Articles | Volume 20, issue 8
https://doi.org/10.5194/acp-20-4905-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-20-4905-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Modeling organic aerosol over Europe in summer conditions with the VBS-GECKO parameterization: sensitivity to secondary organic compound properties and IVOC (intermediate-volatility organic compound) emissions
Victor Lannuque
CORRESPONDING AUTHOR
LISA, UMR CNRS 7583, IPSL, Université Paris Est Créteil and
Université de Paris, 94010 Créteil CEDEX, France
INERIS, National Institute for Industrial Environment and Risks,
Parc Technologique ALATA, 60550 Verneuil-en-Halatte, France
Agence de l'Environnement et de la Maîtrise de l'Energie, 20
avenue du Grésillé – BP 90406, 49004 Angers CEDEX 01, France
now at: CEREA, Joint Laboratory École des Ponts ParisTech – EDF R&D, Université Paris-Est, 77455 Marne la Vallée, France
Florian Couvidat
CORRESPONDING AUTHOR
INERIS, National Institute for Industrial Environment and Risks,
Parc Technologique ALATA, 60550 Verneuil-en-Halatte, France
Marie Camredon
LISA, UMR CNRS 7583, IPSL, Université Paris Est Créteil and
Université de Paris, 94010 Créteil CEDEX, France
Bernard Aumont
LISA, UMR CNRS 7583, IPSL, Université Paris Est Créteil and
Université de Paris, 94010 Créteil CEDEX, France
Bertrand Bessagnet
INERIS, National Institute for Industrial Environment and Risks,
Parc Technologique ALATA, 60550 Verneuil-en-Halatte, France
now at: CITEPA: Technical Reference Center for Air Pollution and
Climate Change, 42, rue de Paradis, 75010 Paris, France
Related authors
Victor Lannuque and Karine Sartelet
Atmos. Chem. Phys., 24, 8589–8606, https://doi.org/10.5194/acp-24-8589-2024, https://doi.org/10.5194/acp-24-8589-2024, 2024
Short summary
Short summary
Large uncertainties remain in understanding secondary organic aerosol (SOA) formation and speciation from naphthalene oxidation. This study details the development of the first near-explicit chemical scheme for naphthalene oxidation by OH, which includes kinetic and mechanistic data, and is able to reproduce most of the experimentally identified products in both gas and particle phases.
Victor Lannuque, Barbara D'Anna, Evangelia Kostenidou, Florian Couvidat, Alvaro Martinez-Valiente, Philipp Eichler, Armin Wisthaler, Markus Müller, Brice Temime-Roussel, Richard Valorso, and Karine Sartelet
Atmos. Chem. Phys., 23, 15537–15560, https://doi.org/10.5194/acp-23-15537-2023, https://doi.org/10.5194/acp-23-15537-2023, 2023
Short summary
Short summary
Large uncertainties remain in understanding secondary organic aerosol (SOA) formation from toluene oxidation. In this study, speciation measurements in gaseous and particulate phases were carried out, providing partitioning and volatility data on individual toluene SOA components at different temperatures. A new detailed oxidation mechanism was developed to improve modeled speciation, and effects of different processes involved in gas–particle partitioning at the molecular scale are explored.
Victor Lannuque, Bastien Sauvage, Brice Barret, Hannah Clark, Gilles Athier, Damien Boulanger, Jean-Pierre Cammas, Jean-Marc Cousin, Alain Fontaine, Eric Le Flochmoën, Philippe Nédélec, Hervé Petetin, Isabelle Pfaffenzeller, Susanne Rohs, Herman G. J. Smit, Pawel Wolff, and Valérie Thouret
Atmos. Chem. Phys., 21, 14535–14555, https://doi.org/10.5194/acp-21-14535-2021, https://doi.org/10.5194/acp-21-14535-2021, 2021
Short summary
Short summary
The African intertropical troposphere is one of the world areas where the increase in ozone mixing ratio has been most pronounced since 1980 and where high carbon monoxide mixing ratios are found in altitude. In this article, IAGOS aircraft measurements, IASI satellite instrument observations, and SOFT-IO model products are used to explore the seasonal distribution variations and the origin of ozone and carbon monoxide over the African upper troposphere.
Victor Lannuque, Marie Camredon, Florian Couvidat, Alma Hodzic, Richard Valorso, Sasha Madronich, Bertrand Bessagnet, and Bernard Aumont
Atmos. Chem. Phys., 18, 13411–13428, https://doi.org/10.5194/acp-18-13411-2018, https://doi.org/10.5194/acp-18-13411-2018, 2018
Short summary
Short summary
Large uncertainties remain in understanding the influence of atmospheric environmental conditions on secondary organic aerosol (SOA) formation, evolution and properties. In this article, the GECKO-A modelling tool has been used in a box model under various environmental conditions to (i) explore the sensitivity of SOA formation and properties to changes on physical and chemical conditions and (ii) develop a volatility-basis-set-type parameterization for air quality models.
Y. S. La, M. Camredon, P. J. Ziemann, R. Valorso, A. Matsunaga, V. Lannuque, J. Lee-Taylor, A. Hodzic, S. Madronich, and B. Aumont
Atmos. Chem. Phys., 16, 1417–1431, https://doi.org/10.5194/acp-16-1417-2016, https://doi.org/10.5194/acp-16-1417-2016, 2016
Short summary
Short summary
The potential impact of chamber walls on the loss of gaseous organic species and secondary organic aerosol (SOA) formation has been explored using the GECKO-A modeling tool, which explicitly represents SOA formation and gas-wall partitioning. The model was compared with 41 smog chamber experiments of SOA formation under OH oxidation of alkane and alkene serie. The organic vapor loss to the chamber walls is found to affect SOA yields as well as the composition of the gas and the particle phase.
Matthieu Vida, Gilles Foret, Guillaume Siour, Florian Couvidat, Olivier Favez, Gaelle Uzu, Arineh Cholakian, Sébastien Conil, Matthias Beekmann, and Jean-Luc Jaffrezo
Atmos. Chem. Phys., 24, 10601–10615, https://doi.org/10.5194/acp-24-10601-2024, https://doi.org/10.5194/acp-24-10601-2024, 2024
Short summary
Short summary
We simulate 2 years of atmospheric fungal spores over France and use observations of polyols and primary biogenic factors from positive matrix factorisation. The representation of emissions taking into account a proxy for vegetation surface and specific humidity enables us to reproduce very accurately the seasonal cycle of fungal spores. Furthermore, we estimate that fungal spores can account for 20 % of PM10 and 40 % of the organic fraction of PM10 over vegetated areas in summer.
Victor Lannuque and Karine Sartelet
Atmos. Chem. Phys., 24, 8589–8606, https://doi.org/10.5194/acp-24-8589-2024, https://doi.org/10.5194/acp-24-8589-2024, 2024
Short summary
Short summary
Large uncertainties remain in understanding secondary organic aerosol (SOA) formation and speciation from naphthalene oxidation. This study details the development of the first near-explicit chemical scheme for naphthalene oxidation by OH, which includes kinetic and mechanistic data, and is able to reproduce most of the experimentally identified products in both gas and particle phases.
Alice Maison, Lya Lugon, Soo-Jin Park, Alexia Baudic, Christopher Cantrell, Florian Couvidat, Barbara D'Anna, Claudia Di Biagio, Aline Gratien, Valérie Gros, Carmen Kalalian, Julien Kammer, Vincent Michoud, Jean-Eudes Petit, Marwa Shahin, Leila Simon, Myrto Valari, Jérémy Vigneron, Andrée Tuzet, and Karine Sartelet
Atmos. Chem. Phys., 24, 6011–6046, https://doi.org/10.5194/acp-24-6011-2024, https://doi.org/10.5194/acp-24-6011-2024, 2024
Short summary
Short summary
This study presents the development of a bottom-up inventory of urban tree biogenic emissions. Emissions are computed for each tree based on their location and characteristics and are integrated in the regional air quality model WRF-CHIMERE. The impact of these biogenic emissions on air quality is quantified for June–July 2022. Over Paris city, urban trees increase the concentrations of particulate organic matter by 4.6 %, of PM2.5 by 0.6 %, and of ozone by 1.0 % on average over 2 months.
Tommaso Galeazzo, Bernard Aumont, Marie Camredon, Richard Valorso, Yong B. Lim, Paul J. Ziemann, and Manabu Shiraiwa
Atmos. Chem. Phys., 24, 5549–5565, https://doi.org/10.5194/acp-24-5549-2024, https://doi.org/10.5194/acp-24-5549-2024, 2024
Short summary
Short summary
Secondary organic aerosol (SOA) derived from n-alkanes is a major component of anthropogenic particulate matter. We provide an analysis of n-alkane SOA by chemistry modeling, machine learning, and laboratory experiments, showing that n-alkane SOA adopts low-viscous semi-solid or liquid states. Our results indicate few kinetic limitations of mass accommodation in SOA formation, supporting the application of equilibrium partitioning for simulating n-alkane SOA in large-scale atmospheric models.
Barbara Ervens, Andrew Rickard, Bernard Aumont, William P. L. Carter, Max McGillen, Abdelwahid Mellouki, John Orlando, Bénédicte Picquet-Varrault, Paul Seakins, William Stockwell, Luc Vereecken, and Tim Wallington
EGUsphere, https://doi.org/10.5194/egusphere-2024-1316, https://doi.org/10.5194/egusphere-2024-1316, 2024
Short summary
Short summary
Chemical mechanisms describe the chemical processes in atmospheric models that are used to describe the changes of the atmospheric composition. Therefore, accurate chemical mechanisms are necessary to predict the evolution of air pollution and climate change. The article describes all steps that are needed to build chemical mechanisms and discusses advances and needs of experimental and theoretical research activities needed to build reliable chemical mechanisms.
Philippe Thunis, Jeroen Kuenen, Enrico Pisoni, Bertrand Bessagnet, Manjola Banja, Lech Gawuc, Karol Szymankiewicz, Diego Guizardi, Monica Crippa, Susana Lopez-Aparicio, Marc Guevara, Alexander De Meij, Sabine Schindlbacher, and Alain Clappier
Geosci. Model Dev., 17, 3631–3643, https://doi.org/10.5194/gmd-17-3631-2024, https://doi.org/10.5194/gmd-17-3631-2024, 2024
Short summary
Short summary
An ensemble emission inventory is created with the aim of monitoring the status and progress made with the development of EU-wide inventories. This emission ensemble serves as a common benchmark for the screening and allows for the comparison of more than two inventories at a time. Because the emission “truth” is unknown, the approach does not tell which inventory is the closest to reality, but it identifies inconsistencies that require special attention.
Laurent Menut, Bertrand Bessagnet, Arineh Cholakian, Guillaume Siour, Sylvain Mailler, and Romain Pennel
Geosci. Model Dev., 17, 3645–3665, https://doi.org/10.5194/gmd-17-3645-2024, https://doi.org/10.5194/gmd-17-3645-2024, 2024
Short summary
Short summary
This study is about the modelling of the atmospheric composition in Europe during the summer of 2022, when massive wildfires were observed. It is a sensitivity study dedicated to the relative impacts of two modelling processes that are able to modify the meteorology used for the calculation of the atmospheric chemistry and transport of pollutants.
Hasna Chebaicheb, Joel F. de Brito, Tanguy Amodeo, Florian Couvidat, Jean-Eudes Petit, Emmanuel Tison, Gregory Abbou, Alexia Baudic, Mélodie Chatain, Benjamin Chazeau, Nicolas Marchand, Raphaele Falhun, Florie Francony, Cyril Ratier, Didier Grenier, Romain Vidaud, Shouwen Zhang, Gregory Gille, Laurent Meunier, Caroline Marchand, Véronique Riffault, and Olivier Favez
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-80, https://doi.org/10.5194/essd-2024-80, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Long-term (2015–2021) quasi-continuous measurements have been obtained at 13 French urban sites using online mass spectrometry, to acquire comprehensive chemical composition of submicron particulate matter. The results show their spatial and temporal differences and confirm the predominance of organics in France (40–60 %). These measurements can be used for many future studies such as trend and epidemiological analyses, or comparisons with chemical transport models.
