schmidt, Johannes Schneider, Thomas Klimach, Stephan Mertes, Ludwig Paul Schenk, Piotr Kupiszewski, Joachim Curtius, and Stephan Borrmann
Atmos. Chem. Phys., 17, 575–594, https://doi.org/10.5194/acp-17-575-2017, https://doi.org/10.5194/acp-17-575-2017, 2017
Short summary
Short summary
Ice formation in clouds is an important process in the formation of precipitation, especially at midlatitudes, but the exact properties of the aerosol particles that initiate freezing is not fully understood. We analysed residual particles from ice crystals sampled from mixed phase clouds. The results show that the residues contain a larger relative amount of soil dust and minerals, but also particles from industrial emissions and lead-containing particles, than the out-of-cloud aerosol.
Bernhard Buchholz, Armin Afchine, Alexander Klein, Cornelius Schiller, Martina Krämer, and Volker Ebert
Atmos. Meas. Tech., 10, 35–57, https://doi.org/10.5194/amt-10-35-2017, https://doi.org/10.5194/amt-10-35-2017, 2017
Short summary
Short summary
HAI is a fully autonomous, airborne hygrometer for atmospheric investigations for simultaneous gas-phase/total H2O detection on the HALO aircraft. HAI employs first-principle, direct, tunable diode laser absorption spectroscopy (dTDLAS) for calibration-free, absolute H2O detection. HAI simultaneously measures at 1.4/2.6 µm and in closed-/open-path configuration, covers a H2O range of 1–40 000ppmv at up to 1.4 ms time resolution and achieves precisions of 0.18/0.055 ppmv at 1.4/2.6 µm.
Bärbel Vogel, Gebhard Günther, Rolf Müller, Jens-Uwe Grooß, Armin Afchine, Heiko Bozem, Peter Hoor, Martina Krämer, Stefan Müller, Martin Riese, Christian Rolf, Nicole Spelten, Gabriele P. Stiller, Jörn Ungermann, and Andreas Zahn
Atmos. Chem. Phys., 16, 15301–15325, https://doi.org/10.5194/acp-16-15301-2016, https://doi.org/10.5194/acp-16-15301-2016, 2016
Short summary
Short summary
The identification of transport pathways from the Asian monsoon anticyclone into the lower stratosphere is unclear. Global simulations with the CLaMS model demonstrate that source regions in Asia and in the Pacific Ocean have a significant impact on the chemical composition of the lower stratosphere of the Northern Hemisphere by flooding the extratropical lower stratosphere with young moist air masses. Two main horizontal transport pathways from the Asian monsoon anticyclone are identified.
Caroline Struckmeier, Frank Drewnick, Friederike Fachinger, Gian Paolo Gobbi, and Stephan Borrmann
Atmos. Chem. Phys., 16, 15277–15299, https://doi.org/10.5194/acp-16-15277-2016, https://doi.org/10.5194/acp-16-15277-2016, 2016
Short summary
Short summary
The characteristics of ambient aerosol during two seasons (spring/autumn) and at two locations (suburban/urban) in Rome were investigated. We distinguished regionally advected and locally produced organic aerosols, including from cooking, traffic and biomass burning, but also from locally emitted cigarette smoke, for which we propose a new marker peak for identification in aerosol mass spectra. The impact of Saharan dust advection events on local aerosol concentration was studied.
Gavin J. Phillips, Jim Thieser, Mingjin Tang, Nicolas Sobanski, Gerhard Schuster, Johannes Fachinger, Frank Drewnick, Stephan Borrmann, Heinz Bingemer, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 16, 13231–13249, https://doi.org/10.5194/acp-16-13231-2016, https://doi.org/10.5194/acp-16-13231-2016, 2016
Short summary
Short summary
We use trace gas measurements (N2O5, ClNO2, NO3) and particle properties (surface area, nitrate content etc.) to derive uptake coefficients (the probability of removal from the gas-phase on a per-collision basis) for the interaction of N2O5 with ambient aerosol and also the efficiency of formation of ClNO2. The uptake coefficients show high variability but are reasonably well captured by parameterisations based on laboratory measurements.
Ralf Weigel, Peter Spichtinger, Christoph Mahnke, Marcus Klingebiel, Armin Afchine, Andreas Petzold, Martina Krämer, Anja Costa, Sergej Molleker, Philipp Reutter, Miklós Szakáll, Max Port, Lucas Grulich, Tina Jurkat, Andreas Minikin, and Stephan Borrmann
Atmos. Meas. Tech., 9, 5135–5162, https://doi.org/10.5194/amt-9-5135-2016, https://doi.org/10.5194/amt-9-5135-2016, 2016
Short summary
Short summary
The subject of our study concerns measurements with optical array probes (OAPs) on fast-flying aircraft such as the G550 (HALO or HIAPER). At up to Mach 0.7 the effect of air compression upstream of underwing-mounted instruments and particles' inertia need consideration for determining ambient particle concentrations. Compared to conventional practices the introduced correction procedure eliminates ambiguities and exhibits consistency over flight speeds between 50 and 250 m s−.
Sergey M. Khaykin, Jean-Pierre Pommereau, Emmanuel D. Riviere, Gerhard Held, Felix Ploeger, Melanie Ghysels, Nadir Amarouche, Jean-Paul Vernier, Frank G. Wienhold, and Dmitry Ionov
Atmos. Chem. Phys., 16, 12273–12286, https://doi.org/10.5194/acp-16-12273-2016, https://doi.org/10.5194/acp-16-12273-2016, 2016
Short summary
Short summary
The study makes use of a series of field experiments conducted in Brazil and aimed at studying the processes controlling the composition of the tropical lower stratosphere. High-resolution balloon-borne measurements together with global-coverage satellite observations and weather radar acquisitions are analysed using trajectory and transport modelling in order to evaluate the contribution of different transport pathways to the stratospheric water budget.
Valery Shcherbakov, Olivier Jourdan, Christiane Voigt, Jean-Francois Gayet, Aurélien Chauvigne, Alfons Schwarzenboeck, Andreas Minikin, Marcus Klingebiel, Ralf Weigel, Stephan Borrmann, Tina Jurkat, Stefan Kaufmann, Romy Schlage, Christophe Gourbeyre, Guy Febvre, Tatyana Lapyonok, Wiebke Frey, Sergej Molleker, and Bernadett Weinzierl
Atmos. Chem. Phys., 16, 11883–11897, https://doi.org/10.5194/acp-16-11883-2016, https://doi.org/10.5194/acp-16-11883-2016, 2016
Gerald E. Nedoluha, Brian J. Connor, Thomas Mooney, James W. Barrett, Alan Parrish, R. Michael Gomez, Ian Boyd, Douglas R. Allen, Michael Kotkamp, Stefanie Kremser, Terry Deshler, Paul Newman, and Michelle L. Santee
Atmos. Chem. Phys., 16, 10725–10734, https://doi.org/10.5194/acp-16-10725-2016, https://doi.org/10.5194/acp-16-10725-2016, 2016
Short summary
Short summary
Chlorine monoxide (ClO) is central to the formation of the springtime Antarctic ozone hole since it is the catalytic agent in the most important ozone-depleting chemical cycle. We present 20 years of measurements of ClO from the Chlorine monOxide Experiment at Scott Base, Antarctica, and 12 years of measurements from the Aura Microwave Limb Sounder to show that the trends in ClO during the ozone hole season are consistent with changes in stratospheric chlorine observed elsewhere.
Stefan Müller, Peter Hoor, Heiko Bozem, Ellen Gute, Bärbel Vogel, Andreas Zahn, Harald Bönisch, Timo Keber, Martina Krämer, Christian Rolf, Martin Riese, Hans Schlager, and Andreas Engel
Atmos. Chem. Phys., 16, 10573–10589, https://doi.org/10.5194/acp-16-10573-2016, https://doi.org/10.5194/acp-16-10573-2016, 2016
Short summary
Short summary
In situ airborne measurements performed during TACTS/ESMVal 2012 were analysed to investigate the chemical compostion of the upper troposphere and lower stratosphere. N2O, CO and O3 data show an increase in tropospherically affected air masses within the extratropical stratosphere from August to September 2012, which originate from the Asian monsoon region. Thus, the Asian monsoon anticyclone significantly affected the chemical composition of the extratropical stratosphere during summer 2012.
Felix Ploeger and Thomas Birner
Atmos. Chem. Phys., 16, 10195–10213, https://doi.org/10.5194/acp-16-10195-2016, https://doi.org/10.5194/acp-16-10195-2016, 2016
Short summary
Short summary
We investigate the aging of air in the stratosphere caused by transport due to Brewer's circulation, using the Boundary Impulse Evolving Response (BIER) method. The age spectra show multiple peaks caused by the seasonal and inter-annual variations of transport. The modal age is controlled by the residual circulation in the tropics and winter hemisphere extratropics and by mixing in the summer hemisphere. Analysis of the full age spectrum is strongly recommended for model inter-comparisons.
Wolfgang Woiwode, Michael Höpfner, Lei Bi, Michael C. Pitts, Lamont R. Poole, Hermann Oelhaf, Sergej Molleker, Stephan Borrmann, Marcus Klingebiel, Gennady Belyaev, Andreas Ebersoldt, Sabine Griessbach, Jens-Uwe Grooß, Thomas Gulde, Martina Krämer, Guido Maucher, Christof Piesch, Christian Rolf, Christian Sartorius, Reinhold Spang, and Johannes Orphal
Atmos. Chem. Phys., 16, 9505–9532, https://doi.org/10.5194/acp-16-9505-2016, https://doi.org/10.5194/acp-16-9505-2016, 2016
Short summary
Short summary
The analysis of spectral signatures of a polar stratospheric cloud in airborne infrared remote sensing observations in the Arctic in combination with further collocated measurements supports the view that the observed cloud consisted of highly aspherical nitric acid trihydrate particles. A characteristic "shoulder-like" spectral signature may be exploited for identification of large, highly aspherical nitric acid trihydrate particles involved in denitrification of the polar winter stratosphere.
Jörn Ungermann, Mandfred Ern, Martin Kaufmann, Rolf Müller, Reinhold Spang, Felix Ploeger, Bärbel Vogel, and Martin Riese
Atmos. Chem. Phys., 16, 8389–8403, https://doi.org/10.5194/acp-16-8389-2016, https://doi.org/10.5194/acp-16-8389-2016, 2016
Short summary
Short summary
This paper presents an analysis of temperature and the trace gases PAN and O3 in
the Asian Summer Monsoon (ASM) region. The positive PAN anomaly consisting of
polluted air is confined vertically within the main ASM anticyclone, whereas a
recently shed eddy exhibits enhanced PAN VMRs for 1 to 2 km above the thermal
tropopause. This implies that eddy shedding provides a very rapid horizontal
transport pathway of Asian pollution into the extratropical lowermost
stratosphere.
