the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Heavy air pollution with a unique “non-stagnant” atmospheric boundary layer in the Yangtze River middle basin aggravated by regional transport of PM2.5 over China
Chao Yu
Tianliang Zhao
Yongqing Bai
Lei Zhang
Shaofei Kong
Xingna Yu
Jinhai He
Chunguang Cui
Yinchang You
Guoxu Ma
Ming Wu
Jiacheng Chang
Related authors
No articles found.
Our research explored changes in ozone levels in the northwest Pacific region over 30 years, revealing a significant increase in the middle-to-upper troposphere, especially during spring and summer. This rise is influenced by both stratospheric and tropospheric sources, which affect climate and air quality in East Asia. This work underscores the need for continued study to understand underlying mechanisms.
windowof vapor in the troposphere. The effects of the TP's vertical transport window of vapor are of importance in global climate change.
Related subject area
Clouds over the Southern Ocean are crucial to Earth's energy balance, but understanding the factors that control them is complex. Our research examines how weather patterns affect tiny particles called cloud condensation nuclei (CCN), which influence cloud properties. Using data from Kennaook / Cape Grim, we found that winter air from Antarctica brings cleaner conditions with lower CCN, while summer patterns from Australia transport more particles. Precipitation also helps reduce CCN in winter.