Lauri Johannes Franzon, Marie Camredon, Richard Valorso, Bernard Aumont, and Theo Christian Kurtén
EGUsphere, https://doi.org/10.5194/egusphere-2024-920, https://doi.org/10.5194/egusphere-2024-920, 2024
Short summary
Short summary
In this article we investigate the formation of large, sticky molecules from various organic compounds entering the atmosphere as primary emissions, and the degree to which these processes may contribute to organic aerosol particle mass. More specifically, we are qualitatively investigating a recently discovered chemical reaction channel for one of the most important short-lived radical compounds, peroxy radicals, and discovering which of these reactions are most atmospherically important.
Alexander de Meij, Cornelis Cuvelier, Philippe Thunis, Enrico Pisoni, and Bertrand Bessagnet
Geosci. Model Dev., 17, 587–606, https://doi.org/10.5194/gmd-17-587-2024, https://doi.org/10.5194/gmd-17-587-2024, 2024
Short summary
Short summary
In our study the robustness of the model responses to emission reductions in the EU is assessed when the emission data are changed. Our findings are particularly important to better understand the uncertainties associated to the emission inventories and how these uncertainties impact the level of accuracy of the resulting air quality modelling, which is a key for designing air quality plans. Also crucial is the choice of indicator to avoid misleading interpretations of the results.
Victor Lannuque, Barbara D'Anna, Evangelia Kostenidou, Florian Couvidat, Alvaro Martinez-Valiente, Philipp Eichler, Armin Wisthaler, Markus Müller, Brice Temime-Roussel, Richard Valorso, and Karine Sartelet
Atmos. Chem. Phys., 23, 15537–15560, https://doi.org/10.5194/acp-23-15537-2023, https://doi.org/10.5194/acp-23-15537-2023, 2023
Short summary
Short summary
Large uncertainties remain in understanding secondary organic aerosol (SOA) formation from toluene oxidation. In this study, speciation measurements in gaseous and particulate phases were carried out, providing partitioning and volatility data on individual toluene SOA components at different temperatures. A new detailed oxidation mechanism was developed to improve modeled speciation, and effects of different processes involved in gas–particle partitioning at the molecular scale are explored.
Laurent Menut, Arineh Cholakian, Guillaume Siour, Rémy Lapere, Romain Pennel, Sylvain Mailler, and Bertrand Bessagnet
Atmos. Chem. Phys., 23, 7281–7296, https://doi.org/10.5194/acp-23-7281-2023, https://doi.org/10.5194/acp-23-7281-2023, 2023
Short summary
Short summary
This study is about the wildfires occurring in France during the summer 2022. We study the forest fires that took place in the Landes during the summer of 2022. We show the direct impact of these fires on the air quality, especially downstream of the smoke plume towards the Paris region. We quantify the impact of these fires on the pollutants peak concentrations and the possible exceedance of thresholds.
Rémy Lapere, Nicolás Huneeus, Sylvain Mailler, Laurent Menut, and Florian Couvidat
Atmos. Chem. Phys., 23, 1749–1768, https://doi.org/10.5194/acp-23-1749-2023, https://doi.org/10.5194/acp-23-1749-2023, 2023
Short summary
Short summary
Glaciers in the Andes of central Chile are shrinking rapidly in response to global warming. This melting is accelerated by the deposition of opaque particles onto snow and ice. In this work, model simulations quantify typical deposition rates of soot on glaciers in summer and winter months and show that the contribution of emissions from Santiago is not as high as anticipated. Additionally, the combination of regional- and local-scale meteorology explains the seasonality in deposition.
Zhizhao Wang, Florian Couvidat, and Karine Sartelet
Geosci. Model Dev., 15, 8957–8982, https://doi.org/10.5194/gmd-15-8957-2022, https://doi.org/10.5194/gmd-15-8957-2022, 2022
Short summary
Short summary
Air quality models need to reliably predict secondary organic aerosols (SOAs) at a reasonable computational cost. Thus, we developed GENOA v1.0, a mechanism reduction algorithm that preserves the accuracy of detailed gas-phase chemical mechanisms for SOA formation, thereby improving the practical use of actual chemistry in SOA models. With GENOA, a near-explicit chemical scheme was reduced to 2 % of its original size and computational time, with an average error of less than 3 %.
Philippe Thunis, Alain Clappier, Enrico Pisoni, Bertrand Bessagnet, Jeroen Kuenen, Marc Guevara, and Susana Lopez-Aparicio
Geosci. Model Dev., 15, 5271–5286, https://doi.org/10.5194/gmd-15-5271-2022, https://doi.org/10.5194/gmd-15-5271-2022, 2022
Short summary
Short summary
In this work, we propose a screening method to improve the quality of emission inventories, which are responsible for large uncertainties in air-quality modeling. The first step of screening consists of keeping only emission contributions that are relevant enough. In a second step, the method identifies large differences that provide evidence of methodological divergence or errors. We used the approach to compare two versions of the CAMS-REG European-scale inventory over 150 European cities.
Karine Sartelet, Youngseob Kim, Florian Couvidat, Maik Merkel, Tuukka Petäjä, Jean Sciare, and Alfred Wiedensohler
Atmos. Chem. Phys., 22, 8579–8596, https://doi.org/10.5194/acp-22-8579-2022, https://doi.org/10.5194/acp-22-8579-2022, 2022
Short summary
Short summary
A methodology is defined to estimate number emissions from an inventory providing mass emissions. Number concentrations are simulated over Greater Paris using different nucleation parameterisations (binary, ternary involving sulfuric acid and ammonia, and heteromolecular involving sulfuric acid and extremely low-volatility organics, ELVOCs). The comparisons show that ternary nucleation may not be a dominant process for new particle formation in cities, but they stress the role of ELVOCs.
Emily B. Franklin, Lindsay D. Yee, Bernard Aumont, Robert J. Weber, Paul Grigas, and Allen H. Goldstein
Atmos. Meas. Tech., 15, 3779–3803, https://doi.org/10.5194/amt-15-3779-2022, https://doi.org/10.5194/amt-15-3779-2022, 2022
Short summary
Short summary
The composition of atmospheric aerosols are extremely complex, containing hundreds of thousands of estimated individual compounds. The majority of these compounds have never been catalogued in widely used databases, making them extremely difficult for atmospheric chemists to identify and analyze. In this work, we present Ch3MS-RF, a machine-learning-based model to enable characterization of complex mixtures and prediction of structure-specific properties of unidentifiable organic compounds.
Svetlana Tsyro, Wenche Aas, Augustin Colette, Camilla Andersson, Bertrand Bessagnet, Giancarlo Ciarelli, Florian Couvidat, Kees Cuvelier, Astrid Manders, Kathleen Mar, Mihaela Mircea, Noelia Otero, Maria-Teresa Pay, Valentin Raffort, Yelva Roustan, Mark R. Theobald, Marta G. Vivanco, Hilde Fagerli, Peter Wind, Gino Briganti, Andrea Cappelletti, Massimo D'Isidoro, and Mario Adani
Atmos. Chem. Phys., 22, 7207–7257, https://doi.org/10.5194/acp-22-7207-2022, https://doi.org/10.5194/acp-22-7207-2022, 2022
Short summary
Short summary
Particulate matter (PM) air pollution causes adverse health effects. In Europe, the emissions caused by anthropogenic activities have been reduced in the last decades. To assess the efficiency of emission reductions in improving air quality, we have studied the evolution of PM pollution in Europe. Simulations with six air quality models and observational data indicate a decrease in PM concentrations by 10 % to 30 % across Europe from 2000 to 2010, which is mainly a result of emission reductions.
Elsa Real, Florian Couvidat, Anthony Ung, Laure Malherbe, Blandine Raux, Alicia Gressent, and Augustin Colette
Earth Syst. Sci. Data, 14, 2419–2443, https://doi.org/10.5194/essd-14-2419-2022, https://doi.org/10.5194/essd-14-2419-2022, 2022
Short summary
Short summary
This paper describes a 16-year (2000–2015) dataset of air pollution concentrations and air quality indicators over France combining background measurements and modeling. Hourly concentrations and regulatory indicators of NO2, O3, PM10 and PM2.5 are produced with 4 km spatial resolution. The overall dataset has been cross-validated and showed overall very good results. We hope that this open-access publication will facilitate further studies on the impacts of air pollution.
Mike J. Newland, Camille Mouchel-Vallon, Richard Valorso, Bernard Aumont, Luc Vereecken, Michael E. Jenkin, and Andrew R. Rickard
Atmos. Chem. Phys., 22, 6167–6195, https://doi.org/10.5194/acp-22-6167-2022, https://doi.org/10.5194/acp-22-6167-2022, 2022
Short summary
Short summary
Alkene ozonolysis produces Criegee intermediates, which can act as oxidants or decompose to give a range of closed-shell and radical products, including OH. Therefore it is essential to accurately represent the chemistry of Criegee intermediates in atmospheric models in order to understand their impacts on atmospheric composition. Here we provide a mechanism construction protocol by which the central features of alkene ozonolysis chemistry can be included in an automatic mechanism generator.
Juan Cuesta, Lorenzo Costantino, Matthias Beekmann, Guillaume Siour, Laurent Menut, Bertrand Bessagnet, Tony C. Landi, Gaëlle Dufour, and Maxim Eremenko
Atmos. Chem. Phys., 22, 4471–4489, https://doi.org/10.5194/acp-22-4471-2022, https://doi.org/10.5194/acp-22-4471-2022, 2022
Short summary
Short summary
We present the first comprehensive study integrating satellite observations of near-surface ozone pollution, surface in situ measurements, and a chemistry-transport model for quantifying the role of anthropogenic emission reductions during the COVID-19 lockdown in spring 2020. It confirms the occurrence of a net enhancement of ozone in central Europe and a reduction elsewhere, except for some hotspots, linked with the reduction of precursor emissions from Europe and the Northern Hemisphere.
Philippe Thunis, Alain Clappier, Alexander de Meij, Enrico Pisoni, Bertrand Bessagnet, and Leonor Tarrason
Atmos. Chem. Phys., 21, 18195–18212, https://doi.org/10.5194/acp-21-18195-2021, https://doi.org/10.5194/acp-21-18195-2021, 2021
Short summary
Short summary
Air pollution's origin in cities is still a point of discussion, and approaches to assess the city's responsibility for its pollution are not harmonized and thus not comparable, resulting in sometimes contradicting interpretations. We show that methodological choices can easily lead to differences of a factor of 2 in terms of responsibility outcome and stress that methodological choices and assumptions most often lead to a systematic and important underestimation of the city's responsibility.
Laurent Menut, Bertrand Bessagnet, Régis Briant, Arineh Cholakian, Florian Couvidat, Sylvain Mailler, Romain Pennel, Guillaume Siour, Paolo Tuccella, Solène Turquety, and Myrto Valari
Geosci. Model Dev., 14, 6781–6811, https://doi.org/10.5194/gmd-14-6781-2021, https://doi.org/10.5194/gmd-14-6781-2021, 2021
Short summary
Short summary
The CHIMERE chemistry-transport model is presented in its new version, V2020r1. Many changes are proposed compared to the previous version. These include online modeling, new parameterizations for aerosols, new emissions schemes, a new parameter file format, the subgrid-scale variability of urban concentrations and new transport schemes.
Gaëlle Dufour, Didier Hauglustaine, Yunjiang Zhang, Maxim Eremenko, Yann Cohen, Audrey Gaudel, Guillaume Siour, Mathieu Lachatre, Axel Bense, Bertrand Bessagnet, Juan Cuesta, Jerry Ziemke, Valérie Thouret, and Bo Zheng
Atmos. Chem. Phys., 21, 16001–16025, https://doi.org/10.5194/acp-21-16001-2021, https://doi.org/10.5194/acp-21-16001-2021, 2021
Short summary
Short summary
The IASI observations and the LMDZ-OR-INCA model simulations show negative ozone trends in the Central East China region in the lower free (3–6 km column) and the upper free (6–9 km column) troposphere. Sensitivity studies from the model show that the Chinese anthropogenic emissions contribute to more than 50 % in the trend. The reduction in NOx emissions that has occurred since 2013 in China seems to lead to a decrease in ozone in the free troposphere, contrary to the increase at the surface.
