Articles | Volume 21, issue 2
https://doi.org/10.5194/acp-21-1015-2021
https://doi.org/10.5194/acp-21-1015-2021
Research article
 | 
26 Jan 2021
Research article |  | 26 Jan 2021

3D radiative heating of tropical upper tropospheric cloud systems derived from synergistic A-Train observations and machine learning

Claudia J. Stubenrauch, Giacomo Caria, Sofia E. Protopapadaki, and Friederike Hemmer

Related authors

Relationship between latent and radiative heating fields of Tropical cloud systems using synergistic satellite observations
Xiaoting Chen, Claudia J. Stubenrauch, and Giulio Mandorli
EGUsphere, https://doi.org/10.5194/egusphere-2024-3434,https://doi.org/10.5194/egusphere-2024-3434, 2024
Short summary
Assessment of object-based indices to identify convective organization
Giulio Mandorli and Claudia J. Stubenrauch
Geosci. Model Dev., 17, 7795–7813, https://doi.org/10.5194/gmd-17-7795-2024,https://doi.org/10.5194/gmd-17-7795-2024, 2024
Short summary
Convective organization and 3D structure of tropical cloud systems deduced from synergistic A-Train observations and machine learning
Claudia J. Stubenrauch, Giulio Mandorli, and Elisabeth Lemaitre
Atmos. Chem. Phys., 23, 5867–5884, https://doi.org/10.5194/acp-23-5867-2023,https://doi.org/10.5194/acp-23-5867-2023, 2023
Short summary
Diurnal variation of high-level clouds from the synergy of AIRS and IASI space-borne infrared sounders
Artem G. Feofilov and Claudia J. Stubenrauch
Atmos. Chem. Phys., 19, 13957–13972, https://doi.org/10.5194/acp-19-13957-2019,https://doi.org/10.5194/acp-19-13957-2019, 2019
Short summary
Cloud climatologies from the infrared sounders AIRS and IASI: strengths and applications
Claudia J. Stubenrauch, Artem G. Feofilov, Sofia E. Protopapadaki, and Raymond Armante
Atmos. Chem. Phys., 17, 13625–13644, https://doi.org/10.5194/acp-17-13625-2017,https://doi.org/10.5194/acp-17-13625-2017, 2017
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Technical note: Applicability of physics-based and machine-learning-based algorithms of a geostationary satellite in retrieving the diurnal cycle of cloud base height
Mengyuan Wang, Min Min, Jun Li, Han Lin, Yongen Liang, Binlong Chen, Zhigang Yao, Na Xu, and Miao Zhang
Atmos. Chem. Phys., 24, 14239–14256, https://doi.org/10.5194/acp-24-14239-2024,https://doi.org/10.5194/acp-24-14239-2024, 2024
Short summary
Observing convective activities in complex convective organizations and their contributions to precipitation and anvil cloud amounts
Zhenquan Wang and Jian Yuan
Atmos. Chem. Phys., 24, 13811–13831, https://doi.org/10.5194/acp-24-13811-2024,https://doi.org/10.5194/acp-24-13811-2024, 2024
Short summary
Weak liquid water path response in ship tracks
Anna Tippett, Edward Gryspeerdt, Peter Manshausen, Philip Stier, and Tristan W. P. Smith
Atmos. Chem. Phys., 24, 13269–13283, https://doi.org/10.5194/acp-24-13269-2024,https://doi.org/10.5194/acp-24-13269-2024, 2024
Short summary
Lightning declines over shipping lanes following regulation of fuel sulfur emissions
Chris J. Wright, Joel A. Thornton, Lyatt Jaeglé, Yang Cao, Yannian Zhu, Jihu Liu, Randall Jones II, Robert H. Holzworth, Daniel Rosenfeld, Robert Wood, Peter Blossey, and Daehyun Kim
EGUsphere, https://doi.org/10.48550/arXiv.2408.07207,https://doi.org/10.48550/arXiv.2408.07207, 2024
Short summary
Air mass history linked to the development of Arctic mixed-phase clouds
Rebecca J. Murray-Watson and Edward Gryspeerdt
Atmos. Chem. Phys., 24, 11115–11132, https://doi.org/10.5194/acp-24-11115-2024,https://doi.org/10.5194/acp-24-11115-2024, 2024
Short summary

Cited articles

Ackerman, T. P., Liou, K.-N., Valero, F. P. J., and Pfister, L.: Heating Rates in Tropical Anvils, J. Atmos. Sci., 45, 1606–1623, https://doi.org/10.1175/1520-0469(1988)045<1606:HRITA>2.0.CO;2, 1988. 
Aumann, H. H., Behrangi, A., and Wang, Y.: Increased Frequency of Extreme Tropical Deep Convection: AIRS Observations and Climate Model Predictions, Geophys. Res. Lett., 45, 13530–13537, https://doi.org/10.1029/2018GL079423, 2018. 
Austin, R. T., Heymsfield, A. J., and Stephens, G. L.: Retrieval of ice cloud microphysical parameters using the CloudSat millimeter-wave radar and temperature, J. Geophys. Res., 114, D00A23, https://doi.org/10.1029/2008JD010049, 2009. 
Bergman, J. W. and Hendon, H. H.: Cloud Radiative Forcing of the Low-Latitude Tropospheric Circulation: Linear Calculations, J. Atmos. Sci., 57, 2225–2245, https://doi.org/10.1175/1520-0469(2000)057<2225:CRFOTL>2.0.CO;2, 2000. 
Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh, S.K., Sherwood, S., Stevens, B., and Zhang, X. Y.: Clouds and aerosols, in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Doschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, UK, 571–657, https://doi.org/10.1017/CBO9781107415324.01, 2013. 
Download
Short summary
Tropical anvils formed by convective outflow play a crucial role in modulating the Earth’s energy budget and heat transport. To explore the relation between these anvils and convection, we built 3D radiative heating fields, based on machine learning employed on cloud and atmospheric properties from IR sounder and meteorological reanalyses, trained on lidar–radar retrievals. The 15-year time series reveals colder convective systems during warm periods, affecting the atmospheric heating structure.
Altmetrics
Final-revised paper
Preprint