Martin Ebert, Ralf Weigel, Konrad Kandler, Gebhard Günther, Sergej Molleker, Jens-Uwe Grooß, Bärbel Vogel, Stephan Weinbruch, and Stephan Borrmann
Atmos. Chem. Phys., 16, 8405–8421, https://doi.org/10.5194/acp-16-8405-2016, https://doi.org/10.5194/acp-16-8405-2016, 2016
Short summary
Short summary
Stratospheric aerosol particles were collected within the arctic vortex in late winter. The chemical composition of refractory particles were analyzed by scanning electron microscopy. More than 750 refractory particles with diameters above 500 nm were found consisting of silicates, Fe- and Ca-rich particles and metal mixtures. The detection of refractory particles in the late winter polar stratosphere has strong implications for the formation of polar stratospheric clouds and ozone depletion.
Fanny Finger, Frank Werner, Marcus Klingebiel, André Ehrlich, Evelyn Jäkel, Matthias Voigt, Stephan Borrmann, Peter Spichtinger, and Manfred Wendisch
Atmos. Chem. Phys., 16, 7681–7693, https://doi.org/10.5194/acp-16-7681-2016, https://doi.org/10.5194/acp-16-7681-2016, 2016
Short summary
Short summary
Solar spectra of optical layer properties of cirrus have been derived from the first truly collocated airborne radiation measurements using an aircraft and a towed sensor platform. The measured layer properties differ slightly due to horizontal cirrus inhomogeneities and the influence of low-level water clouds. Applying a 1-D radiative transfer model sensitivity studies were performed. It was found that if a low-level cloud is not considered, the solar cooling of the cirrus is strongly overestimated.
Erika Kienast-Sjögren, Christian Rolf, Patric Seifert, Ulrich K. Krieger, Bei P. Luo, Martina Krämer, and Thomas Peter
Atmos. Chem. Phys., 16, 7605–7621, https://doi.org/10.5194/acp-16-7605-2016, https://doi.org/10.5194/acp-16-7605-2016, 2016
Short summary
Short summary
We present a climatology of mid-latitude cirrus cloud properties based on 13 000 hours of automatically analyzed lidar measurements at three different sites. Jungfraujoch,
situated at 3580 m a.s.l., is found to be ideal to measure high and optically thin
cirrus. We use our retrieved optical properties together with a radiation model and
estimate the radiative forcing by mid-latitude cirrus.
All cirrus clouds detected here have a positive net radiative effect.
Charlotte Marinke Hoppe, Felix Ploeger, Paul Konopka, and Rolf Müller
Atmos. Chem. Phys., 16, 6223–6239, https://doi.org/10.5194/acp-16-6223-2016, https://doi.org/10.5194/acp-16-6223-2016, 2016
Markus Hermann, Andreas Weigelt, Denise Assmann, Sascha Pfeifer, Thomas Müller, Thomas Conrath, Jens Voigtländer, Jost Heintzenberg, Alfred Wiedensohler, Bengt G. Martinsson, Terry Deshler, Carl A. M. Brenninkmeijer, and Andreas Zahn
Atmos. Meas. Tech., 9, 2179–2194, https://doi.org/10.5194/amt-9-2179-2016, https://doi.org/10.5194/amt-9-2179-2016, 2016
Short summary
Short summary
Aerosol particles are an important component of the Earth's atmosphere. Here we describe the composition and characterization of a new optical particle size spectrometer (OPSS) for aircraft-borne measurements of the aerosol particle size distribution (how many particles there are with a certain size) in the 140–1050 nm size range. The OPSS was characterized throughout concerning its measurement capabilities (response, pressure dependence, coincidence) and validated versus balloon measurement.
Anna E. Luebke, Armin Afchine, Anja Costa, Jens-Uwe Grooß, Jessica Meyer, Christian Rolf, Nicole Spelten, Linnea M. Avallone, Darrel Baumgardner, and Martina Krämer
Atmos. Chem. Phys., 16, 5793–5809, https://doi.org/10.5194/acp-16-5793-2016, https://doi.org/10.5194/acp-16-5793-2016, 2016
Short summary
Short summary
In this study, we present observational evidence to show that two distinct types of cirrus clouds exist – in situ origin and liquid origin cirrus. These two types differ by their formation mechanism and other properties. Airborne, in-cloud measurements of cloud ice water content (IWC), ice crystal concentration (Nice), and ice crystal size from the 2014 ML-CIRRUS campaign provide cloud samples that have been divided and analyzed according to their origin type.
Bernadette Rosati, Erik Herrmann, Silvia Bucci, Federico Fierli, Francesco Cairo, Martin Gysel, Ralf Tillmann, Johannes Größ, Gian Paolo Gobbi, Luca Di Liberto, Guido Di Donfrancesco, Alfred Wiedensohler, Ernest Weingartner, Annele Virtanen, Thomas F. Mentel, and Urs Baltensperger
Atmos. Chem. Phys., 16, 4539–4554, https://doi.org/10.5194/acp-16-4539-2016, https://doi.org/10.5194/acp-16-4539-2016, 2016
Short summary
Short summary
We present vertical profiles of aerosol optical properties, which were explored within the planetary boundary layer in a case study in 2012 in the Po Valley region. A comparison of in situ measurements recorded aboard a Zeppelin NT and ground-based remote-sensing data was performed yielding good agreement. Additionally, the role of ambient relative humidity for the aerosol particles' optical properties was investigated.
Martina Krämer, Christian Rolf, Anna Luebke, Armin Afchine, Nicole Spelten, Anja Costa, Jessica Meyer, Martin Zöger, Jessica Smith, Robert L. Herman, Bernhard Buchholz, Volker Ebert, Darrel Baumgardner, Stephan Borrmann, Marcus Klingebiel, and Linnea Avallone
Atmos. Chem. Phys., 16, 3463–3483, https://doi.org/10.5194/acp-16-3463-2016, https://doi.org/10.5194/acp-16-3463-2016, 2016
Short summary
Short summary
A guide to cirrus clouds is compiled from extensive model simulations and aircraft observations. Two types of cirrus are found: rather thin in situ cirrus that form directly as ice and thicker liquid origin cirrus consisting of uplifted frozen liquid drops. Over Europe, thinner in situ and liquid origin cirrus occur often together with frontal systems, while over the US and the Tropics, thick liquid origin cirrus formed in large convective systems are detected more frequently.
A. Roth, J. Schneider, T. Klimach, S. Mertes, D. van Pinxteren, H. Herrmann, and S. Borrmann
Atmos. Chem. Phys., 16, 505–524, https://doi.org/10.5194/acp-16-505-2016, https://doi.org/10.5194/acp-16-505-2016, 2016
Short summary
Short summary
This paper reports on single-particle measurements of ambient aerosol particles and cloud residues sampled from orographic clouds on a mountain site in central Germany.
The results show that soot particles can get efficiently activated in cloud droplets when they are mixed with or coated by sulfate and nitrate. Cloud processing leads to addition of nitrate and sulfate to the particles, thereby increasing the hygroscopicity of these particles when they remain in the air after cloud evaporation.
K. Weigel, A. Rozanov, F. Azam, K. Bramstedt, R. Damadeo, K.-U. Eichmann, C. Gebhardt, D. Hurst, M. Kraemer, S. Lossow, W. Read, N. Spelten, G. P. Stiller, K. A. Walker, M. Weber, H. Bovensmann, and J. P. Burrows
Atmos. Meas. Tech., 9, 133–158, https://doi.org/10.5194/amt-9-133-2016, https://doi.org/10.5194/amt-9-133-2016, 2016
Short summary
Short summary
The SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) aboard the Envisat satellite provided measurements between 2002 and 2012 with different viewing geometries. The limb viewing geometry allows the retrieval of water vapour profiles in the UTLS (upper troposphere and lower stratosphere) from the near-infrared spectral range (1353–1410 nm). Here, we present data version 3.01 and compare it to other water vapour data.
F. Ploeger, C. Gottschling, S. Griessbach, J.-U. Grooß, G. Guenther, P. Konopka, R. Müller, M. Riese, F. Stroh, M. Tao, J. Ungermann, B. Vogel, and M. von Hobe
Atmos. Chem. Phys., 15, 13145–13159, https://doi.org/10.5194/acp-15-13145-2015, https://doi.org/10.5194/acp-15-13145-2015, 2015
Short summary
Short summary
The Asian summer monsoon provides an important pathway of tropospheric source gases and pollution into the lower stratosphere. This transport is characterized by deep convection and steady upwelling, combined with confinement inside a large-scale anticyclonic circulation in the upper troposphere and lower stratosphere. In this paper, we show that a barrier to horizontal transport in the monsoon can be determined from a local maximum in the gradient of potential vorticity.
F. Drewnick, J.-M. Diesch, P. Faber, and S. Borrmann
Atmos. Meas. Tech., 8, 3811–3830, https://doi.org/10.5194/amt-8-3811-2015, https://doi.org/10.5194/amt-8-3811-2015, 2015
M. Beekmann, A. S. H. Prévôt, F. Drewnick, J. Sciare, S. N. Pandis, H. A. C. Denier van der Gon, M. Crippa, F. Freutel, L. Poulain, V. Ghersi, E. Rodriguez, S. Beirle, P. Zotter, S.-L. von der Weiden-Reinmüller, M. Bressi, C. Fountoukis, H. Petetin, S. Szidat, J. Schneider, A. Rosso, I. El Haddad, A. Megaritis, Q. J. Zhang, V. Michoud, J. G. Slowik, S. Moukhtar, P. Kolmonen, A. Stohl, S. Eckhardt, A. Borbon, V. Gros, N. Marchand, J. L. Jaffrezo, A. Schwarzenboeck, A. Colomb, A. Wiedensohler, S. Borrmann, M. Lawrence, A. Baklanov, and U. Baltensperger
Atmos. Chem. Phys., 15, 9577–9591, https://doi.org/10.5194/acp-15-9577-2015, https://doi.org/10.5194/acp-15-9577-2015, 2015
Short summary
Short summary
A detailed characterization of air quality in the Paris (France) agglomeration, a megacity, during two summer and winter intensive campaigns and from additional 1-year observations, revealed that about 70% of the fine particulate matter (PM) at urban background is transported into the megacity from upwind regions. Unexpectedly, a major part of organic PM is of modern origin (woodburning and cooking activities, secondary formation from biogenic VOC).