Zhe Peng, Julia Lee-Taylor, Harald Stark, John J. Orlando, Bernard Aumont, and Jose L. Jimenez
Atmos. Chem. Phys., 21, 14649–14669, https://doi.org/10.5194/acp-21-14649-2021, https://doi.org/10.5194/acp-21-14649-2021, 2021
Short summary
Short summary
We use the fully explicit GECKO-A model to study the OH reactivity (OHR) evolution in the NO-free photooxidation of several volatile organic compounds. Oxidation progressively produces more saturated and functionalized species, then breaks them into small species. OHR per C atom evolution is similar for different precursors once saturated multifunctional species are formed. We also find that partitioning of these species to chamber walls leads to large deviations in chambers from the atmosphere.
Victor Lannuque, Bastien Sauvage, Brice Barret, Hannah Clark, Gilles Athier, Damien Boulanger, Jean-Pierre Cammas, Jean-Marc Cousin, Alain Fontaine, Eric Le Flochmoën, Philippe Nédélec, Hervé Petetin, Isabelle Pfaffenzeller, Susanne Rohs, Herman G. J. Smit, Pawel Wolff, and Valérie Thouret
Atmos. Chem. Phys., 21, 14535–14555, https://doi.org/10.5194/acp-21-14535-2021, https://doi.org/10.5194/acp-21-14535-2021, 2021
Short summary
Short summary
The African intertropical troposphere is one of the world areas where the increase in ozone mixing ratio has been most pronounced since 1980 and where high carbon monoxide mixing ratios are found in altitude. In this article, IAGOS aircraft measurements, IASI satellite instrument observations, and SOFT-IO model products are used to explore the seasonal distribution variations and the origin of ozone and carbon monoxide over the African upper troposphere.
Isaac Kwadjo Afreh, Bernard Aumont, Marie Camredon, and Kelley Claire Barsanti
Atmos. Chem. Phys., 21, 11467–11487, https://doi.org/10.5194/acp-21-11467-2021, https://doi.org/10.5194/acp-21-11467-2021, 2021
Short summary
Short summary
This is the first mechanistic modeling study of secondary organic aerosol (SOA) from the understudied monoterpene, camphene. The semi-explicit chemical model GECKO-A predicted camphene SOA yields that were ~2 times α-pinene. Using 50/50 α-pinene + limonene as a surrogate for camphene increased predicted SOA mass from biomass burning fuels by up to ~100 %. The accurate representation of camphene in air quality models can improve predictions of SOA when camphene is a dominant monoterpene.
Tommaso Galeazzo, Richard Valorso, Ying Li, Marie Camredon, Bernard Aumont, and Manabu Shiraiwa
Atmos. Chem. Phys., 21, 10199–10213, https://doi.org/10.5194/acp-21-10199-2021, https://doi.org/10.5194/acp-21-10199-2021, 2021
Short summary
Short summary
We simulate SOA viscosity with explicit modeling of gas-phase oxidation of isoprene and α-pinene. While the viscosity dependence on relative humidity and mass loadings is captured well by simulations, the model underestimates measured viscosity, indicating missing processes. Kinetic limitations and reduction in mass accommodation may cause an increase in viscosity. The developed model is powerful for investigation of the interplay among gas reactions, chemical composition and phase state.
Gabriel Isaacman-VanWertz and Bernard Aumont
Atmos. Chem. Phys., 21, 6541–6563, https://doi.org/10.5194/acp-21-6541-2021, https://doi.org/10.5194/acp-21-6541-2021, 2021
Short summary
Short summary
There are tens of thousands of different chemical compounds in the atmosphere. To tackle this complexity, there are a wide range of different methods to estimate their physical and chemical properties. We use these methods to understand how much the detailed structure of a molecule impacts its properties, and the extent to which properties can be estimated without knowing this level of detail. We find that structure matters, but methods lacking that level of detail still perform reasonably well.
Audrey Fortems-Cheiney, Gaëlle Dufour, Karine Dufossé, Florian Couvidat, Jean-Marc Gilliot, Guillaume Siour, Matthias Beekmann, Gilles Foret, Frederik Meleux, Lieven Clarisse, Pierre-François Coheur, Martin Van Damme, Cathy Clerbaux, and Sophie Génermont
Atmos. Chem. Phys., 20, 13481–13495, https://doi.org/10.5194/acp-20-13481-2020, https://doi.org/10.5194/acp-20-13481-2020, 2020
Short summary
Short summary
Studies have suggested the importance of ammonia emissions on pollution particle formation over Europe, whose main atmospheric source is agriculture. In this study, we performed an inter-comparison of two alternative inventories, both with a reference inventory, that quantify the French ammonia emissions during spring 2011. Over regions with large mineral fertilizer use, like over northeastern France, NH3 emissions are probably considerably underestimated by the reference inventory.
Michael E. Jenkin, Richard Valorso, Bernard Aumont, Mike J. Newland, and Andrew R. Rickard
Atmos. Chem. Phys., 20, 12921–12937, https://doi.org/10.5194/acp-20-12921-2020, https://doi.org/10.5194/acp-20-12921-2020, 2020
Short summary
Short summary
Unsaturated organic compounds are emitted in large quantities from natural and human-influenced sources. Atmospheric removal occurs significantly by reaction with ozone, initiating reaction sequences forming free radicals and organic pollutants in the gaseous and particulate phases. Due to their very large number, it is impossible to study the reaction rate for every compound, and most have to be estimated. Updated and extended estimation methods are reported for use in atmospheric models.
Camille Mouchel-Vallon, Julia Lee-Taylor, Alma Hodzic, Paulo Artaxo, Bernard Aumont, Marie Camredon, David Gurarie, Jose-Luis Jimenez, Donald H. Lenschow, Scot T. Martin, Janaina Nascimento, John J. Orlando, Brett B. Palm, John E. Shilling, Manish Shrivastava, and Sasha Madronich
Atmos. Chem. Phys., 20, 5995–6014, https://doi.org/10.5194/acp-20-5995-2020, https://doi.org/10.5194/acp-20-5995-2020, 2020
Short summary
Short summary
The GoAmazon 2014/5 field campaign took place near the city of Manaus, Brazil, isolated in the Amazon rainforest, to study the impacts of urban pollution on natural air masses. We simulated this campaign with an extremely detailed organic chemistry model to understand how the city would affect the growth and composition of natural aerosol particles. Discrepancies between the model and the measurements indicate that the chemistry of naturally emitted organic compounds is still poorly understood.
Laurent Menut, Guillaume Siour, Bertrand Bessagnet, Florian Couvidat, Emilie Journet, Yves Balkanski, and Karine Desboeufs
Geosci. Model Dev., 13, 2051–2071, https://doi.org/10.5194/gmd-13-2051-2020, https://doi.org/10.5194/gmd-13-2051-2020, 2020
Short summary
Short summary
Modelling of mineral dust is often done using one single mean species. In this study, differentiated mineral species with their chemical composition are implemented in the CHIMERE regional chemistry-transport model by using global databases. Simulations are carried out to quantify the realism and gain of such mineralogy.
Giancarlo Ciarelli, Mark R. Theobald, Marta G. Vivanco, Matthias Beekmann, Wenche Aas, Camilla Andersson, Robert Bergström, Astrid Manders-Groot, Florian Couvidat, Mihaela Mircea, Svetlana Tsyro, Hilde Fagerli, Kathleen Mar, Valentin Raffort, Yelva Roustan, Maria-Teresa Pay, Martijn Schaap, Richard Kranenburg, Mario Adani, Gino Briganti, Andrea Cappelletti, Massimo D'Isidoro, Cornelis Cuvelier, Arineh Cholakian, Bertrand Bessagnet, Peter Wind, and Augustin Colette
Geosci. Model Dev., 12, 4923–4954, https://doi.org/10.5194/gmd-12-4923-2019, https://doi.org/10.5194/gmd-12-4923-2019, 2019
Short summary
Short summary
The novel multi-model EURODELTA-Trends exercise provided 21 years of continuous PM components and their gas-phase precursor concentrations over Europe from the year 1990. The models’ capabilities to reproduce PM components and gas-phase PM precursor trends over the 1990–2010 period is the key focus of this study. The models were able to reproduce the observed trends relatively well, indicating a possible shift in the thermodynamic equilibrium between gas and particle phases.
Peter Bräuer, Camille Mouchel-Vallon, Andreas Tilgner, Anke Mutzel, Olaf Böge, Maria Rodigast, Laurent Poulain, Dominik van Pinxteren, Ralf Wolke, Bernard Aumont, and Hartmut Herrmann
Atmos. Chem. Phys., 19, 9209–9239, https://doi.org/10.5194/acp-19-9209-2019, https://doi.org/10.5194/acp-19-9209-2019, 2019
Short summary
Short summary
The article presents a new protocol for computer-assisted automated aqueous-phase chemistry mechanism generation, which has been validated against chamber experiments. Together with a large kinetics database and improved prediction methods for kinetic data, the novel protocol provides an unmatched tool for detailed studies of tropospheric aqueous-phase chemistry in complex model studies and for the design and analysis of chamber experiments.
Michael E. Jenkin, Richard Valorso, Bernard Aumont, and Andrew R. Rickard
Atmos. Chem. Phys., 19, 7691–7717, https://doi.org/10.5194/acp-19-7691-2019, https://doi.org/10.5194/acp-19-7691-2019, 2019
Short summary
Short summary
Organic compounds are emitted in large amounts from natural and human-influenced sources. Peroxy radicals are key intermediates formed during oxidation of organic compounds, and play a central role in mechanisms forming pollutants such as ozone and organic particles. Due to the large number of different peroxy radicals formed, it is impossible to study the rates of all of their reactions, and most have to be estimated. Updated and new estimation methods are reported for use in atmospheric models
Marwa Majdi, Karine Sartelet, Grazia Maria Lanzafame, Florian Couvidat, Youngseob Kim, Mounir Chrit, and Solene Turquety
Atmos. Chem. Phys., 19, 5543–5569, https://doi.org/10.5194/acp-19-5543-2019, https://doi.org/10.5194/acp-19-5543-2019, 2019
Youngseob Kim, Karine Sartelet, and Florian Couvidat
Atmos. Chem. Phys., 19, 1241–1261, https://doi.org/10.5194/acp-19-1241-2019, https://doi.org/10.5194/acp-19-1241-2019, 2019
Short summary
Short summary
Assumptions (ideality and thermodynamic equilibrium) commonly made in 3-dimensional air quality models were reconsidered to evaluate their impacts on secondary organic aerosol (SOA) formation. Non-ideality (short-, medium- and long-range interactions of organics and inorganics) influences SOA concentrations by about 30 % over Europe. If SOA are highly viscous rather than inviscid, hydrophobic SOA concentrations increase by 6 % but can increase by an order of magnitude for volatile compounds.
Mark R. Theobald, Marta G. Vivanco, Wenche Aas, Camilla Andersson, Giancarlo Ciarelli, Florian Couvidat, Kees Cuvelier, Astrid Manders, Mihaela Mircea, Maria-Teresa Pay, Svetlana Tsyro, Mario Adani, Robert Bergström, Bertrand Bessagnet, Gino Briganti, Andrea Cappelletti, Massimo D'Isidoro, Hilde Fagerli, Kathleen Mar, Noelia Otero, Valentin Raffort, Yelva Roustan, Martijn Schaap, Peter Wind, and Augustin Colette
Atmos. Chem. Phys., 19, 379–405, https://doi.org/10.5194/acp-19-379-2019, https://doi.org/10.5194/acp-19-379-2019, 2019
Short summary
Short summary
Model estimates of the mean European wet deposition of nitrogen and sulfur for 1990 to 2010 were within 40 % of the observed values. As a result of systematic biases, the models were better at estimating relative trends for the periods 1990–2000 and 2000–2010 than the absolute trends. Although the predominantly decreasing trends were mostly due to emission reductions, they were partially offset by other factors (e.g. changes in precipitation) during the first period, but not the second.
Florian Couvidat, Marta G. Vivanco, and Bertrand Bessagnet
Atmos. Chem. Phys., 18, 15743–15766, https://doi.org/10.5194/acp-18-15743-2018, https://doi.org/10.5194/acp-18-15743-2018, 2018
Short summary
Short summary
Several new parameterizations and mechanisms for SOA formation are developed based on available experimental results. To evaluate the parameterizations, a box model was developed to simulate SOA formation from monoterpenes and aromatics in the environmental chamber EUPHORE. This box model takes oligomerization, nonideality of the aerosol, multiphase partitioning, aging, vapor wall losses and particle-phase diffusion into account. All these phenomena are rarely taken into account together.
Victor Lannuque, Marie Camredon, Florian Couvidat, Alma Hodzic, Richard Valorso, Sasha Madronich, Bertrand Bessagnet, and Bernard Aumont
Atmos. Chem. Phys., 18, 13411–13428, https://doi.org/10.5194/acp-18-13411-2018, https://doi.org/10.5194/acp-18-13411-2018, 2018
Short summary
Short summary
Large uncertainties remain in understanding the influence of atmospheric environmental conditions on secondary organic aerosol (SOA) formation, evolution and properties. In this article, the GECKO-A modelling tool has been used in a box model under various environmental conditions to (i) explore the sensitivity of SOA formation and properties to changes on physical and chemical conditions and (ii) develop a volatility-basis-set-type parameterization for air quality models.
Noelia Otero, Jana Sillmann, Kathleen A. Mar, Henning W. Rust, Sverre Solberg, Camilla Andersson, Magnuz Engardt, Robert Bergström, Bertrand Bessagnet, Augustin Colette, Florian Couvidat, Cournelius Cuvelier, Svetlana Tsyro, Hilde Fagerli, Martijn Schaap, Astrid Manders, Mihaela Mircea, Gino Briganti, Andrea Cappelletti, Mario Adani, Massimo D'Isidoro, María-Teresa Pay, Mark Theobald, Marta G. Vivanco, Peter Wind, Narendra Ojha, Valentin Raffort, and Tim Butler
Atmos. Chem. Phys., 18, 12269–12288, https://doi.org/10.5194/acp-18-12269-2018, https://doi.org/10.5194/acp-18-12269-2018, 2018
Short summary
Short summary
This paper evaluates the capability of air-quality models to capture the observed relationship between surface ozone concentrations and meteorology over Europe. The air-quality models tended to overestimate the influence of maximum temperature and surface solar radiation. None of the air-quality models captured the strength of the observed relationship between ozone and relative humidity appropriately, underestimating the effect of relative humidity, a key factor in the ozone removal processes.
Marta G. Vivanco, Mark R. Theobald, Héctor García-Gómez, Juan Luis Garrido, Marje Prank, Wenche Aas, Mario Adani, Ummugulsum Alyuz, Camilla Andersson, Roberto Bellasio, Bertrand Bessagnet, Roberto Bianconi, Johannes Bieser, Jørgen Brandt, Gino Briganti, Andrea Cappelletti, Gabriele Curci, Jesper H. Christensen, Augustin Colette, Florian Couvidat, Cornelis Cuvelier, Massimo D'Isidoro, Johannes Flemming, Andrea Fraser, Camilla Geels, Kaj M. Hansen, Christian Hogrefe, Ulas Im, Oriol Jorba, Nutthida Kitwiroon, Astrid Manders, Mihaela Mircea, Noelia Otero, Maria-Teresa Pay, Luca Pozzoli, Efisio Solazzo, Svetlana Tsyro, Alper Unal, Peter Wind, and Stefano Galmarini
Atmos. Chem. Phys., 18, 10199–10218, https://doi.org/10.5194/acp-18-10199-2018, https://doi.org/10.5194/acp-18-10199-2018, 2018
Short summary
Short summary
European wet and dry atmospheric deposition of N and S estimated by 14 air quality models was found to vary substantially. An ensemble of models meeting acceptability criteria was used to estimate the exceedances of the critical loads for N in habitats within the Natura 2000 network, as well as their lower and upper limits. Scenarios with 20 % emission reductions in different regions of the world showed that European emissions are responsible for most of the N and S deposition in Europe.
Michael E. Jenkin, Richard Valorso, Bernard Aumont, Andrew R. Rickard, and Timothy J. Wallington
Atmos. Chem. Phys., 18, 9297–9328, https://doi.org/10.5194/acp-18-9297-2018, https://doi.org/10.5194/acp-18-9297-2018, 2018
Short summary
Short summary
Organic compounds are emitted in large quantities from natural and human-influenced sources. Removal from the atmosphere occurs mainly by reaction with hydroxyl (OH) radicals, and initiates reaction sequences forming pollutants such as ozone and organic particles. Due to their very large number, it is impossible to measure the removal rate for all compounds, and most have to be estimated. An updated and extended estimation method is reported for use in atmospheric models and impact assessments.
Michael E. Jenkin, Richard Valorso, Bernard Aumont, Andrew R. Rickard, and Timothy J. Wallington
Atmos. Chem. Phys., 18, 9329–9349, https://doi.org/10.5194/acp-18-9329-2018, https://doi.org/10.5194/acp-18-9329-2018, 2018
Short summary
Short summary
Organic compounds are emitted in large quantities from natural and human-influenced sources. Removal from the atmosphere occurs mainly by reaction with hydroxyl (OH) radicals, and initiates reaction sequences forming pollutants such as ozone and organic particles. Due to their very large number, it is impossible to measure the removal rate for all compounds, and most have to be estimated. An updated and extended estimation method is reported for use in atmospheric models and impact assessments.
Arineh Cholakian, Matthias Beekmann, Augustin Colette, Isabelle Coll, Guillaume Siour, Jean Sciare, Nicolas Marchand, Florian Couvidat, Jorge Pey, Valerie Gros, Stéphane Sauvage, Vincent Michoud, Karine Sellegri, Aurélie Colomb, Karine Sartelet, Helen Langley DeWitt, Miriam Elser, André S. H. Prévot, Sonke Szidat, and François Dulac
Atmos. Chem. Phys., 18, 7287–7312, https://doi.org/10.5194/acp-18-7287-2018, https://doi.org/10.5194/acp-18-7287-2018, 2018
Short summary
Short summary
In this work, four schemes for the simulation of organic aerosols in the western Mediterranean basin are added to the CHIMERE chemistry–transport model; the resulting simulations are then compared to measurements obtained from ChArMEx. It is concluded that the scheme taking into account the fragmentation and the formation of nonvolatile organic aerosols corresponds better to measurements; the major source of this aerosol in the western Mediterranean is found to be of biogenic origin.
Florian Couvidat, Bertrand Bessagnet, Marta Garcia-Vivanco, Elsa Real, Laurent Menut, and Augustin Colette
Geosci. Model Dev., 11, 165–194, https://doi.org/10.5194/gmd-11-165-2018, https://doi.org/10.5194/gmd-11-165-2018, 2018
Short summary
Short summary
This paper includes the development of a new aerosol module in the air quality model CHIMERE to improve particulate matter (PM) simulation. The results of the model are compared to numerous measurements over Europe to evaluate the strengths and weaknesses of the model.
Yunjiang Zhang, Lili Tang, Philip L. Croteau, Olivier Favez, Yele Sun, Manjula R. Canagaratna, Zhuang Wang, Florian Couvidat, Alexandre Albinet, Hongliang Zhang, Jean Sciare, André S. H. Prévôt, John T. Jayne, and Douglas R. Worsnop
Atmos. Chem. Phys., 17, 14501–14517, https://doi.org/10.5194/acp-17-14501-2017, https://doi.org/10.5194/acp-17-14501-2017, 2017
Short summary
Short summary
We conducted the first field measurements of non-refractory fine aerosols (NR-PM2.5) in a megacity of eastern China using a PM2.5-ACSM along with a PM1-ACSM measurement. Inter-comparisons demonstrated that the NR-PM2.5 components can be characterized. Substantial mass fractions of aerosol species were observed in the size range of 1–2.5 μm, with sulfate and SOA being the two largest contributors. The impacts of aerosol water driven by secondary inorganic aerosols on SOA formation were explored.
Mounir Chrit, Karine Sartelet, Jean Sciare, Jorge Pey, Nicolas Marchand, Florian Couvidat, Karine Sellegri, and Matthias Beekmann
Atmos. Chem. Phys., 17, 12509–12531, https://doi.org/10.5194/acp-17-12509-2017, https://doi.org/10.5194/acp-17-12509-2017, 2017
Augustin Colette, Camilla Andersson, Astrid Manders, Kathleen Mar, Mihaela Mircea, Maria-Teresa Pay, Valentin Raffort, Svetlana Tsyro, Cornelius Cuvelier, Mario Adani, Bertrand Bessagnet, Robert Bergström, Gino Briganti, Tim Butler, Andrea Cappelletti, Florian Couvidat, Massimo D'Isidoro, Thierno Doumbia, Hilde Fagerli, Claire Granier, Chris Heyes, Zig Klimont, Narendra Ojha, Noelia Otero, Martijn Schaap, Katarina Sindelarova, Annemiek I. Stegehuis, Yelva Roustan, Robert Vautard, Erik van Meijgaard, Marta Garcia Vivanco, and Peter Wind
Geosci. Model Dev., 10, 3255–3276, https://doi.org/10.5194/gmd-10-3255-2017, https://doi.org/10.5194/gmd-10-3255-2017, 2017
Short summary
Short summary
The EURODELTA-Trends numerical experiment has been designed to assess the capability of chemistry-transport models to capture the evolution of surface air quality over the 1990–2010 period in Europe. It also includes sensitivity experiments in order to analyse the relative contribution of (i) emission changes, (ii) meteorological variability, and (iii) boundary conditions to air quality trends. The article is a detailed presentation of the experiment design and participating models.
Sylvain Mailler, Laurent Menut, Dmitry Khvorostyanov, Myrto Valari, Florian Couvidat, Guillaume Siour, Solène Turquety, Régis Briant, Paolo Tuccella, Bertrand Bessagnet, Augustin Colette, Laurent Létinois, Kostantinos Markakis, and Frédérik Meleux
Geosci. Model Dev., 10, 2397–2423, https://doi.org/10.5194/gmd-10-2397-2017, https://doi.org/10.5194/gmd-10-2397-2017, 2017
Short summary
Short summary
CHIMERE is a chemistry-transport model initially designed for box-modelling of the regional atmospheric composition. In the recent years, CHIMERE has been extended to be able to model atmospheric composition at all scales from urban to hemispheric scale, which implied major changes on the coordinate systems as well as on physical processes. This study describes how and why these changes have been brought to the model, largely increasing the range of its possible use.
David O. Topping, James Allan, M. Rami Alfarra, and Bernard Aumont
Geosci. Model Dev., 10, 2365–2377, https://doi.org/10.5194/gmd-10-2365-2017, https://doi.org/10.5194/gmd-10-2365-2017, 2017
Short summary
Short summary
Our ability to model the chemical and thermodynamic processes that lead to secondary organic aerosol (SOA) formation is thought to be hampered by the complexity of the system. In this proof of concept study, the ability to train supervised methods to predict electron impact ionisation (EI) mass spectra for the AMS is evaluated to facilitate improved model evaluation. The study demonstrates the use of a methodology that would be improved with more training data and data from simple mixed systems.