C. Rolf, A. Afchine, H. Bozem, B. Buchholz, V. Ebert, T. Guggenmoser, P. Hoor, P. Konopka, E. Kretschmer, S. Müller, H. Schlager, N. Spelten, O. Sumińska-Ebersoldt, J. Ungermann, A. Zahn, and M. Krämer
Atmos. Chem. Phys., 15, 9143–9158, https://doi.org/10.5194/acp-15-9143-2015, https://doi.org/10.5194/acp-15-9143-2015, 2015
M. Tao, P. Konopka, F. Ploeger, J.-U. Grooß, R. Müller, C. M. Volk, K. A. Walker, and M. Riese
Atmos. Chem. Phys., 15, 8695–8715, https://doi.org/10.5194/acp-15-8695-2015, https://doi.org/10.5194/acp-15-8695-2015, 2015
Short summary
Short summary
A remarkable major stratospheric sudden warming during the boreal winter 2008/09 is studied with the Chemical Lagrangian Model of the Stratosphere (CLaMS). We investigate how mixing triggered by this event correlates the wave forcing and how transport and mixing affect the composition of the whole stratosphere in the Northern Hemisphere, by using the tracer-tracer correlation technique.
J. Meyer, C. Rolf, C. Schiller, S. Rohs, N. Spelten, A. Afchine, M. Zöger, N. Sitnikov, T. D. Thornberry, A. W. Rollins, Z. Bozóki, D. Tátrai, V. Ebert, B. Kühnreich, P. Mackrodt, O. Möhler, H. Saathoff, K. H. Rosenlof, and M. Krämer
Atmos. Chem. Phys., 15, 8521–8538, https://doi.org/10.5194/acp-15-8521-2015, https://doi.org/10.5194/acp-15-8521-2015, 2015
W. Woiwode, O. Sumińska-Ebersoldt, H. Oelhaf, M. Höpfner, G. V. Belyaev, A. Ebersoldt, F. Friedl-Vallon, J.-U. Grooß, T. Gulde, M. Kaufmann, A. Kleinert, M. Krämer, E. Kretschmer, T. Kulessa, G. Maucher, T. Neubert, C. Piesch, P. Preusse, M. Riese, H. Rongen, C. Sartorius, G. Schardt, A. Schönfeld, D. Schuettemeyer, M. K. Sha, F. Stroh, J. Ungermann, C. M. Volk, and J. Orphal
Atmos. Meas. Tech., 8, 2509–2520, https://doi.org/10.5194/amt-8-2509-2015, https://doi.org/10.5194/amt-8-2509-2015, 2015
J. Ungermann, J. Blank, M. Dick, A. Ebersoldt, F. Friedl-Vallon, A. Giez, T. Guggenmoser, M. Höpfner, T. Jurkat, M. Kaufmann, S. Kaufmann, A. Kleinert, M. Krämer, T. Latzko, H. Oelhaf, F. Olchewski, P. Preusse, C. Rolf, J. Schillings, O. Suminska-Ebersoldt, V. Tan, N. Thomas, C. Voigt, A. Zahn, M. Zöger, and M. Riese
Atmos. Meas. Tech., 8, 2473–2489, https://doi.org/10.5194/amt-8-2473-2015, https://doi.org/10.5194/amt-8-2473-2015, 2015
Short summary
Short summary
The GLORIA sounder is an airborne infrared limb-imager combining a two-dimensional infrared detector with a Fourier transform spectrometer. It was operated aboard the new German Gulfstream G550 research aircraft HALO during the TACTS and ESMVAL campaigns in summer 2012. This paper describes the retrieval of temperature, as well as H2O, HNO3, and O3 cross sections from GLORIA dynamics mode spectra. A high correlation is achieved between the remote sensing and the in situ trace gas measurements.
L. Di Liberto, R. Lehmann, I. Tritscher, F. Fierli, J. L. Mercer, M. Snels, G. Di Donfrancesco, T. Deshler, B. P. Luo, J-U. Grooß, E. Arnone, B. M. Dinelli, and F. Cairo
Atmos. Chem. Phys., 15, 6651–6665, https://doi.org/10.5194/acp-15-6651-2015, https://doi.org/10.5194/acp-15-6651-2015, 2015
Short summary
Short summary
We investigated chemical and microphysical processes in the late winter Antarctic stratosphere, for the first time (to our knowledge) coupling a detailed microphysical box model to a chemistry model.
Model results have been compared with in situ and remote sensing measurements of particles along trajectories.
Our goal is to contribute to the most recent discussion of the relative role of PSC and liquid (background) aerosol in the ozone depletion.
W. Frey, R. Schofield, P. Hoor, D. Kunkel, F. Ravegnani, A. Ulanovsky, S. Viciani, F. D'Amato, and T. P. Lane
Atmos. Chem. Phys., 15, 6467–6486, https://doi.org/10.5194/acp-15-6467-2015, https://doi.org/10.5194/acp-15-6467-2015, 2015
Short summary
Short summary
This study examines the simulated downward transport and mixing of stratospheric air into the upper tropical troposphere as observed on a research flight during the SCOUT-O3 campaign in connection with a deep convective system, using the WRF model. Passive tracers are initialised to study the impact of the deep convection on the tracers and water vapour. We use the model to explain the processes causing the transport and also expose areas of inconsistencies between the model and observations.
P. Neis, H. G. J. Smit, M. Krämer, N. Spelten, and A. Petzold
Atmos. Meas. Tech., 8, 1233–1243, https://doi.org/10.5194/amt-8-1233-2015, https://doi.org/10.5194/amt-8-1233-2015, 2015
S. Schmidt, J. Schneider, T. Klimach, S. Mertes, L. P. Schenk, J. Curtius, P. Kupiszewski, E. Hammer, P. Vochezer, G. Lloyd, M. Ebert, K. Kandler, S. Weinbruch, and S. Borrmann
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-15-4677-2015, https://doi.org/10.5194/acpd-15-4677-2015, 2015
Revised manuscript not accepted
M. Klingebiel, A. de Lozar, S. Molleker, R. Weigel, A. Roth, L. Schmidt, J. Meyer, A. Ehrlich, R. Neuber, M. Wendisch, and S. Borrmann
Atmos. Chem. Phys., 15, 617–631, https://doi.org/10.5194/acp-15-617-2015, https://doi.org/10.5194/acp-15-617-2015, 2015
D. Tátrai, Z. Bozóki, H. Smit, C. Rolf, N. Spelten, M. Krämer, A. Filges, C. Gerbig, G. Gulyás, and G. Szabó
Atmos. Meas. Tech., 8, 33–42, https://doi.org/10.5194/amt-8-33-2015, https://doi.org/10.5194/amt-8-33-2015, 2015
Short summary
Short summary
Airborne hygrometry is very important in climate research, and the interest in knowing not only water vapor concentration but (cirrus) cloud content as well is increasing. The authors provide a photoacoustic spectroscopy-based dual-channel hygrometer system that can be a good solution for such measurements. The instrument was proven to operate properly from ground level up to the lower stratosphere, giving the possibility even for cirrus cloud studies.
W. Frey, S. Borrmann, F. Fierli, R. Weigel, V. Mitev, R. Matthey, F. Ravegnani, N. M. Sitnikov, A. Ulanovsky, and F. Cairo
Atmos. Chem. Phys., 14, 13223–13240, https://doi.org/10.5194/acp-14-13223-2014, https://doi.org/10.5194/acp-14-13223-2014, 2014
Short summary
Short summary
This study presents in situ cloud microphysical observations obtained during a double flight in a Hector thunderstorm during the SCOUT-O3 campaign from Darwin, Northern Australia, in 2005. The measurements show a change of the micophysics with the storm's evolution. The clouds in the dissipating stage possess a high potential for affecting the humidity in the tropical tropopause layer.
H. G. J. Smit, S. Rohs, P. Neis, D. Boulanger, M. Krämer, A. Wahner, and A. Petzold
Atmos. Chem. Phys., 14, 13241–13255, https://doi.org/10.5194/acp-14-13241-2014, https://doi.org/10.5194/acp-14-13241-2014, 2014
Short summary
Short summary
Long-term water vapour measurements from the MOZAIC programme are a unique source for upper troposphere humidity data. However, due to an error in the calibration procedure, RH data from MOZAIC were biased towards higher values for the period starting in year 2000. Here we report the procedures followed to reanalyse the calibrations and to reprocess the entire MOZAIC RH data. This study serves as the reference publication for the reanalysed MOZAIC RH data base for the period 1994 to 2009.
R. Pommrich, R. Müller, J.-U. Grooß, P. Konopka, F. Ploeger, B. Vogel, M. Tao, C. M. Hoppe, G. Günther, N. Spelten, L. Hoffmann, H.-C. Pumphrey, S. Viciani, F. D'Amato, C. M. Volk, P. Hoor, H. Schlager, and M. Riese
Geosci. Model Dev., 7, 2895–2916, https://doi.org/10.5194/gmd-7-2895-2014, https://doi.org/10.5194/gmd-7-2895-2014, 2014
Short summary
Short summary
A version of the chemical transport model CLaMS is presented, which features a simplified (numerically inexpensive) chemistry scheme. The model results using this version of CLaMS show a good representation of anomaly fields of CO, CH4, N2O, and CFC-11 in the lower stratosphere. CO measurements of three instruments (COLD, HAGAR, and Falcon-CO) in the lower tropical stratosphere (during the campaign TROCCINOX in 2005) have been compared and show a good agreement within the error bars.
B. Vogel, G. Günther, R. Müller, J.-U. Grooß, P. Hoor, M. Krämer, S. Müller, A. Zahn, and M. Riese
Atmos. Chem. Phys., 14, 12745–12762, https://doi.org/10.5194/acp-14-12745-2014, https://doi.org/10.5194/acp-14-12745-2014, 2014
Short summary
Short summary
Enhanced tropospheric trace gases (e.g. pollutants) were measured in situ in
the lowermost stratosphere over Northern Europe on 26 September 2012
during the TACTS aircraft campaign. We found that the combination of rapid uplift by a typhoon and eastward eddy shedding from the Asian monsoon anticyclone is a novel fast transport pathway
that may carry boundary emissions from Southeast
Asia/western Pacific within approximately 5 weeks to the lowermost
stratosphere in Northern Europe.