Camille Mouchel-Vallon, Laurent Deguillaume, Anne Monod, Hélène Perroux, Clémence Rose, Giovanni Ghigo, Yoann Long, Maud Leriche, Bernard Aumont, Luc Patryl, Patrick Armand, and Nadine Chaumerliac
Geosci. Model Dev., 10, 1339–1362, https://doi.org/10.5194/gmd-10-1339-2017, https://doi.org/10.5194/gmd-10-1339-2017, 2017
Short summary
Short summary
The Cloud Explicit Physico-chemical Scheme (CLEPS 1.0) describes oxidation of water-soluble organic compounds resulting from isoprene oxidation. It is based on structure activity relationships (SARs) (global rate constants and branching ratios for HO• abstraction and addition) and GROMHE SAR (Henry's law constants for undocumented species). It is coupled to the MCM gas phase mechanism and is included in a model using the DSMACC model and KPP to analyze experimental and field data.
Laurent Menut, Sylvain Mailler, Bertrand Bessagnet, Guillaume Siour, Augustin Colette, Florian Couvidat, and Frédérik Meleux
Geosci. Model Dev., 10, 1199–1208, https://doi.org/10.5194/gmd-10-1199-2017, https://doi.org/10.5194/gmd-10-1199-2017, 2017
Short summary
Short summary
A simple and complementary model evaluation technique for regional chemistry transport is discussed. The methodology is based on the concept that we can learn about model performance by comparing the simulation results with observational data available for time periods other than the period originally targeted.
Laurent Menut, Guillaume Siour, Sylvain Mailler, Florian Couvidat, and Bertrand Bessagnet
Atmos. Chem. Phys., 16, 12961–12982, https://doi.org/10.5194/acp-16-12961-2016, https://doi.org/10.5194/acp-16-12961-2016, 2016
Short summary
Short summary
The aerosol is modelled during the summer 2013 with the WRF and CHIMERE models and over a large area encompassing Africa, Mediterranean sea and west Europe. The modelled aerosol is compared to available measurements such as the AERONET and EMEP networks. The model ability to estimate the aerosol speciation and size distribution is quantified.
Bertrand Bessagnet, Guido Pirovano, Mihaela Mircea, Cornelius Cuvelier, Armin Aulinger, Giuseppe Calori, Giancarlo Ciarelli, Astrid Manders, Rainer Stern, Svetlana Tsyro, Marta García Vivanco, Philippe Thunis, Maria-Teresa Pay, Augustin Colette, Florian Couvidat, Frédérik Meleux, Laurence Rouïl, Anthony Ung, Sebnem Aksoyoglu, José María Baldasano, Johannes Bieser, Gino Briganti, Andrea Cappelletti, Massimo D'Isidoro, Sandro Finardi, Richard Kranenburg, Camillo Silibello, Claudio Carnevale, Wenche Aas, Jean-Charles Dupont, Hilde Fagerli, Lucia Gonzalez, Laurent Menut, André S. H. Prévôt, Pete Roberts, and Les White
Atmos. Chem. Phys., 16, 12667–12701, https://doi.org/10.5194/acp-16-12667-2016, https://doi.org/10.5194/acp-16-12667-2016, 2016
Short summary
Short summary
The EURODELTA III exercise allows a very comprehensive intercomparison and evaluation of air quality models' performance. On average, the models provide a rather good picture of the particulate matter (PM) concentrations over Europe even if the highest concentrations are underestimated. The meteorology is responsible for model discrepancies, while the lack of emissions, particularly in winter, is mentioned as the main reason for the underestimations of PM.
Vincent Lemaire, Isabelle Coll, Florian Couvidat, Camille Mouchel-Vallon, Christian Seigneur, and Guillaume Siour
Geosci. Model Dev., 9, 1361–1382, https://doi.org/10.5194/gmd-9-1361-2016, https://doi.org/10.5194/gmd-9-1361-2016, 2016
Short summary
Short summary
Oligomerization is one of the most important identified processes of secondary organic aerosol evolution. We have simulated the formation of oligomers from biogenic precursors, using two different parameterizations implemented in the air quality model CHIMERE. This study shows that oligomer concentration fields are quite sensitive to the way the competition between local formation, evaporation and transport is restituted. The benefits and disadvantages of each approach are discussed in details.
Renee C. McVay, Xuan Zhang, Bernard Aumont, Richard Valorso, Marie Camredon, Yuyi S. La, Paul O. Wennberg, and John H. Seinfeld
Atmos. Chem. Phys., 16, 2785–2802, https://doi.org/10.5194/acp-16-2785-2016, https://doi.org/10.5194/acp-16-2785-2016, 2016
Short summary
Short summary
Secondary organic aerosol (SOA) affects climate change, human health, and cloud formation. We examine SOA formation from the biogenic hydrocarbon α-pinene and observe unexpected experimental results that run contrary to model predictions. Various processes are explored via modeling to rationalize the observations. The paper identifies the importance of further constraining via experiments various steps in the chemical mechanism in order to accurately predict SOA worldwide.
David Topping, Mark Barley, Michael K. Bane, Nicholas Higham, Bernard Aumont, Nicholas Dingle, and Gordon McFiggans
Geosci. Model Dev., 9, 899–914, https://doi.org/10.5194/gmd-9-899-2016, https://doi.org/10.5194/gmd-9-899-2016, 2016
Short summary
Short summary
In this paper we describe the development and application of a new web-based and open-source facility, UManSysProp (http://umansysprop .seaes.manchester.ac.uk), for automating predictions of molecular and atmospheric aerosol properties. Current facilities include pure component vapour pressures, critical properties, and sub-cooled densities of organic molecules; activity coefficient predictions for mixed inorganic-organic liquid systems; hygroscopic growth factors and CCN activation potential.
Y. S. La, M. Camredon, P. J. Ziemann, R. Valorso, A. Matsunaga, V. Lannuque, J. Lee-Taylor, A. Hodzic, S. Madronich, and B. Aumont
Atmos. Chem. Phys., 16, 1417–1431, https://doi.org/10.5194/acp-16-1417-2016, https://doi.org/10.5194/acp-16-1417-2016, 2016
Short summary
Short summary
The potential impact of chamber walls on the loss of gaseous organic species and secondary organic aerosol (SOA) formation has been explored using the GECKO-A modeling tool, which explicitly represents SOA formation and gas-wall partitioning. The model was compared with 41 smog chamber experiments of SOA formation under OH oxidation of alkane and alkene serie. The organic vapor loss to the chamber walls is found to affect SOA yields as well as the composition of the gas and the particle phase.
S. Mailler, L. Menut, A. G. di Sarra, S. Becagli, T. Di Iorio, B. Bessagnet, R. Briant, P. Formenti, J.-F. Doussin, J. L. Gómez-Amo, M. Mallet, G. Rea, G. Siour, D. M. Sferlazzo, R. Traversi, R. Udisti, and S. Turquety
Atmos. Chem. Phys., 16, 1219–1244, https://doi.org/10.5194/acp-16-1219-2016, https://doi.org/10.5194/acp-16-1219-2016, 2016
Short summary
Short summary
We studied the impact of aerosols on tropospheric photolysis rates at Lampedusa during the CharMEx/ADRIMED campaign in June 2013. It is shown by using the CHIMERE chemistry-transport model (CTM) as well as in situ and remote-sensing measurements that taking into account the radiative effect of the tropospheric aerosols improves the ability of the model to reproduce the observed photolysis rates. It is hence important for CTMs to include the radiative effect of aerosols on photochemistry.
J. C. Péré, B. Bessagnet, V. Pont, M. Mallet, and F. Minvielle
Atmos. Chem. Phys., 15, 10983–10998, https://doi.org/10.5194/acp-15-10983-2015, https://doi.org/10.5194/acp-15-10983-2015, 2015
V. Marécal, V.-H. Peuch, C. Andersson, S. Andersson, J. Arteta, M. Beekmann, A. Benedictow, R. Bergström, B. Bessagnet, A. Cansado, F. Chéroux, A. Colette, A. Coman, R. L. Curier, H. A. C. Denier van der Gon, A. Drouin, H. Elbern, E. Emili, R. J. Engelen, H. J. Eskes, G. Foret, E. Friese, M. Gauss, C. Giannaros, J. Guth, M. Joly, E. Jaumouillé, B. Josse, N. Kadygrov, J. W. Kaiser, K. Krajsek, J. Kuenen, U. Kumar, N. Liora, E. Lopez, L. Malherbe, I. Martinez, D. Melas, F. Meleux, L. Menut, P. Moinat, T. Morales, J. Parmentier, A. Piacentini, M. Plu, A. Poupkou, S. Queguiner, L. Robertson, L. Rouïl, M. Schaap, A. Segers, M. Sofiev, L. Tarasson, M. Thomas, R. Timmermans, Á. Valdebenito, P. van Velthoven, R. van Versendaal, J. Vira, and A. Ung
Geosci. Model Dev., 8, 2777–2813, https://doi.org/10.5194/gmd-8-2777-2015, https://doi.org/10.5194/gmd-8-2777-2015, 2015
Short summary
Short summary
This paper describes the air quality forecasting system over Europe put in place in the Monitoring Atmospheric Composition and Climate projects. It provides daily and 4-day forecasts and analyses for the previous day for major gas and particulate pollutants and their main precursors. These products are based on a multi-model approach using seven state-of-the-art models developed in Europe. An evaluation of the performance of the system is discussed in the paper.
A. Hodzic, S. Madronich, P. S. Kasibhatla, G. Tyndall, B. Aumont, J. L. Jimenez, J. Lee-Taylor, and J. Orlando
Atmos. Chem. Phys., 15, 9253–9269, https://doi.org/10.5194/acp-15-9253-2015, https://doi.org/10.5194/acp-15-9253-2015, 2015
Short summary
Short summary
Our study combines process and global chemistry modeling to investigate the potential effect of gas- and particle-phase organic photolysis reactions on the formation and lifetime of secondary organic aerosols (SOAs). Photolysis of the oxidation intermediates that partition between gas and particle phases to form SOA is not included in 3D models. Our results suggest that exposure to UV light can suppress the formation of SOA or even lead to its substantial loss (comparable to wet deposition).
L. Menut, S. Mailler, G. Siour, B. Bessagnet, S. Turquety, G. Rea, R. Briant, M. Mallet, J. Sciare, P. Formenti, and F. Meleux
Atmos. Chem. Phys., 15, 6159–6182, https://doi.org/10.5194/acp-15-6159-2015, https://doi.org/10.5194/acp-15-6159-2015, 2015
Short summary
Short summary
The ozone and aerosol concentration variability is studied over the Euro-Mediterranean area during the months of June and July 2013 and in the framework of the ADRIMED project. A first analysis is performed using meteorological variables, ozone and aerosol concentrations using routine network station, satellite and specific ADRIMED project airborne measurements. This analysis is complemented by modeling using the WRF and CHIMERE regional models.
F. Couvidat and K. Sartelet
Geosci. Model Dev., 8, 1111–1138, https://doi.org/10.5194/gmd-8-1111-2015, https://doi.org/10.5194/gmd-8-1111-2015, 2015
G. Kiesewetter, J. Borken-Kleefeld, W. Schöpp, C. Heyes, P. Thunis, B. Bessagnet, E. Terrenoire, H. Fagerli, A. Nyiri, and M. Amann
Atmos. Chem. Phys., 15, 1539–1553, https://doi.org/10.5194/acp-15-1539-2015, https://doi.org/10.5194/acp-15-1539-2015, 2015
Short summary
Short summary
We describe the multi-stage approach applied in the GAINS model to assess compliance with PM10 limit values at more than 1850 individual air quality monitoring stations in Europe. We analyse source contributions to ambient concentrations and the implications of future policy choices on air quality for 2030. While current legislation does not solve compliance issues, problems are largely eliminated by EU-wide adoption of the best available emission control technology.