K. Diehl, M. Debertshäuser, O. Eppers, H. Schmithüsen, S. K. Mitra, and S. Borrmann
Atmos. Chem. Phys., 14, 12343–12355, https://doi.org/10.5194/acp-14-12343-2014, https://doi.org/10.5194/acp-14-12343-2014, 2014
R. Weigel, C. M. Volk, K. Kandler, E. Hösen, G. Günther, B. Vogel, J.-U. Grooß, S. Khaykin, G. V. Belyaev, and S. Borrmann
Atmos. Chem. Phys., 14, 12319–12342, https://doi.org/10.5194/acp-14-12319-2014, https://doi.org/10.5194/acp-14-12319-2014, 2014
C. M. Hoppe, L. Hoffmann, P. Konopka, J.-U. Grooß, F. Ploeger, G. Günther, P. Jöckel, and R. Müller
Geosci. Model Dev., 7, 2639–2651, https://doi.org/10.5194/gmd-7-2639-2014, https://doi.org/10.5194/gmd-7-2639-2014, 2014
B. Buchholz, A. Afchine, and V. Ebert
Atmos. Meas. Tech., 7, 3653–3666, https://doi.org/10.5194/amt-7-3653-2014, https://doi.org/10.5194/amt-7-3653-2014, 2014
W. Woiwode, J.-U. Grooß, H. Oelhaf, S. Molleker, S. Borrmann, A. Ebersoldt, W. Frey, T. Gulde, S. Khaykin, G. Maucher, C. Piesch, and J. Orphal
Atmos. Chem. Phys., 14, 11525–11544, https://doi.org/10.5194/acp-14-11525-2014, https://doi.org/10.5194/acp-14-11525-2014, 2014
S. Molleker, S. Borrmann, H. Schlager, B. Luo, W. Frey, M. Klingebiel, R. Weigel, M. Ebert, V. Mitev, R. Matthey, W. Woiwode, H. Oelhaf, A. Dörnbrack, G. Stratmann, J.-U. Grooß, G. Günther, B. Vogel, R. Müller, M. Krämer, J. Meyer, and F. Cairo
Atmos. Chem. Phys., 14, 10785–10801, https://doi.org/10.5194/acp-14-10785-2014, https://doi.org/10.5194/acp-14-10785-2014, 2014
D. W. Fahey, R.-S. Gao, O. Möhler, H. Saathoff, C. Schiller, V. Ebert, M. Krämer, T. Peter, N. Amarouche, L. M. Avallone, R. Bauer, Z. Bozóki, L. E. Christensen, S. M. Davis, G. Durry, C. Dyroff, R. L. Herman, S. Hunsmann, S. M. Khaykin, P. Mackrodt, J. Meyer, J. B. Smith, N. Spelten, R. F. Troy, H. Vömel, S. Wagner, and F. G. Wienhold
Atmos. Meas. Tech., 7, 3177–3213, https://doi.org/10.5194/amt-7-3177-2014, https://doi.org/10.5194/amt-7-3177-2014, 2014
T. D. Fairlie, J.-P. Vernier, M. Natarajan, and K. M. Bedka
Atmos. Chem. Phys., 14, 7045–7057, https://doi.org/10.5194/acp-14-7045-2014, https://doi.org/10.5194/acp-14-7045-2014, 2014
M. Riese, H. Oelhaf, P. Preusse, J. Blank, M. Ern, F. Friedl-Vallon, H. Fischer, T. Guggenmoser, M. Höpfner, P. Hoor, M. Kaufmann, J. Orphal, F. Plöger, R. Spang, O. Suminska-Ebersoldt, J. Ungermann, B. Vogel, and W. Woiwode
Atmos. Meas. Tech., 7, 1915–1928, https://doi.org/10.5194/amt-7-1915-2014, https://doi.org/10.5194/amt-7-1915-2014, 2014
S. Bucci, C. Cagnazzo, F. Cairo, L. Di Liberto, and F. Fierli
Atmos. Chem. Phys., 14, 4369–4381, https://doi.org/10.5194/acp-14-4369-2014, https://doi.org/10.5194/acp-14-4369-2014, 2014
S. M. Khaykin, I. Engel, H. Vömel, I. M. Formanyuk, R. Kivi, L. I. Korshunov, M. Krämer, A. D. Lykov, S. Meier, T. Naebert, M. C. Pitts, M. L. Santee, N. Spelten, F. G. Wienhold, V. A. Yushkov, and T. Peter
Atmos. Chem. Phys., 13, 11503–11517, https://doi.org/10.5194/acp-13-11503-2013, https://doi.org/10.5194/acp-13-11503-2013, 2013
F. Freutel, F. Drewnick, J. Schneider, T. Klimach, and S. Borrmann
Atmos. Meas. Tech., 6, 3131–3145, https://doi.org/10.5194/amt-6-3131-2013, https://doi.org/10.5194/amt-6-3131-2013, 2013
M. Abalos, F. Ploeger, P. Konopka, W. J. Randel, and E. Serrano
Atmos. Chem. Phys., 13, 10787–10794, https://doi.org/10.5194/acp-13-10787-2013, https://doi.org/10.5194/acp-13-10787-2013, 2013
P. Spichtinger and M. Krämer
Atmos. Chem. Phys., 13, 9801–9818, https://doi.org/10.5194/acp-13-9801-2013, https://doi.org/10.5194/acp-13-9801-2013, 2013
M. von Hobe, S. Bekki, S. Borrmann, F. Cairo, F. D'Amato, G. Di Donfrancesco, A. Dörnbrack, A. Ebersoldt, M. Ebert, C. Emde, I. Engel, M. Ern, W. Frey, S. Genco, S. Griessbach, J.-U. Grooß, T. Gulde, G. Günther, E. Hösen, L. Hoffmann, V. Homonnai, C. R. Hoyle, I. S. A. Isaksen, D. R. Jackson, I. M. Jánosi, R. L. Jones, K. Kandler, C. Kalicinsky, A. Keil, S. M. Khaykin, F. Khosrawi, R. Kivi, J. Kuttippurath, J. C. Laube, F. Lefèvre, R. Lehmann, S. Ludmann, B. P. Luo, M. Marchand, J. Meyer, V. Mitev, S. Molleker, R. Müller, H. Oelhaf, F. Olschewski, Y. Orsolini, T. Peter, K. Pfeilsticker, C. Piesch, M. C. Pitts, L. R. Poole, F. D. Pope, F. Ravegnani, M. Rex, M. Riese, T. Röckmann, B. Rognerud, A. Roiger, C. Rolf, M. L. Santee, M. Scheibe, C. Schiller, H. Schlager, M. Siciliani de Cumis, N. Sitnikov, O. A. Søvde, R. Spang, N. Spelten, F. Stordal, O. Sumińska-Ebersoldt, A. Ulanovski, J. Ungermann, S. Viciani, C. M. Volk, M. vom Scheidt, P. von der Gathen, K. Walker, T. Wegner, R. Weigel, S. Weinbruch, G. Wetzel, F. G. Wienhold, I. Wohltmann, W. Woiwode, I. A. K. Young, V. Yushkov, B. Zobrist, and F. Stroh
Atmos. Chem. Phys., 13, 9233–9268, https://doi.org/10.5194/acp-13-9233-2013, https://doi.org/10.5194/acp-13-9233-2013, 2013
A. E. Luebke, L. M. Avallone, C. Schiller, J. Meyer, C. Rolf, and M. Krämer
Atmos. Chem. Phys., 13, 6447–6459, https://doi.org/10.5194/acp-13-6447-2013, https://doi.org/10.5194/acp-13-6447-2013, 2013
L. W. Thomason and J.-P. Vernier
Atmos. Chem. Phys., 13, 4605–4616, https://doi.org/10.5194/acp-13-4605-2013, https://doi.org/10.5194/acp-13-4605-2013, 2013
G. Pappalardo, L. Mona, G. D'Amico, U. Wandinger, M. Adam, A. Amodeo, A. Ansmann, A. Apituley, L. Alados Arboledas, D. Balis, A. Boselli, J. A. Bravo-Aranda, A. Chaikovsky, A. Comeron, J. Cuesta, F. De Tomasi, V. Freudenthaler, M. Gausa, E. Giannakaki, H. Giehl, A. Giunta, I. Grigorov, S. Groß, M. Haeffelin, A. Hiebsch, M. Iarlori, D. Lange, H. Linné, F. Madonna, I. Mattis, R.-E. Mamouri, M. A. P. McAuliffe, V. Mitev, F. Molero, F. Navas-Guzman, D. Nicolae, A. Papayannis, M. R. Perrone, C. Pietras, A. Pietruczuk, G. Pisani, J. Preißler, M. Pujadas, V. Rizi, A. A. Ruth, J. Schmidt, F. Schnell, P. Seifert, I. Serikov, M. Sicard, V. Simeonov, N. Spinelli, K. Stebel, M. Tesche, T. Trickl, X. Wang, F. Wagner, M. Wiegner, and K. M. Wilson
Atmos. Chem. Phys., 13, 4429–4450, https://doi.org/10.5194/acp-13-4429-2013, https://doi.org/10.5194/acp-13-4429-2013, 2013
J. Gazeaux, C. Clerbaux, M. George, J. Hadji-Lazaro, J. Kuttippurath, P.-F. Coheur, D. Hurtmans, T. Deshler, M. Kovilakam, P. Campbell, V. Guidard, F. Rabier, and J.-N. Thépaut
Atmos. Meas. Tech., 6, 613–620, https://doi.org/10.5194/amt-6-613-2013, https://doi.org/10.5194/amt-6-613-2013, 2013
M. Crippa, P. F. DeCarlo, J. G. Slowik, C. Mohr, M. F. Heringa, R. Chirico, L. Poulain, F. Freutel, J. Sciare, J. Cozic, C. F. Di Marco, M. Elsasser, J. B. Nicolas, N. Marchand, E. Abidi, A. Wiedensohler, F. Drewnick, J. Schneider, S. Borrmann, E. Nemitz, R. Zimmermann, J.-L. Jaffrezo, A. S. H. Prévôt, and U. Baltensperger
Atmos. Chem. Phys., 13, 961–981, https://doi.org/10.5194/acp-13-961-2013, https://doi.org/10.5194/acp-13-961-2013, 2013
F. Freutel, J. Schneider, F. Drewnick, S.-L. von der Weiden-Reinmüller, M. Crippa, A. S. H. Prévôt, U. Baltensperger, L. Poulain, A. Wiedensohler, J. Sciare, R. Sarda-Estève, J. F. Burkhart, S. Eckhardt, A. Stohl, V. Gros, A. Colomb, V. Michoud, J. F. Doussin, A. Borbon, M. Haeffelin, Y. Morille, M. Beekmann, and S. Borrmann
Atmos. Chem. Phys., 13, 933–959, https://doi.org/10.5194/acp-13-933-2013, https://doi.org/10.5194/acp-13-933-2013, 2013
Related subject area
Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Stratosphere | Science Focus: Physics (physical properties and processes)
The influence of extratropical cross-tropopause mixing on the correlation between ozone and sulfate aerosol in the lowermost stratosphere
Wildfire smoke, Arctic haze, and aerosol effects on mixed-phase and cirrus clouds over the North Pole region during MOSAiC: an introduction
In situ observation of new particle formation (NPF) in the tropical tropopause layer of the 2017 Asian monsoon anticyclone – Part 1: Summary of StratoClim results
Large hemispheric difference in nucleation mode aerosol concentrations in the lowermost stratosphere at mid- and high latitudes
Radiative and chemical implications of the size and composition of aerosol particles in the existing or modified global stratosphere
Measurement Report: Lidar measurements of stratospheric aerosol following the 2019 Raikoke and Ulawun volcanic eruptions
Strong day-to-day variability of the Asian Tropopause Aerosol Layer (ATAL) in August 2016 at the Himalayan foothills
Results from the Fourth WMO Filter Radiometer Comparison for aerosol optical depth measurements
Long-range transport of stratospheric aerosols in the Southern Hemisphere following the 2015 Calbuco eruption
Particulate sulfur in the upper troposphere and lowermost stratosphere – sources and climate forcing
Enhancements of the refractory submicron aerosol fraction in the Arctic polar vortex: feature or exception?