C. Denjean, P. Formenti, B. Picquet-Varrault, M. Camredon, E. Pangui, P. Zapf, Y. Katrib, C. Giorio, A. Tapparo, B. Temime-Roussel, A. Monod, B. Aumont, and J. F. Doussin
Atmos. Chem. Phys., 15, 883–897, https://doi.org/10.5194/acp-15-883-2015, https://doi.org/10.5194/acp-15-883-2015, 2015
J. Lee-Taylor, A. Hodzic, S. Madronich, B. Aumont, M. Camredon, and R. Valorso
Atmos. Chem. Phys., 15, 595–615, https://doi.org/10.5194/acp-15-595-2015, https://doi.org/10.5194/acp-15-595-2015, 2015
E. Terrenoire, B. Bessagnet, L. Rouïl, F. Tognet, G. Pirovano, L. Létinois, M. Beauchamp, A. Colette, P. Thunis, M. Amann, and L. Menut
Geosci. Model Dev., 8, 21–42, https://doi.org/10.5194/gmd-8-21-2015, https://doi.org/10.5194/gmd-8-21-2015, 2015
Short summary
Short summary
The model reproduces the temporal variability of NO2, O3, PM10, PM2.5 better at rural than urban background stations.
The fractional biases show that the model performs slightly better at RB sites than at UB sites for NO2, O3 and PM10.
At UB sites, CHIMERE reproduces PM2.5 better than PM10.
This is primarily the result of an underestimation of coarse particulate matter (PM) associated with uncertainties on SOA chemistry and their precursor emissions, dust and sea salt.
L. Menut, S. Mailler, G. Siour, B. Bessagnet, S. Turquety, G. Rea, R. Briant, M. Mallet, J. Sciare, and P. Formenti
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-14-23075-2014, https://doi.org/10.5194/acpd-14-23075-2014, 2014
Revised manuscript not accepted
K. L. Pereira, J. F. Hamilton, A. R. Rickard, W. J. Bloss, M. S. Alam, M. Camredon, A. Muñoz, M. Vázquez, E. Borrás, and M. Ródenas
Atmos. Chem. Phys., 14, 5349–5368, https://doi.org/10.5194/acp-14-5349-2014, https://doi.org/10.5194/acp-14-5349-2014, 2014
S. Turquety, L. Menut, B. Bessagnet, A. Anav, N. Viovy, F. Maignan, and M. Wooster
Geosci. Model Dev., 7, 587–612, https://doi.org/10.5194/gmd-7-587-2014, https://doi.org/10.5194/gmd-7-587-2014, 2014
V. Michoud, A. Colomb, A. Borbon, K. Miet, M. Beekmann, M. Camredon, B. Aumont, S. Perrier, P. Zapf, G. Siour, W. Ait-Helal, C. Afif, A. Kukui, M. Furger, J. C. Dupont, M. Haeffelin, and J. F. Doussin
Atmos. Chem. Phys., 14, 2805–2822, https://doi.org/10.5194/acp-14-2805-2014, https://doi.org/10.5194/acp-14-2805-2014, 2014
J. C. Péré, B. Bessagnet, M. Mallet, F. Waquet, I. Chiapello, F. Minvielle, V. Pont, and L. Menut
Atmos. Chem. Phys., 14, 1999–2013, https://doi.org/10.5194/acp-14-1999-2014, https://doi.org/10.5194/acp-14-1999-2014, 2014
A. Colette, B. Bessagnet, F. Meleux, E. Terrenoire, and L. Rouïl
Geosci. Model Dev., 7, 203–210, https://doi.org/10.5194/gmd-7-203-2014, https://doi.org/10.5194/gmd-7-203-2014, 2014
G. Kiesewetter, J. Borken-Kleefeld, W. Schöpp, C. Heyes, P. Thunis, B. Bessagnet, E. Terrenoire, A. Gsella, and M. Amann
Atmos. Chem. Phys., 14, 813–829, https://doi.org/10.5194/acp-14-813-2014, https://doi.org/10.5194/acp-14-813-2014, 2014
A. Colette, B. Bessagnet, R. Vautard, S. Szopa, S. Rao, S. Schucht, Z. Klimont, L. Menut, G. Clain, F. Meleux, G. Curci, and L. Rouïl
Atmos. Chem. Phys., 13, 7451–7471, https://doi.org/10.5194/acp-13-7451-2013, https://doi.org/10.5194/acp-13-7451-2013, 2013
L. Menut, B. Bessagnet, D. Khvorostyanov, M. Beekmann, N. Blond, A. Colette, I. Coll, G. Curci, G. Foret, A. Hodzic, S. Mailler, F. Meleux, J.-L. Monge, I. Pison, G. Siour, S. Turquety, M. Valari, R. Vautard, and M. G. Vivanco
Geosci. Model Dev., 6, 981–1028, https://doi.org/10.5194/gmd-6-981-2013, https://doi.org/10.5194/gmd-6-981-2013, 2013
Q. J. Zhang, M. Beekmann, F. Drewnick, F. Freutel, J. Schneider, M. Crippa, A. S. H. Prevot, U. Baltensperger, L. Poulain, A. Wiedensohler, J. Sciare, V. Gros, A. Borbon, A. Colomb, V. Michoud, J.-F. Doussin, H. A. C. Denier van der Gon, M. Haeffelin, J.-C. Dupont, G. Siour, H. Petetin, B. Bessagnet, S. N. Pandis, A. Hodzic, O. Sanchez, C. Honoré, and O. Perrussel
Atmos. Chem. Phys., 13, 5767–5790, https://doi.org/10.5194/acp-13-5767-2013, https://doi.org/10.5194/acp-13-5767-2013, 2013
E. Solazzo, R. Bianconi, G. Pirovano, M. D. Moran, R. Vautard, C. Hogrefe, K. W. Appel, V. Matthias, P. Grossi, B. Bessagnet, J. Brandt, C. Chemel, J. H. Christensen, R. Forkel, X. V. Francis, A. B. Hansen, S. McKeen, U. Nopmongcol, M. Prank, K. N. Sartelet, A. Segers, J. D. Silver, G. Yarwood, J. Werhahn, J. Zhang, S. T. Rao, and S. Galmarini
Geosci. Model Dev., 6, 791–818, https://doi.org/10.5194/gmd-6-791-2013, https://doi.org/10.5194/gmd-6-791-2013, 2013
C. Mouchel-Vallon, P. Bräuer, M. Camredon, R. Valorso, S. Madronich, H. Herrmann, and B. Aumont
Atmos. Chem. Phys., 13, 1023–1037, https://doi.org/10.5194/acp-13-1023-2013, https://doi.org/10.5194/acp-13-1023-2013, 2013
V. Michoud, A. Kukui, M. Camredon, A. Colomb, A. Borbon, K. Miet, B. Aumont, M. Beekmann, R. Durand-Jolibois, S. Perrier, P. Zapf, G. Siour, W. Ait-Helal, N. Locoge, S. Sauvage, C. Afif, V. Gros, M. Furger, G. Ancellet, and J. F. Doussin
Atmos. Chem. Phys., 12, 11951–11974, https://doi.org/10.5194/acp-12-11951-2012, https://doi.org/10.5194/acp-12-11951-2012, 2012
S. Stromatas, S. Turquety, L. Menut, H. Chepfer, J. C. Péré, G. Cesana, and B. Bessagnet
Geosci. Model Dev., 5, 1543–1564, https://doi.org/10.5194/gmd-5-1543-2012, https://doi.org/10.5194/gmd-5-1543-2012, 2012
Related subject area
Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
The co-benefits of a low-carbon future for PM2.5 and O3 air pollution in Europe
Assessing the effectiveness of SO2, NOx, and NH3 emission reductions in mitigating winter PM2.5 in Taiwan using CMAQ
Modelling of atmospheric concentrations of fungal spores: a 2-year simulation over France using CHIMERE
Cluster-dynamics-based parameterization for sulfuric acid–dimethylamine nucleation: comparison and selection through box and three-dimensional modeling
Observed and CMIP6-model-simulated organic aerosol response to drought in the contiguous United States during summertime
Cooling radiative forcing effect enhancement of atmospheric amines and mineral particles caused by heterogeneous uptake and oxidation
Source-resolved atmospheric metal emissions, concentrations, and deposition fluxes into the East Asian seas
Analysis of secondary inorganic aerosols over the greater Athens area using the EPISODE–CityChem source dispersion and photochemistry model
Global estimates of ambient reactive nitrogen components during 2000–2100 based on the multi-stage model
The role of naphthalene and its derivatives in the formation of secondary organic aerosol in the Yangtze River Delta region, China
Unveiling the optimal regression model for source apportionment of the oxidative potential of PM10
Investigating the contribution of grown new particles to cloud condensation nuclei with largely varying preexisting particles – Part 2: Modeling chemical drivers and 3-D new particle formation occurrence
Technical note: Influence of different averaging metrics and temporal resolutions on the aerosol pH calculated by thermodynamic modeling
Dual roles of the inorganic aqueous phase on secondary organic aerosol growth from benzene and phenol
Global source apportionment of aerosols into major emission regions and sectors over 1850–2017
Modeling atmospheric brown carbon in the GISS ModelE Earth system model
Observation-constrained kinetic modeling of isoprene SOA formation in the atmosphere
Significant impact of urban tree biogenic emissions on air quality estimated by a bottom-up inventory and chemistry transport modeling
Secondary organic aerosols derived from intermediate-volatility n-alkanes adopt low-viscous phase state
Modeling the contribution of leads to sea spray aerosol in the high Arctic
Modeling the drivers of fine PM pollution over Central Europe: impacts and contributions of emissions from different sources
Global Spatial Variation in the PM2.5 to AOD Relationship Strongly Influenced by Aerosol Composition
Reaction of SO3 with H2SO4 and its implications for aerosol particle formation in the gas phase and at the air–water interface
Weakened aerosol–radiation interaction exacerbating ozone pollution in eastern China since China's clean air actions
Uncertainties from biomass burning aerosols in air quality models obscure public health impacts in Southeast Asia
Oxidative potential apportionment of atmospheric PM1: a new approach combining high-sensitive online analysers for chemical composition and offline OP measurement technique
Aqueous-phase chemistry of glyoxal with multifunctional reduced nitrogen compounds: a potential missing route for secondary brown carbon
An updated modeling framework to simulate Los Angeles air quality – Part 1: Model development, evaluation, and source apportionment
Frequent haze events associated with transport and stagnation over the corridor between the North China Plain and Yangtze River Delta
Evaluation of WRF-Chem-simulated meteorology and aerosols over northern India during the severe pollution episode of 2016
How well are aerosol–cloud interactions represented in climate models? – Part 1: Understanding the sulfate aerosol production from the 2014–15 Holuhraun eruption
pH regulates the formation of organosulfates and inorganic sulfate from organic peroxide reaction with dissolved SO2 in aquatic media
Technical note: Accurate, reliable, and high-resolution air quality predictions by improving the Copernicus Atmosphere Monitoring Service using a novel statistical post-processing method
Measurement report: Rapid oxidation of phenolic compounds by O3 and HO•: effects of air-water interface and mineral dust in tropospheric chemical processes
Contribution of intermediate-volatility organic compounds from on-road transport to secondary organic aerosol levels in Europe
Development of an integrated model framework for multi-air-pollutant exposure assessments in high-density cities
CAMx–UNIPAR simulation of secondary organic aerosol mass formed from multiphase reactions of hydrocarbons under the Central Valley urban atmospheres of California
Impact of urbanization on fine particulate matter concentrations over central Europe
Measurement report: Assessing the impacts of emission uncertainty on aerosol optical properties and radiative forcing from biomass burning in peninsular Southeast Asia
The Emissions Model Intercomparison Project (Emissions-MIP): quantifying model sensitivity to emission characteristics
Dynamics-based estimates of decline trend with fine temporal variations in China's PM2.5 emissions
Effects of simulated secondary organic aerosol water on PM1 levels and composition over the US
Reactive organic carbon air emissions from mobile sources in the United States
Development and evaluation of processes affecting simulation of diel fine particulate matter variation in the GEOS-Chem model
Substantially positive contributions of new particle formation to cloud condensation nuclei under low supersaturation in China based on numerical model improvements
Evolution of atmospheric age of particles and its implications for the formation of a severe haze event in eastern China
A multimodel evaluation of the potential impact of shipping on particle species in the Mediterranean Sea
How does tropospheric VOC chemistry affect climate? An investigation of preindustrial control simulations using the Community Earth System Model version 2
Anthropogenic amplification of biogenic secondary organic aerosol production
A dynamic parameterization of sulfuric acid–dimethylamine nucleation and its application in three-dimensional modeling
Connor J. Clayton, Daniel R. Marsh, Steven T. Turnock, Ailish M. Graham, Kirsty J. Pringle, Carly L. Reddington, Rajesh Kumar, and James B. McQuaid
Atmos. Chem. Phys., 24, 10717–10740, https://doi.org/10.5194/acp-24-10717-2024, https://doi.org/10.5194/acp-24-10717-2024, 2024
Short summary
Short summary
We demonstrate that strong climate mitigation could improve air quality in Europe; however, less ambitious mitigation does not result in these co-benefits. We use a high-resolution atmospheric chemistry model. This allows us to demonstrate how this varies across European countries and analyse the underlying chemistry. This may help policy-facing researchers understand which sectors and regions need to be prioritised to achieve strong air quality co-benefits of climate mitigation.
Ping-Chieh Huang, Hui-Ming Hung, Hsin-Chih Lai, and Charles C.-K. Chou
Atmos. Chem. Phys., 24, 10759–10772, https://doi.org/10.5194/acp-24-10759-2024, https://doi.org/10.5194/acp-24-10759-2024, 2024
Short summary
Short summary
Models were used to study ways to reduce particulate matter (PM) pollution in Taiwan during winter. After considering various factors, such as physical processes and chemical reactions, we found that reducing NOx or NH3 emissions is more effective at mitigating PM2.5 than reducing SO2 emissions. When considering both efficiency and cost, reducing NH3 emissions seems to be a more suitable policy for the studied environment in Taiwan.
Matthieu Vida, Gilles Foret, Guillaume Siour, Florian Couvidat, Olivier Favez, Gaelle Uzu, Arineh Cholakian, Sébastien Conil, Matthias Beekmann, and Jean-Luc Jaffrezo
Atmos. Chem. Phys., 24, 10601–10615, https://doi.org/10.5194/acp-24-10601-2024, https://doi.org/10.5194/acp-24-10601-2024, 2024
Short summary
Short summary
We simulate 2 years of atmospheric fungal spores over France and use observations of polyols and primary biogenic factors from positive matrix factorisation. The representation of emissions taking into account a proxy for vegetation surface and specific humidity enables us to reproduce very accurately the seasonal cycle of fungal spores. Furthermore, we estimate that fungal spores can account for 20 % of PM10 and 40 % of the organic fraction of PM10 over vegetated areas in summer.
Jiewen Shen, Bin Zhao, Shuxiao Wang, An Ning, Yuyang Li, Runlong Cai, Da Gao, Biwu Chu, Yang Gao, Manish Shrivastava, Jingkun Jiang, Xiuhui Zhang, and Hong He
Atmos. Chem. Phys., 24, 10261–10278, https://doi.org/10.5194/acp-24-10261-2024, https://doi.org/10.5194/acp-24-10261-2024, 2024
Short summary
Short summary
We extensively compare various cluster-dynamics-based parameterizations for sulfuric acid–dimethylamine nucleation and identify a newly developed parameterization derived from Atmospheric Cluster Dynamic Code (ACDC) simulations as being the most reliable one. This study offers a valuable reference for developing parameterizations of other nucleation systems and is meaningful for the accurate quantification of the environmental and climate impacts of new particle formation.
Wei Li and Yuxuan Wang
Atmos. Chem. Phys., 24, 9339–9353, https://doi.org/10.5194/acp-24-9339-2024, https://doi.org/10.5194/acp-24-9339-2024, 2024
Short summary
Short summary
Droughts immensely increased organic aerosol (OA) in the contiguous United States in summer (1998–2019), notably in the Pacific Northwest (PNW) and Southeast (SEUS). The OA rise in the SEUS is driven by the enhanced formation of epoxydiol-derived secondary organic aerosol due to the increase in biogenic volatile organic compounds and sulfate, while in the PNW, it is caused by wildfires. A total of 10 climate models captured the OA increase in the PNW yet greatly underestimated it in the SEUS.
Weina Zhang, Jianhua Mai, Zhichao Fan, Yongpeng Ji, Yuemeng Ji, Guiying Li, Yanpeng Gao, and Taicheng An
Atmos. Chem. Phys., 24, 9019–9030, https://doi.org/10.5194/acp-24-9019-2024, https://doi.org/10.5194/acp-24-9019-2024, 2024
Short summary
Short summary
This study reveals heterogeneous oxidation causes further radiative forcing effect (RFE) enhancement of amine–mineral mixed particles. Note that RFE increment is higher under clean conditions than that under polluted conditions, which is contributed to high-oxygen-content products. The enhanced RFE of amine–mineral particles caused by heterogenous oxidation is expected to alleviate warming effects.
Shenglan Jiang, Yan Zhang, Guangyuan Yu, Zimin Han, Junri Zhao, Tianle Zhang, and Mei Zheng
Atmos. Chem. Phys., 24, 8363–8381, https://doi.org/10.5194/acp-24-8363-2024, https://doi.org/10.5194/acp-24-8363-2024, 2024
Short summary
Short summary
This study aims to provide gridded data on sea-wide concentrations, deposition fluxes, and soluble deposition fluxes with detailed source categories of metals using the modified CMAQ model. We developed a monthly emission inventory of six metals – Fe, Al, V, Ni, Zn, and Cu – from terrestrial anthropogenic, ship, and dust sources in East Asia in 2017. Our results reveal the contribution of each source to the emissions, concentrations, and deposition fluxes of metals in the East Asian seas.
Stelios Myriokefalitakis, Matthias Karl, Kim A. Weiss, Dimitris Karagiannis, Eleni Athanasopoulou, Anastasia Kakouri, Aikaterini Bougiatioti, Eleni Liakakou, Iasonas Stavroulas, Georgios Papangelis, Georgios Grivas, Despina Paraskevopoulou, Orestis Speyer, Nikolaos Mihalopoulos, and Evangelos Gerasopoulos
Atmos. Chem. Phys., 24, 7815–7835, https://doi.org/10.5194/acp-24-7815-2024, https://doi.org/10.5194/acp-24-7815-2024, 2024
Short summary
Short summary
A state-of-the-art thermodynamic model has been coupled with the city-scale chemistry transport model EPISODE–CityChem to investigate the equilibrium between the inorganic gas and aerosol phases over the greater Athens area, Greece. The simulations indicate that the formation of nitrates in an urban environment is significantly affected by local nitrogen oxide emissions, as well as ambient temperature, relative humidity, photochemical activity, and the presence of non-volatile cations.
Rui Li, Yining Gao, Lijia Zhang, Yubing Shen, Tianzhao Xu, Wenwen Sun, and Gehui Wang
Atmos. Chem. Phys., 24, 7623–7636, https://doi.org/10.5194/acp-24-7623-2024, https://doi.org/10.5194/acp-24-7623-2024, 2024
Short summary
Short summary
A three-stage model was developed to obtain the global maps of reactive nitrogen components during 2000–2100. The results implied that cross-validation R2 values of four species showed satisfactory performance (R2 > 0.55). Most reactive nitrogen components, except NH3, in China showed increases during 2000–2013. In the future scenarios, SSP3-7.0 (traditional-energy scenario) and SSP1-2.6 (carbon neutrality scenario) showed the highest and lowest reactive nitrogen component concentrations.
Fei Ye, Jingyi Li, Yaqin Gao, Hongli Wang, Jingyu An, Cheng Huang, Song Guo, Keding Lu, Kangjia Gong, Haowen Zhang, Momei Qin, and Jianlin Hu
Atmos. Chem. Phys., 24, 7467–7479, https://doi.org/10.5194/acp-24-7467-2024, https://doi.org/10.5194/acp-24-7467-2024, 2024
Short summary
Short summary
Naphthalene (Nap) and methylnaphthalene (MN) are key precursors of secondary organic aerosol (SOA), yet their sources and sinks are often inadequately represented in air quality models. In this study, we incorporated detailed emissions, gas-phase chemistry, and SOA parameterization of Nap and MN into CMAQ to address this issue. The findings revealed remarkably high SOA formation potentials for these compounds despite their low emissions in the Yangtze River Delta region during summer.
Vy Dinh Ngoc Thuy, Jean-Luc Jaffrezo, Ian Hough, Pamela A. Dominutti, Guillaume Salque Moreton, Grégory Gille, Florie Francony, Arabelle Patron-Anquez, Olivier Favez, and Gaëlle Uzu
Atmos. Chem. Phys., 24, 7261–7282, https://doi.org/10.5194/acp-24-7261-2024, https://doi.org/10.5194/acp-24-7261-2024, 2024
Short summary
Short summary
The capacity of particulate matter (PM) to generate reactive oxygen species in vivo is represented by oxidative potential (OP). This study focuses on finding the appropriate model to evaluate the oxidative character of PM sources in six sites using the PM sources and OP. Eight regression techniques are introduced to assess the OP of PM. The study highlights the importance of selecting a model according to the input data characteristics and establishes some recommendations for the procedure.
Ming Chu, Xing Wei, Shangfei Hai, Yang Gao, Huiwang Gao, Yujiao Zhu, Biwu Chu, Nan Ma, Juan Hong, Yele Sun, and Xiaohong Yao
Atmos. Chem. Phys., 24, 6769–6786, https://doi.org/10.5194/acp-24-6769-2024, https://doi.org/10.5194/acp-24-6769-2024, 2024
Short summary
Short summary
We used a 20-bin WRF-Chem model to simulate NPF events in the NCP during a three-week observational period in the summer of 2019. The model was able to reproduce the observations during June 29–July 6, which was characterized by a high frequency of NPF occurrence.
Haoqi Wang, Xiao Tian, Wanting Zhao, Jiacheng Li, Haoyu Yu, Yinchang Feng, and Shaojie Song
Atmos. Chem. Phys., 24, 6583–6592, https://doi.org/10.5194/acp-24-6583-2024, https://doi.org/10.5194/acp-24-6583-2024, 2024
Short summary
Short summary
pH is a key property of ambient aerosols, which affect many atmospheric processes. As aerosol pH is a non-conservative parameter, diverse averaging metrics and temporal resolutions may influence the pH values calculated by thermodynamic models. This technical note seeks to quantitatively evaluate the average pH using varied metrics and resolutions. The ultimate goal is to establish standardized reporting practices in future research endeavors.
Jiwon Choi, Myoseon Jang, and Spencer Blau
Atmos. Chem. Phys., 24, 6567–6582, https://doi.org/10.5194/acp-24-6567-2024, https://doi.org/10.5194/acp-24-6567-2024, 2024
Short summary
Short summary
Persistent phenoxy radical (PPR), formed by phenol gas oxidation and its aqueous reaction, catalytically destroys O3 and retards secondary organic aerosol (SOA) growth. Explicit gas mechanisms including the formation of PPR and low-volatility products from the oxidation of phenol or benzene are applied to the UNIPAR model to predict SOA mass via multiphase reactions of precursors. Aqueous reactions of reactive organics increase SOA mass but retard SOA growth via heterogeneously formed PPR.
Yang Yang, Shaoxuan Mou, Hailong Wang, Pinya Wang, Baojie Li, and Hong Liao
Atmos. Chem. Phys., 24, 6509–6523, https://doi.org/10.5194/acp-24-6509-2024, https://doi.org/10.5194/acp-24-6509-2024, 2024
Short summary
Short summary
The variations in anthropogenic aerosol concentrations and source contributions and their subsequent radiative impact in major emission regions during historical periods are quantified based on an aerosol-tagging system in E3SMv1. Due to the industrial development and implementation of economic policies, sources of anthropogenic aerosols show different variations, which has important implications for pollution prevention and control measures and decision-making for global collaboration.