In situ detection of electrified aerosols in the upper troposphere and stratosphere
Stratospheric aerosols from the Sarychev volcano eruption in the 2009 Arctic summer
35 yr of stratospheric aerosol measurements at Garmisch-Partenkirchen: from Fuego to Eyjafjallajökull, and beyond
Composition and evolution of volcanic aerosol from eruptions of Kasatochi, Sarychev and Eyjafjallajökull in 2008–2010 based on CARIBIC observations
In situ observations of new particle formation in the tropical upper troposphere: the role of clouds and the nucleation mechanism
Changes in the production rate of secondary aerosol particles in Central Europe in view of decreasing SO2 emissions between 1996 and 2006
Philipp Joppe, Johannes Schneider, Katharina Kaiser, Horst Fischer, Peter Hoor, Daniel Kunkel, Hans-Christoph Lachnitt, Andreas Marsing, Lenard Röder, Hans Schlager, Laura Tomsche, Christiane Voigt, Andreas Zahn, and Stephan Borrmann
Atmos. Chem. Phys., 24, 7499–7522, https://doi.org/10.5194/acp-24-7499-2024, https://doi.org/10.5194/acp-24-7499-2024, 2024
Short summary
Short summary
From aircraft measurements in the upper troposphere/lower stratosphere, we find a correlation between the ozone and particulate sulfate in the lower stratosphere. The correlation exhibits some variability over the measurement period exceeding the background sulfate-to-ozone correlation. From our analysis, we conclude that gas-to-particle conversion of volcanic sulfur dioxide leads to observed enhanced sulfate aerosol mixing ratios.
Ronny Engelmann, Albert Ansmann, Kevin Ohneiser, Hannes Griesche, Martin Radenz, Julian Hofer, Dietrich Althausen, Sandro Dahlke, Marion Maturilli, Igor Veselovskii, Cristofer Jimenez, Robert Wiesen, Holger Baars, Johannes Bühl, Henriette Gebauer, Moritz Haarig, Patric Seifert, Ulla Wandinger, and Andreas Macke
Atmos. Chem. Phys., 21, 13397–13423, https://doi.org/10.5194/acp-21-13397-2021, https://doi.org/10.5194/acp-21-13397-2021, 2021
Short summary
Short summary
A Raman lidar was operated aboard the icebreaker Polarstern during MOSAiC and monitored aerosol and cloud layers in the central Arctic up to 30 km height. The article provides an overview of the spectrum of aerosol profiling observations and shows aerosol–cloud interaction studies for liquid-water and ice clouds. A highlight was the detection of a 10 km deep wildfire smoke layer over the North Pole up to 17 km height from the fire season of 2019, which persisted over the whole winter period.
Ralf Weigel, Christoph Mahnke, Manuel Baumgartner, Antonis Dragoneas, Bärbel Vogel, Felix Ploeger, Silvia Viciani, Francesco D'Amato, Silvia Bucci, Bernard Legras, Beiping Luo, and Stephan Borrmann
Atmos. Chem. Phys., 21, 11689–11722, https://doi.org/10.5194/acp-21-11689-2021, https://doi.org/10.5194/acp-21-11689-2021, 2021
Short summary
Short summary
In July and August 2017, eight StratoClim mission flights of the Geophysica reached up to 20 km in the Asian monsoon anticyclone. New particle formation (NPF) was identified in situ by abundant nucleation-mode aerosols (6–15 nm in diameter) with mixing ratios of up to 50 000 mg−1. NPF occurred most frequently at 12–16 km with fractions of non-volatile residues of down to 15 %. Abundance and productivity of observed NPF indicate its ability to promote the Asian tropopause aerosol layer.
Christina J. Williamson, Agnieszka Kupc, Andrew Rollins, Jan Kazil, Karl D. Froyd, Eric A. Ray, Daniel M. Murphy, Gregory P. Schill, Jeff Peischl, Chelsea Thompson, Ilann Bourgeois, Thomas B. Ryerson, Glenn S. Diskin, Joshua P. DiGangi, Donald R. Blake, Thao Paul V. Bui, Maximilian Dollner, Bernadett Weinzierl, and Charles A. Brock
Atmos. Chem. Phys., 21, 9065–9088, https://doi.org/10.5194/acp-21-9065-2021, https://doi.org/10.5194/acp-21-9065-2021, 2021
Short summary
Short summary
Aerosols in the stratosphere influence climate by scattering and absorbing sunlight and through chemical reactions occurring on the particles’ surfaces. We observed more nucleation mode aerosols (small aerosols, with diameters below 12 nm) in the mid- and high-latitude lowermost stratosphere (8–13 km) in the Northern Hemisphere (NH) than in the Southern Hemisphere. The most likely cause of this is aircraft emissions, which are concentrated in the NH at similar altitudes to our observations.
Daniel M. Murphy, Karl D. Froyd, Ilann Bourgeois, Charles A. Brock, Agnieszka Kupc, Jeff Peischl, Gregory P. Schill, Chelsea R. Thompson, Christina J. Williamson, and Pengfei Yu
Atmos. Chem. Phys., 21, 8915–8932, https://doi.org/10.5194/acp-21-8915-2021, https://doi.org/10.5194/acp-21-8915-2021, 2021
Short summary
Short summary
New measurements in the lower stratosphere highlight differences between particles that originated in the troposphere or the stratosphere. The stratospheric-origin particles have relatively large radiative effects because they are at nearly the optimum diameter for light scattering. The tropospheric particles contribute significantly to surface area. These and other chemical and physical properties are then extended to study the implications if material were to be added to the stratosphere.
Geraint Vaughan, David Wareing, and Hugo Ricketts
Atmos. Chem. Phys., 21, 5597–5604, https://doi.org/10.5194/acp-21-5597-2021, https://doi.org/10.5194/acp-21-5597-2021, 2021
Short summary
Short summary
This paper documents the evolution of the cloud of volcanic aerosol introduced into the stratosphere by the eruption of Raikoke in June 2019. The measurements were made by a UV lidar (laser radar) operated at Capel Dewi, Wales, between June 2019 and May 2020. They show how the cloud of volcanic aerosol arrived at the site and how its optical depth decreased by a factor of 5 over the 11 months of measurements.
Sreeharsha Hanumanthu, Bärbel Vogel, Rolf Müller, Simone Brunamonti, Suvarna Fadnavis, Dan Li, Peter Ölsner, Manish Naja, Bhupendra Bahadur Singh, Kunchala Ravi Kumar, Sunil Sonbawne, Hannu Jauhiainen, Holger Vömel, Beiping Luo, Teresa Jorge, Frank G. Wienhold, Ruud Dirkson, and Thomas Peter
Atmos. Chem. Phys., 20, 14273–14302, https://doi.org/10.5194/acp-20-14273-2020, https://doi.org/10.5194/acp-20-14273-2020, 2020
Short summary
Short summary
During boreal summer, anthropogenic sources yield the Asian Tropopause Aerosol Layer (ATAL), found in Asia between about 13 and 18 km altitude. Balloon-borne measurements of the ATAL conducted in northern India in 2016 show the strong variability of the ATAL. To explain its observed variability, model simulations are performed to deduce the origin of air masses on the Earth's surface, which is important to develop recommendations for regulations of anthropogenic surface emissions of the ATAL.
Stelios Kazadzis, Natalia Kouremeti, Henri Diémoz, Julian Gröbner, Bruce W. Forgan, Monica Campanelli, Victor Estellés, Kathleen Lantz, Joseph Michalsky, Thomas Carlund, Emilio Cuevas, Carlos Toledano, Ralf Becker, Stephan Nyeki, Panagiotis G. Kosmopoulos, Viktar Tatsiankou, Laurent Vuilleumier, Frederick M. Denn, Nozomu Ohkawara, Osamu Ijima, Philippe Goloub, Panagiotis I. Raptis, Michael Milner, Klaus Behrens, Africa Barreto, Giovanni Martucci, Emiel Hall, James Wendell, Bryan E. Fabbri, and Christoph Wehrli
Atmos. Chem. Phys., 18, 3185–3201, https://doi.org/10.5194/acp-18-3185-2018, https://doi.org/10.5194/acp-18-3185-2018, 2018
Short summary
Short summary
Aerosol optical depth measured from ground-based sun photometers is the most important parameter for studying the changes in the Earth's radiation balance due to aerosols. Representatives for various sun photometer types belonging to individual institutions or international aerosol networks gather every 5 years, for 3 weeks, in Davos, Switzerland, in order to compare their aeorosol optical depth retrievals. This work presents the results of the latest (fourth) filter radiometer intercomparison.
Nelson Bègue, Damien Vignelles, Gwenaël Berthet, Thierry Portafaix, Guillaume Payen, Fabrice Jégou, Hassan Benchérif, Julien Jumelet, Jean-Paul Vernier, Thibaut Lurton, Jean-Baptiste Renard, Lieven Clarisse, Vincent Duverger, Françoise Posny, Jean-Marc Metzger, and Sophie Godin-Beekmann
Atmos. Chem. Phys., 17, 15019–15036, https://doi.org/10.5194/acp-17-15019-2017, https://doi.org/10.5194/acp-17-15019-2017, 2017
Short summary
Short summary
The space–time evolutions of the Calbuco plume are investigated by combining satellite, in situ aerosol counting and lidar observations, and a numerical model. All the data at Reunion Island reveal a twofold increase in the amount of aerosol with respect to the values observed before the eruption. The dynamic context has favored the spread of the plume exclusively in the Southern Hemisphere. This study highlights the role played by dynamical barriers in the transport of atmospheric species.
Bengt G. Martinsson, Johan Friberg, Oscar S. Sandvik, Markus Hermann, Peter F. J. van Velthoven, and Andreas Zahn
Atmos. Chem. Phys., 17, 10937–10953, https://doi.org/10.5194/acp-17-10937-2017, https://doi.org/10.5194/acp-17-10937-2017, 2017
Short summary
Short summary
We find that the aerosol of the lowermost stratosphere has a considerable climate forcing. The upper tropospheric (UT) particulate sulfur is strongly influenced by stratospheric sources the first half of the year, whereas tropospheric sources dominate in fall; 50 % of the UT particulate sulfur (S) was found to be stratospheric at background condition, and 70 % under moderate influence from volcanism. The Asian monsoon is found to be an important tropospheric source of S in the NH extratropical UT.
R. Weigel, C. M. Volk, K. Kandler, E. Hösen, G. Günther, B. Vogel, J.-U. Grooß, S. Khaykin, G. V. Belyaev, and S. Borrmann
Atmos. Chem. Phys., 14, 12319–12342, https://doi.org/10.5194/acp-14-12319-2014, https://doi.org/10.5194/acp-14-12319-2014, 2014
J.-B. Renard, S. N. Tripathi, M. Michael, A. Rawal, G. Berthet, M. Fullekrug, R. G. Harrison, C. Robert, M. Tagger, and B. Gaubicher
Atmos. Chem. Phys., 13, 11187–11194, https://doi.org/10.5194/acp-13-11187-2013, https://doi.org/10.5194/acp-13-11187-2013, 2013
F. Jégou, G. Berthet, C. Brogniez, J.-B. Renard, P. François, J. M. Haywood, A. Jones, Q. Bourgeois, T. Lurton, F. Auriol, S. Godin-Beekmann, C. Guimbaud, G. Krysztofiak, B. Gaubicher, M. Chartier, L. Clarisse, C. Clerbaux, J. Y. Balois, C. Verwaerde, and D. Daugeron
Atmos. Chem. Phys., 13, 6533–6552, https://doi.org/10.5194/acp-13-6533-2013, https://doi.org/10.5194/acp-13-6533-2013, 2013
T. Trickl, H. Giehl, H. Jäger, and H. Vogelmann
Atmos. Chem. Phys., 13, 5205–5225, https://doi.org/10.5194/acp-13-5205-2013, https://doi.org/10.5194/acp-13-5205-2013, 2013
S. M. Andersson, B. G. Martinsson, J. Friberg, C. A. M. Brenninkmeijer, A. Rauthe-Schöch, M. Hermann, P. F. J. van Velthoven, and A. Zahn
Atmos. Chem. Phys., 13, 1781–1796, https://doi.org/10.5194/acp-13-1781-2013, https://doi.org/10.5194/acp-13-1781-2013, 2013
R. Weigel, S. Borrmann, J. Kazil, A. Minikin, A. Stohl, J. C. Wilson, J. M. Reeves, D. Kunkel, M. de Reus, W. Frey, E. R. Lovejoy, C. M. Volk, S. Viciani, F. D'Amato, C. Schiller, T. Peter, H. Schlager, F. Cairo, K. S. Law, G. N. Shur, G. V. Belyaev, and J. Curtius
Atmos. Chem. Phys., 11, 9983–10010, https://doi.org/10.5194/acp-11-9983-2011, https://doi.org/10.5194/acp-11-9983-2011, 2011
A. Hamed, W. Birmili, J. Joutsensaari, S. Mikkonen, A. Asmi, B. Wehner, G. Spindler, A. Jaatinen, A. Wiedensohler, H. Korhonen, K. E. J. Lehtinen, and A. Laaksonen
Atmos. Chem. Phys., 10, 1071–1091, https://doi.org/10.5194/acp-10-1071-2010, https://doi.org/10.5194/acp-10-1071-2010, 2010
Cited articles
Baumgardner, D., Abel, S. J., Axisa, D., Cotton, R., Crosier, J., Field, P., Gurganus, C., Heymsfield, A., Korolev, A., Krämer, M., Lawson, P., McFarquhar, G., Ulanowski, Z., and Um, J.: Cloud ice properties: In situ measurement challenges, Meteor. Mon., 58, 91–923, https://doi.org/10.1175/amsmonographs-d-16-0011.1, 2017. a
Baumgartner, M., Weigel, R., Harvey, A. H., Plöger, F., Achatz, U., and Spichtinger, P.: Reappraising the appropriate calculation of a common meteorological quantity: potential temperature, Atmos. Chem. Phys., 20, 15585–15616, https://doi.org/10.5194/acp-20-15585-2020, 2020. a
Bohren, C. F. and Huffmann, D. R.: Absorption and scattering of light by small
particles, Wiley and Sons, Hoboken, New Jersey, USA, 2008. a
Borrmann, S., Stefanutti, L., and Khattatov, V.: Chemistry and aerosol measurements on the Geophysika stratospheric research aircraft: The airborne polar experiment, Phys. Chem. Earth, 20, 97–101, https://doi.org/10.1016/0079-1946(95)00011-X, 1995. a
Borrmann, S., Kunkel, D., Weigel, R., Minikin, A., Deshler, T., Wilson, J. C., Curtius, J., Volk, C. M., Homan, C. D., Ulanovsky, A., Ravegnani, F., Viciani, S., Shur, G. N., Belyaev, G. V., Law, K. S., and Cairo, F.: Aerosols in the tropical and subtropical UT/LS: in-situ measurements of submicron particle abundance and volatility, Atmos. Chem. Phys., 10, 5573–5592, https://doi.org/10.5194/acp-10-5573-2010, 2010. a, b, c, d, e, f, g
Brunamonti, S., Jorge, T., Oelsner, P., Hanumanthu, S., Singh, B. B., Kumar, K. R., Sonbawne, S., Meier, S., Singh, D., Wienhold, F. G., Luo, B. P., Boettcher, M., Poltera, Y., Jauhiainen, H., Kayastha, R., Karmacharya, J., Dirksen, R., Naja, M., Rex, M., Fadnavis, S., and Peter, T.: Balloon-borne measurements of temperature, water vapor, ozone and aerosol backscatter on the southern slopes of the Himalayas during StratoClim 2016–2017, Atmos. Chem. Phys., 18, 15937–15957, https://doi.org/10.5194/acp-18-15937-2018, 2018. a, b, c, d, e, f
Bucci, S., Legras, B., Sellitto, P., D'Amato, F., Viciani, S., Montori, A., Chiarugi, A., Ravegnani, F., Ulanovsky, A., Cairo, F., and Stroh, F.: Deep-convective influence on the upper troposphere–lower stratosphere composition in the Asian monsoon anticyclone region: 2017 StratoClim campaign results, Atmos. Chem. Phys., 20, 12193–12210, https://doi.org/10.5194/acp-20-12193-2020, 2020. a, b, c
Cai, Y., Montague, D. C., Mooiweer-Bryan, W., and Deshler, T.: Performance characteristics of the ultra high sensitivity aerosol spectrometer for particles between 55 and 800 nm: Laboratory and field studies, J. Aerosol Sci., 39, 759–769, https://doi.org/10.1016/j.jaerosci.2008.04.007, 2008. a, b, c, d, e, f, g
Cairo, F.: Polar stratospheric clouds observed during the Airborne Polar Experiment–Geophysica Aircraft in Antarctica (APE-GAIA) campaign, J. Geophys. Res., 109, D07204, https://doi.org/10.1029/2003jd003930, 2004. a, b
Cairo, F., Di Donfrancesco, G., Snels, M., Fierli, F., Viterbini, M., Borrmann, S., and Frey, W.: A comparison of light backscattering and particle size distribution measurements in tropical cirrus clouds, Atmos. Meas. Tech., 4, 557–570, https://doi.org/10.5194/amt-4-557-2011, 2011. a, b, c, d
Campbell, P. and Deshler, T.: Condensation nuclei measurements in the midlatitude (1982–2012) and Antarctic (1986–2010) stratosphere between 20 and 35 km, J. Geophys. Res.-Atmos., 119, 137–152, https://doi.org/10.1002/2013jd019710, 2014. a, b
Collis, R. T. H. and Russell, P. B.: Lidar measurement of particles and gases by elastic backscattering and differential absorption, in: Laser monitoring of the atmosphere, edited by: Hinkley, E. D., Springer Verlag, Berlin, Germany, https://doi.org/10.1007/3-540-07743-x, 1976. a
Costa, A., Meyer, J., Afchine, A., Luebke, A., Günther, G., Dorsey, J. R., Gallagher, M. W., Ehrlich, A., Wendisch, M., Baumgardner, D., Wex, H., and Krämer, M.: Classification of Arctic, midlatitude and tropical clouds in the mixed-phase temperature regime, Atmos. Chem. Phys., 17, 12219–12238, https://doi.org/10.5194/acp-17-12219-2017, 2017. a, b
Croft, B., Lohmann, U., Martin, R. V., Stier, P., Wurzler, S., Feichter, J., Hoose, C., Heikkilä, U., van Donkelaar, A., and Ferrachat, S.: Influences of in-cloud aerosol scavenging parameterizations on aerosol concentrations and wet deposition in ECHAM5-HAM, Atmos. Chem. Phys., 10, 1511–1543, https://doi.org/10.5194/acp-10-1511-2010, 2010. a, b
Curtius, J., Weigel, R., Vössing, H.-J., Wernli, H., Werner, A., Volk, C.-M., Konopka, P., Krebsbach, M., Schiller, C., Roiger, A., Schlager, H., Dreiling, V., and Borrmann, S.: Observations of meteoric material and implications for aerosol nucleation in the winter Arctic lower stratosphere derived from in situ particle measurements, Atmos. Chem. Phys., 5, 3053–3069, https://doi.org/10.5194/acp-5-3053-2005, 2005. a
Deshler, T., Hervig, M. E., Hofmann, D. J., Rosen, J. M., and Liley, J. B.: Thirty years of in situ stratospheric aerosol size distribution measurements from Laramie, Wyoming (41∘ N), using balloon-borne instruments, J. Geophys. Res.-Atmos., 108, 4167, https://doi.org/10.1029/2002JD002514, 2003. a
Deshler, T., Luo, B., Kovilakam, M., Peter, T., and Kalnajs, L. E.: Retrieval of aerosol size distributions from in situ particle counter measurements: Instrument counting efficiency and comparisons with satellite measurements, J. Geophys. Res.-Atmos., 124, 5058–5087, https://doi.org/10.1029/2018jd029558, 2019. a
Dunkerton, T. J.: Evidence of meridional motion in the summer lower stratosphere adjacent to monsoon regions, J. Geophys. Res.-Atmos., 100, 16675–16688, https://doi.org/10.1029/95JD01263, 1995. a
Fairlie, T. D., Liu, H., Vernier, J.-P., Campuzano-Jost, P., Jimenez, J. L., Jo, D. S., Zhang, B., Natarajan, M., Avery, M. A., and Huey, G.: Estimates of regional source contributions to the Asian tropopause aerosol layer using a chemical transport model, J. Geophys. Res.-Atmos., 125, e2019JD031506, https://doi.org/10.1029/2019jd031506, 2020. a
Fierli, F., Orlandi, E., Law, K. S., Cagnazzo, C., Cairo, F., Schiller, C., Borrmann, S., Di Donfrancesco, G., Ravegnani, F., and Volk, C. M.: Impact of deep convection in the tropical tropopause layer in West Africa: in-situ observations and mesoscale modelling, Atmos. Chem. Phys., 11, 201–214, https://doi.org/10.5194/acp-11-201-2011, 2011. a
Fueglistaler, S., Dessler, A. E., Dunkerton, T. J., Folkins, I., Fu, Q., and Mote, P. W.: Tropical tropopause layer, Rev. Geophys., 47, RG1004, https://doi.org/10.1029/2008RG000267, 2009. a, b
Garny, H. and Randel, W. J.: Transport pathways from the Asian monsoon anticyclone to the stratosphere, Atmos. Chem. Phys., 16, 2703–2718, https://doi.org/10.5194/acp-16-2703-2016, 2016. a
German Aerospace Center: HALO database, available at: https://halo-db.pa.op.dlr.de/mission/101, last access: 30 August 2021. a
Gu, Y., Liao, H., and Bian, J.: Summertime nitrate aerosol in the upper troposphere and lower stratosphere over the Tibetan Plateau and the South Asian summer monsoon region, Atmos. Chem. Phys., 16, 6641–6663, https://doi.org/10.5194/acp-16-6641-2016, 2016. a
Hanumanthu, S., Vogel, B., Müller, R., Brunamonti, S., Fadnavis, S., Li, D., Ölsner, P., Naja, M., Singh, B. B., Kumar, K. R., Sonbawne, S., Jauhiainen, H., Vömel, H., Luo, B., Jorge, T., Wienhold, F. G., Dirkson, R., and Peter, T.: Strong day-to-day variability of the Asian Tropopause Aerosol Layer (ATAL) in August 2016 at the Himalayan foothills, Atmos. Chem. Phys., 20, 14273–14302, https://doi.org/10.5194/acp-20-14273-2020, 2020. a
Heim, M., Mullins, B. J., Umhauer, H., and Kasper, G.: Performance evaluation of three optical particle counters with an efficient “multimodal” calibration method, J. Aerosol Sci., 39, 1019–1031, https://doi.org/10.1016/j.jaerosci.2008.07.006, 2008. a
Höpfner, M., Ungermann, J., Borrmann, S., Wagner, R., Spang, R., Riese, M., Stiller, G., Appel, O., Batenburg, A. M., Bucci, S., Cairo, F., Dragoneas, A., Friedl-Vallon, F., Hünig, A., Johansson, S., Krasauskas, L., Legras, B., Leisner, T., Mahnke, C., Möhler, O., Molleker, S., Müller, R., Neubert, T., Orphal, J., Preusse, P., Rex, M., Saathoff, H., Stroh, F., Weigel, R., and Wohltmann, I.: Ammonium nitrate particles formed in upper troposphere from ground ammonia sources during Asian monsoons, Nat. Geosci., 12, 608–612, https://doi.org/10.1038/s41561-019-0385-8, 2019. a, b, c, d, e
Junge, C. E., Chagnon, C. W., and Manson, J. E.: A world-wide stratospheric aerosol layer, Science, 133, 1478–1479, https://doi.org/10.1126/science.133.3463.1478-a, 1961. a
Kremser, S., Thomason, L. W., von Hobe, M., Hermann, M., Deshler, T., Timmreck, C., Toohey, M., Stenke, A., Schwarz, J. P., Weigel, R., Fueglistaler, S., Prata, F. J., Vernier, J.-P., Schlager, H., Barnes, J. E., Antuña-Marrero, J.-C., Fairlie, D., Palm, M., Mahieu, E., Notholt, J., Rex, M., Bingen, C., Vanhellemont, F., Bourassa, A., Plane, J. M. C., Klocke, D., Carn, S. A., Clarisse, L., Trickl, T., Neely, R., James, A. D., Rieger, L., Wilson, J. C., and Meland, B.: Stratospheric aerosol–Observations, processes, and impact on climate, Rev. Geophys., 54, 278–335, https://doi.org/10.1002/2015RG000511, 2016. a
Kupc, A., Williamson, C., Wagner, N. L., Richardson, M., and Brock, C. A.: Modification, calibration, and performance of the Ultra-High Sensitivity Aerosol Spectrometer for particle size distribution and volatility measurements during the Atmospheric Tomography Mission (ATom) airborne campaign, Atmos. Meas. Tech., 11, 369–383, https://doi.org/10.5194/amt-11-369-2018, 2018. a
Mitev, V., Poole, L. R., Pitts, M. C., and Matthey, R.: Comparison case between CALIPSO lidar and MALs on M55 Geophysica during RECONCILE campaign, in: 26th International Laser Radar Conference, 25–29 June 2012, Porto Heli Greece, Proceedings Vol. II, 729–732, 2012. a
Mitev, V., Matthey, R., and Makarov, V.: Backscatter-depolarisation lidars on
high-altitude research aircraft, in: 20th International Symposium on
Atmospheric and Ocean Optics: Atmospheric Physics, edited by:
Romanovskii, O. A., SPIE, 23–27 June 2014, Novosibirsk, Russian Federation, https://doi.org/10.1117/12.2075634, 2014. a
Molleker, S., Borrmann, S., Schlager, H., Luo, B., Frey, W., Klingebiel, M., Weigel, R., Ebert, M., Mitev, V., Matthey, R., Woiwode, W., Oelhaf, H., Dörnbrack, A., Stratmann, G., Grooß, J.-U., Günther, G., Vogel, B., Müller, R., Krämer, M., Meyer, J., and Cairo, F.: Microphysical properties of synoptic-scale polar stratospheric clouds: in situ measurements of unexpectedly large HNO3−containing particles in the Arctic vortex, Atmos. Chem. Phys., 14, 10785–10801, https://doi.org/10.5194/acp-14-10785-2014, 2014. a, b
Neely, R. R., Yu, P., Rosenlof, K. H., Toon, O. B., Daniel, J. S., Solomon, S., and Miller, H. L.: The contribution of anthropogenic SO2 emissions to the Asian tropopause aerosol layer, J. Geophys. Res.-Atmos., 119, 1571–1579, https://doi.org/10.1002/2013JD020578, 2014. a
Pan, L. L., Honomichl, S. B., Kinnison, D. E., Abalos, M., Randel, W. J., Bergman, J. W., and Bian, J.: Transport of chemical tracers from the boundary layer to stratosphere associated with the dynamics of the Asian summer monsoon, J. Geophys. Res.-Atmos., 121, 14159–14174, https://doi.org/10.1002/2016jd025616, 2016. a, b, c, d
Park, M., Randel, W. J., Gettelman, A., Massie, S. T., and Jiang, J. H.: Transport above the Asian summer monsoon anticyclone inferred from aura microwave limb sounder tracers, J. Geophys. Res.-Atmos., 112, D16309, https://doi.org/10.1029/2006JD008294, 2007. a
Park, M., Randel, W. J., Emmons, L. K., and Livesey, N. J.: Transport pathways of carbon monoxide in the Asian summer monsoon diagnosed from model of ozone and related tracers (MOZART), J. Geophys. Res., 114, D08303, https://doi.org/10.1029/2008jd010621, 2009. a, b
Ploeger, F., Gottschling, C., Griessbach, S., Grooß, J.-U., Guenther, G., Konopka, P., Müller, R., Riese, M., Stroh, F., Tao, M., Ungermann, J., Vogel, B., and von Hobe, M.: A potential vorticity-based determination of the transport barrier in the Asian summer monsoon anticyclone, Atmos. Chem. Phys., 15, 13145–13159, https://doi.org/10.5194/acp-15-13145-2015, 2015. a, b, c, d, e
Prata, A. J., Carn, S. A., Stohl, A., and Kerkmann, J.: Long range transport and fate of a stratospheric volcanic cloud from Soufrière Hills volcano, Montserrat, Atmos. Chem. Phys., 7, 5093–5103, https://doi.org/10.5194/acp-7-5093-2007, 2007. a
Randel, W. J. and Jensen, E. J.: Physical processes in the tropical tropopause layer and their roles in a changing climate, Nat. Geosci., 6, 169, https://doi.org/10.1038/ngeo1733, 2013. a
Randel, W. J. and Park, M.: Deep convective influence on the Asian summer monsoon anticyclone and associated tracer variability observed with Atmospheric Infrared Sounder (AIRS), J. Geophys. Res., 111, D12314, https://doi.org/10.1029/2005jd006490, 2006. a
Sokolov, L. and Lepuchov, B.: Protocol of interaction between Unit for
Connection with Scientific Equipment (UCSE) and on-board scientific equipment
of Geophysica aircraft, 2nd edn., Myasishchev Design Bureau (MDB),
Moscow, Russian Federation, 1998. a
Stefanutti, L., Sokolov, L., Balestri, S., MacKenzie, A. R., and Khattatov, V.: The M-55 Geophysica as a platform for the Airborne Polar Experiment, J. Atmos. Ocean. Tech., 16, 1303–1312, https://doi.org/10.1175/1520-0426(1999)016<1303:TMGAAP>2.0.CO;2, 1999. a
Stenke, A., Schraner, M., Rozanov, E., Egorova, T., Luo, B., and Peter, T.: The SOCOL version 3.0 chemistry–climate model: description, evaluation, and implications from an advanced transport algorithm, Geosci. Model Dev., 6, 1407–1427, https://doi.org/10.5194/gmd-6-1407-2013, 2013. a
Vernier, J. P., Pommereau, J. P., Garnier, A., Pelon, J., Larsen, N., Nielsen, J., Christensen, T., Cairo, F., Thomason, L. W., Leblanc, T., and McDermid, I. S.: Tropical stratospheric aerosol layer from CALIPSO lidar observations, J. Geophys. Res., 114, D00H10, https://doi.org/10.1029/2009jd011946, 2009. a, b, c, d, e, f, g
Vernier, J.-P., Fairlie, T. D., Natarajan, M., Wienhold, F. G., Bian, J., Martinsson, B. G., Crumeyrolle, S., Thomason, L. W., and Bedka, K. M.: Increase in upper tropospheric and lower stratospheric aerosol levels and its potential connection with Asian pollution, J. Geophys. Res.-Atmos., 120, 1608–1619, https://doi.org/10.1002/2014jd022372, 2015. a, b, c, d, e, f, g, h, i
Vernier, J.-P., Fairlie, T. D., Deshler, T., Ratnam, M. V., Gadhavi, H., Kumar, B. S., Natarajan, M., Pandit, A. K., Raj, S. T. A., Kumar, A. H., Jayaraman, A., Singh, A. K., Rastogi, N., Sinha, P. R., Kumar, S., Tiwari, S., Wegner, T., Baker, N., Vignelles, D., Stenchikov, G., Shevchenko, I., Smith, J., Bedka, K., Kesarkar, A., Singh, V., Bhate, J., Ravikiran, V., Rao, M. D., Ravindrababu, S., Patel, A., Vernier, H., Wienhold, F. G., Liu, H., Knepp, T. N., Thomason, L., Crawford, J., Ziemba, L., Moore, J., Crumeyrolle, S., Williamson, M., Berthet, G., Jégou, F., and Renard, J.-B.: BATAL: The balloon measurement campaigns of the Asian tropopause aerosol layer, B. Am. Meteorol. Soc., 99, 955–973, https://doi.org/10.1175/bams-d-17-0014.1, 2018. a, b, c, d, e, f, g, h
Vetter, T.: Berechnung der Mie-Streufunktionen zur Kalibrierung optischer
Partikelzähler, Diploma thesis, University Mainz, 2004 (in German). a
Viciani, S., D'Amato, F., Mazzinghi, P., Castagnoli, F., Toci, G., and Werle, P.: A cryogenically operated laser diode spectrometer for airborne measurement of stratospheric trace gases, Appl. Phys. B-Lasers O., 90, 581–592, https://doi.org/10.1007/s00340-007-2885-2, 2008. a
Viciani, S., Montori, A., Chiarugi, A., and D'Amato, F.: A portable quantum cascade laser spectrometer for atmospheric measurements of carbon monoxide, Sensors, 18, 2380, https://doi.org/10.3390/s18072380, 2018. a
Vogel, B., Günther, G., Müller, R., Grooß, J.-U., and Riese, M.: Impact of different Asian source regions on the composition of the Asian monsoon anticyclone and of the extratropical lowermost stratosphere, Atmos. Chem. Phys., 15, 13699–13716, https://doi.org/10.5194/acp-15-13699-2015, 2015. a
Vogel, B., Müller, R., Günther, G., Spang, R., Hanumanthu, S., Li, D., Riese, M., and Stiller, G. P.: Lagrangian simulations of the transport of young air masses to the top of the Asian monsoon anticyclone and into the tropical pipe, Atmos. Chem. Phys., 19, 6007–6034, https://doi.org/10.5194/acp-19-6007-2019, 2019. a, b
von Hobe, M., Ploeger, F., Konopka, P., Kloss, C., Ulanowski, A., Yushkov, V., Ravegnani, F., Volk, C. M., Pan, L. L., Honomichl, S. B., Tilmes, S., Kinnison, D. E., Garcia, R. R., and Wright, J. S.: Upward transport into and within the Asian monsoon anticyclone as inferred from StratoClim trace gas observations, Atmos. Chem. Phys., 21, 1267–1285, https://doi.org/10.5194/acp-21-1267-2021, 2021. a, b, c, d, e
Wagner, R., Bertozzi, B., Höpfner, M., Höhler, K., Möhler, O., Saathoff, H., and Leisner, T.: Solid ammonium nitrate aerosols as efficient ice nucleating particles at cirrus temperatures, J. Geophys. Res.-Atmos., 125, e2019JD032248, https://doi.org/10.1029/2019jd032248, 2020. a
Wang, M., Kong, W., Marten, R., He, X.-C., Chen, D., Pfeifer, J., Heitto, A., Kontkanen, J., Dada, L., Kürten, A., Yli-Juuti, T., Manninen, H. E., Amanatidis, S., Amorim, A., Baalbaki, R., Baccarini, A., Bell, D. M., Bertozzi, B., Bräkling, S., Brilke, S., Murillo, L. C., Chiu, R., Chu, B., Menezes, L.-P. D., Duplissy, J., Finkenzeller, H., Carracedo, L. G., Granzin, M., Guida, R., Hansel, A., Hofbauer, V., Krechmer, J., Lehtipalo, K., Lamkaddam, H., Lampimäki, M., Lee, C. P., Makhmutov, V., Marie, G., Mathot, S., Mauldin, R. L., Mentler, B., Müller, T., Onnela, A., Partoll, E., Petäjä, T., Philippov, M., Pospisilova, V., Ranjithkumar, A., Rissanen, M., Rörup, B., Scholz, W., Shen, J., Simon, M., Sipilä, M., Steiner, G., Stolzenburg, D., Tham, Y. J., Tomé, A., Wagner, A. C., Wang, D. S., Wang, Y., Weber, S. K., Winkler, P. M., Wlasits, P. J., Wu, Y., Xiao, M., Ye, Q., Zauner-Wieczorek, M., Zhou, X., Volkamer, R., Riipinen, I., Dommen, J., Curtius, J., Baltensperger, U., Kulmala, M., Worsnop, D. R., Kirkby, J., Seinfeld, J. H., El-Haddad, I., Flagan, R. C., and Donahue, N. M.: Rapid growth of new atmospheric particles by nitric acid and ammonia condensation, Nature, 581, 184–189, https://doi.org/10.1038/s41586-020-2270-4, 2020. a
Ward, S. M., Deshler, T., and Hertzog, A.: Quasi-Lagrangian measurements of nitric acid trihydrate formation over Antarctica, J. Geophys. Res.-Atmos., 119, 245–258, https://doi.org/10.1002/2013JD020326, 2014. a, b
Weigel, R., Hermann, M., Curtius, J., Voigt, C., Walter, S., Böttger, T., Lepukhov, B., Belyaev, G., and Borrmann, S.: Experimental characterization of the COndensation PArticle counting System for high altitude aircraft-borne application, Atmos. Meas. Tech., 2, 243–258, https://doi.org/10.5194/amt-2-243-2009, 2009. a
Weigel, R., Borrmann, S., Kazil, J., Minikin, A., Stohl, A., Wilson, J. C., Reeves, J. M., Kunkel, D., de Reus, M., Frey, W., Lovejoy, E. R., Volk, C. M., Viciani, S., D'Amato, F., Schiller, C., Peter, T., Schlager, H., Cairo, F., Law, K. S., Shur, G. N., Belyaev, G. V., and Curtius, J.: In situ observations of new particle formation in the tropical upper troposphere: the role of clouds and the nucleation mechanism, Atmos. Chem. Phys., 11, 9983–10010, https://doi.org/10.5194/acp-11-9983-2011, 2011. a, b
Weigel, R., Volk, C. M., Kandler, K., Hösen, E., Günther, G., Vogel, B., Grooß, J.-U., Khaykin, S., Belyaev, G. V., and Borrmann, S.: Enhancements of the refractory submicron aerosol fraction in the Arctic polar vortex: feature or exception?, Atmos. Chem. Phys., 14, 12319–12342, https://doi.org/10.5194/acp-14-12319-2014, 2014. a
Weigel, R., Mahnke, C., Baumgartner, M., Dragoneas, A., Vogel, B., Ploeger, F., Viciani, S., D'Amato, F., Bucci, S., Legras, B., Luo, B., and Borrmann, S.: In situ observation of new particle formation (NPF) in the tropical tropopause layer of the 2017 Asian monsoon anticyclone – Part 1: Summary of StratoClim results, Atmos. Chem. Phys., 21, 11689–11722, https://doi.org/10.5194/acp-21-11689-2021, 2021a. a, b, c, d, e
Weigel, R., Mahnke, C., Baumgartner, M., Krämer, M., Spichtinger, P., Spelten, N., Afchine, A., Rolf, C., Viciani, S., D'Amato, F., Tost, H., and Borrmann, S.: In situ observation of new particle formation (NPF) in the tropical tropopause layer of the 2017 Asian monsoon anticyclone – Part 2: NPF inside ice clouds, Atmos. Chem. Phys., 21, 13455–13481, https://doi.org/10.5194/acp-21-13455-2021, 2021b. a, b, c
Williamson, C. J., Kupc, A., Axisa, D., Bilsback, K. R., Bui, T., Campuzano-Jost, P., Dollner, M., Froyd, K. D., Hodshire, A. L., Jimenez, J. L., Kodros, J. K., Luo, G., Murphy, D. M., Nault, B. A., Ray, E. A., Weinzierl, B., Wilson, J. C., Yu, F., Yu, P., Pierce, J. R., and Brock, C. A.: A large source of cloud condensation nuclei from new particle formation in the tropics, Nature, 574, 399–403, https://doi.org/10.1038/s41586-019-1638-9, 2019. a
Winker, D. M., Pelon, J., Coakley, J. A., Ackerman, S. A., Charlson, R. J., Colarco, P. R., Flamant, P., Fu, Q., Hoff, R. M., Kittaka, C., Kubar, T. L., Treut, H. L., Mccormick, M. P., Mégie, G., Poole, L., Powell, K., Trepte, C., Vaughan, M. A., and Wielicki, B. A.: The CALIPSO mission, B. Am. Meteorol. Soc., 91, 1211–1230, https://doi.org/10.1175/2010bams3009.1, 2010. a
WMO: International Meteorological Tables, WMO-No.188.TP97, edited by: Letestu, S., Secretariat of the World Meteorological Organization, Geneva, Switzerland, 1966. a
Yang, Q., Easter, R. C., Campuzano-Jost, P., Jimenez, J. L., Fast, J. D., Ghan, S. J., Wang, H., Berg, L. K., Barth, M. C., Liu, Y., Shrivastava, M. B., Singh, B., Morrison, H., Fan, J., Ziegler, C. L., Bela, M., Apel, E., Diskin, G. S., Mikoviny, T., and Wisthaler, A.: Aerosol transport and wet scavenging in deep convective clouds: A case study and model evaluation using a multiple passive tracer analysis approach, J. Geophys. Res.-Atmos., 120, 8448–8468, https://doi.org/10.1002/2015jd023647, 2015. a, b
Yu, P., Toon, O. B., Neely, R. R., Martinsson, B. G., and Brenninkmeijer, C. A. M.: Composition and physical properties of the Asian tropopause aerosol layer and the North American tropospheric aerosol layer, Geophys. Res. Lett., 42, 2540–2546, https://doi.org/10.1002/2015gl063181, 2015. a
Yu, P., Rosenlof, K. H., Liu, S., Telg, H., Thornberry, T. D., Rollins, A. W., Portmann, R. W., Bai, Z., Ray, E. A., Duan, Y., Pan, L. L., Toon, O. B., Bian, J., and Gao, R.-S.: Efficient transport of tropospheric aerosol into the stratosphere via the Asian summer monsoon anticyclone, P. Natl. Acad. Sci. USA, 114, 6972–6977, https://doi.org/10.1073/pnas.1701170114, 2017. a, b, c, d
Yuan, C., Lau, W. K. M., Li, Z., and Cribb, M.: Relationship between Asian monsoon strength and transport of surface aerosols to the Asian Tropopause Aerosol Layer (ATAL): interannual variability and decadal changes, Atmos. Chem. Phys., 19, 1901–1913, https://doi.org/10.5194/acp-19-1901-2019, 2019. a
Short summary
In 2017, in situ aerosol measurements were conducted aboard the M55 Geophysica in the Asian monsoon region. The vertical particle mixing ratio profiles show a distinct layer (15–18.5 km), the Asian tropopause aerosol layer (ATAL). The backscatter ratio (BR) was calculated based on the aerosol size distributions and compared with the BRs detected by a backscatter probe and a lidar aboard M55, and by the CALIOP lidar. All four methods show enhanced BRs in the ATAL altitude range (max. at 17.5 km).
In 2017, in situ aerosol measurements were conducted aboard the M55 Geophysica in the Asian...
Altmetrics
Final-revised paper
Preprint