Maegan A. DeLessio, Kostas Tsigaridis, Susanne E. Bauer, Jacek Chowdhary, and Gregory L. Schuster
Atmos. Chem. Phys., 24, 6275–6304, https://doi.org/10.5194/acp-24-6275-2024, https://doi.org/10.5194/acp-24-6275-2024, 2024
Short summary
Short summary
This study presents the first explicit representation of brown carbon aerosols in the GISS ModelE Earth system model (ESM). Model sensitivity to a range of brown carbon parameters and model performance compared to AERONET and MODIS retrievals of total aerosol properties were assessed. A summary of best practices for incorporating brown carbon into ModelE is also included.
Chuanyang Shen, Xiaoyan Yang, Joel Thornton, John Shilling, Chenyang Bi, Gabriel Isaacman-VanWertz, and Haofei Zhang
Atmos. Chem. Phys., 24, 6153–6175, https://doi.org/10.5194/acp-24-6153-2024, https://doi.org/10.5194/acp-24-6153-2024, 2024
Short summary
Short summary
In this work, a condensed multiphase isoprene oxidation mechanism was developed to simulate isoprene SOA formation from chamber and field studies. Our results show that the measured isoprene SOA mass concentrations can be reasonably reproduced. The simulation results indicate that multifunctional low-volatility products contribute significantly to total isoprene SOA. Our findings emphasize that the pathways to produce these low-volatility species should be considered in models.
Alice Maison, Lya Lugon, Soo-Jin Park, Alexia Baudic, Christopher Cantrell, Florian Couvidat, Barbara D'Anna, Claudia Di Biagio, Aline Gratien, Valérie Gros, Carmen Kalalian, Julien Kammer, Vincent Michoud, Jean-Eudes Petit, Marwa Shahin, Leila Simon, Myrto Valari, Jérémy Vigneron, Andrée Tuzet, and Karine Sartelet
Atmos. Chem. Phys., 24, 6011–6046, https://doi.org/10.5194/acp-24-6011-2024, https://doi.org/10.5194/acp-24-6011-2024, 2024
Short summary
Short summary
This study presents the development of a bottom-up inventory of urban tree biogenic emissions. Emissions are computed for each tree based on their location and characteristics and are integrated in the regional air quality model WRF-CHIMERE. The impact of these biogenic emissions on air quality is quantified for June–July 2022. Over Paris city, urban trees increase the concentrations of particulate organic matter by 4.6 %, of PM2.5 by 0.6 %, and of ozone by 1.0 % on average over 2 months.
Tommaso Galeazzo, Bernard Aumont, Marie Camredon, Richard Valorso, Yong B. Lim, Paul J. Ziemann, and Manabu Shiraiwa
Atmos. Chem. Phys., 24, 5549–5565, https://doi.org/10.5194/acp-24-5549-2024, https://doi.org/10.5194/acp-24-5549-2024, 2024
Short summary
Short summary
Secondary organic aerosol (SOA) derived from n-alkanes is a major component of anthropogenic particulate matter. We provide an analysis of n-alkane SOA by chemistry modeling, machine learning, and laboratory experiments, showing that n-alkane SOA adopts low-viscous semi-solid or liquid states. Our results indicate few kinetic limitations of mass accommodation in SOA formation, supporting the application of equilibrium partitioning for simulating n-alkane SOA in large-scale atmospheric models.
Rémy Lapere, Louis Marelle, Pierre Rampal, Laurent Brodeau, Christian Melsheimer, Gunnar Spreen, and Jennie L. Thomas
EGUsphere, https://doi.org/10.5194/egusphere-2024-1271, https://doi.org/10.5194/egusphere-2024-1271, 2024
Short summary
Short summary
Elongated open water areas in sea ice, called leads, can release marine aerosols into the atmosphere. In the Arctic, this source of atmospheric particles could play an important role for climate. However, the amount, seasonality and spatial distribution of such emissions are mostly unknown. Here, we propose a first parameterization for sea spray aerosols emitted through leads in sea ice and quantify their impact on aerosol populations in the high Arctic.
Lukáš Bartík, Peter Huszár, Jan Karlický, Ondřej Vlček, and Kryštof Eben
Atmos. Chem. Phys., 24, 4347–4387, https://doi.org/10.5194/acp-24-4347-2024, https://doi.org/10.5194/acp-24-4347-2024, 2024
Short summary
Short summary
The presented study deals with the attribution of fine particulate matter (PM2.5) concentrations to anthropogenic emissions over Central Europe using regional-scale models. It calculates the present-day contributions of different emissions sectors to concentrations of PM2.5 and its secondary components. Moreover, the study investigates the effect of chemical nonlinearities by using multiple source attribution methods and secondary organic aerosol calculation methods.
Haihui Zhu, Randall Martin, Aaron van Donkelaar, Melanie Hammer, Chi Li, Jun Meng, Christopher Oxford, Xuan Liu, Yanshun Li, Dandan Zhang, Inderjeet Singh, and Alexei Lyapustin
EGUsphere, https://doi.org/10.5194/egusphere-2024-950, https://doi.org/10.5194/egusphere-2024-950, 2024
Short summary
Short summary
Ambient fine particulate matter (PM2.5) contributes to 4 million deaths every year globally. Satellite remote sensing of aerosol optical depth (AOD) coupled with a simulated PM2.5 to AOD relationship (η) can provide global PM2.5 estimation. This study aims to understand the spatial pattern and driving factors of η to guide future measurement and model efforts. We quantified η globally and regionally and found its spatial variation is strongly influenced by the aerosol composition.
Rui Wang, Yang Cheng, Shasha Chen, Rongrong Li, Yue Hu, Xiaokai Guo, Tianlei Zhang, Fengmin Song, and Hao Li
Atmos. Chem. Phys., 24, 4029–4046, https://doi.org/10.5194/acp-24-4029-2024, https://doi.org/10.5194/acp-24-4029-2024, 2024
Short summary
Short summary
We used quantum chemical calculations, Born–Oppenheimer molecular dynamics simulations, and the ACDC kinetic model to characterize SO3–H2SO4 interaction in the gas phase and at the air–water interface and to study the effect of H2S2O7 on H2SO4–NH3-based clusters. The work expands our understanding of new pathways for the loss of SO3 in acidic polluted areas and helps reveal some missing sources of NPF in metropolitan industrial regions and understand the atmospheric organic–sulfur cycle better.
Hao Yang, Lei Chen, Hong Liao, Jia Zhu, Wenjie Wang, and Xin Li
Atmos. Chem. Phys., 24, 4001–4015, https://doi.org/10.5194/acp-24-4001-2024, https://doi.org/10.5194/acp-24-4001-2024, 2024
Short summary
Short summary
The present study quantifies the response of aerosol–radiation interaction (ARI) to anthropogenic emission reduction from 2013 to 2017, with the main focus on the contribution to changed O3 concentrations over eastern China both in summer and winter using the WRF-Chem model. The weakened ARI due to decreased anthropogenic emission aggravates the summer (winter) O3 pollution by +0.81 ppb (+0.63 ppb), averaged over eastern China.
Margaret R. Marvin, Paul I. Palmer, Fei Yao, Mohd Talib Latif, and Md Firoz Khan
Atmos. Chem. Phys., 24, 3699–3715, https://doi.org/10.5194/acp-24-3699-2024, https://doi.org/10.5194/acp-24-3699-2024, 2024
Short summary
Short summary
We use an atmospheric chemistry model to investigate aerosols emitted from fire activity across Southeast Asia. We find that the limited nature of measurements in this region leads to large uncertainties that significantly hinder the model representation of these aerosols and their impacts on air quality. As a result, the number of monthly attributable deaths is underestimated by as many as 4500, particularly in March at the peak of the mainland burning season.
Julie Camman, Benjamin Chazeau, Nicolas Marchand, Amandine Durand, Grégory Gille, Ludovic Lanzi, Jean-Luc Jaffrezo, Henri Wortham, and Gaëlle Uzu
Atmos. Chem. Phys., 24, 3257–3278, https://doi.org/10.5194/acp-24-3257-2024, https://doi.org/10.5194/acp-24-3257-2024, 2024
Short summary
Short summary
Fine particle (PM1) pollution is a major health issue in the city of Marseille, which is subject to numerous pollution sources. Sampling carried out during the summer enabled a fine characterization of the PM1 sources and their oxidative potential, a promising new metric as a proxy for health impact. PM1 came mainly from combustion sources, secondary ammonium sulfate, and organic nitrate, while the oxidative potential of PM1 came from these sources and from resuspended dust in the atmosphere.
Yuemeng Ji, Zhang Shi, Wenjian Li, Jiaxin Wang, Qiuju Shi, Yixin Li, Lei Gao, Ruize Ma, Weijun Lu, Lulu Xu, Yanpeng Gao, Guiying Li, and Taicheng An
Atmos. Chem. Phys., 24, 3079–3091, https://doi.org/10.5194/acp-24-3079-2024, https://doi.org/10.5194/acp-24-3079-2024, 2024
Short summary
Short summary
The formation mechanisms for secondary brown carbon (SBrC) contributed by multifunctional reduced nitrogen compounds (RNCs) remain unclear. Hence, from combined laboratory experiments and quantum chemical calculations, we investigated the heterogeneous reactions of glyoxal (GL) with multifunctional RNCs, which are driven by four-step indirect nucleophilic addition reactions. Our results show a possible missing source for SBrC formation on urban, regional, and global scales.
Elyse A. Pennington, Yuan Wang, Benjamin C. Schulze, Karl M. Seltzer, Jiani Yang, Bin Zhao, Zhe Jiang, Hongru Shi, Melissa Venecek, Daniel Chau, Benjamin N. Murphy, Christopher M. Kenseth, Ryan X. Ward, Havala O. T. Pye, and John H. Seinfeld
Atmos. Chem. Phys., 24, 2345–2363, https://doi.org/10.5194/acp-24-2345-2024, https://doi.org/10.5194/acp-24-2345-2024, 2024
Short summary
Short summary
To assess the air quality in Los Angeles (LA), we improved the CMAQ model by using dynamic traffic emissions and new secondary organic aerosol schemes to represent volatile chemical products. Source apportionment demonstrates that the urban areas of the LA Basin and vicinity are NOx-saturated, with the largest sensitivity of O3 to changes in volatile organic compounds in the urban core. The improvement and remaining issues shed light on the future direction of the model development.
Feifan Yan, Hang Su, Yafang Cheng, Rujin Huang, Hong Liao, Ting Yang, Yuanyuan Zhu, Shaoqing Zhang, Lifang Sheng, Wenbin Kou, Xinran Zeng, Shengnan Xiang, Xiaohong Yao, Huiwang Gao, and Yang Gao
Atmos. Chem. Phys., 24, 2365–2376, https://doi.org/10.5194/acp-24-2365-2024, https://doi.org/10.5194/acp-24-2365-2024, 2024
Short summary
Short summary
PM2.5 pollution is a major air quality issue deteriorating human health, and previous studies mostly focus on regions like the North China Plain and Yangtze River Delta. However, the characteristics of PM2.5 concentrations between these two regions are studied less often. Focusing on the transport corridor region, we identify an interesting seesaw transport phenomenon with stagnant weather conditions, conducive to PM2.5 accumulation over this region, resulting in large health effects.
Prerita Agarwal, David S. Stevenson, and Mathew R. Heal
Atmos. Chem. Phys., 24, 2239–2266, https://doi.org/10.5194/acp-24-2239-2024, https://doi.org/10.5194/acp-24-2239-2024, 2024
Short summary
Short summary
Air pollution levels across northern India are amongst some of the worst in the world, with episodic and hazardous haze events. Here, the ability of the WRF-Chem model to predict air quality over northern India is assessed against several datasets. Whilst surface wind speed and particle pollution peaks are over- and underestimated, respectively, meteorology and aerosol trends are adequately captured, and we conclude it is suitable for investigating severe particle pollution events.
George Jordan, Florent Malavelle, Ying Chen, Amy Peace, Eliza Duncan, Daniel G. Partridge, Paul Kim, Duncan Watson-Parris, Toshihiko Takemura, David Neubauer, Gunnar Myhre, Ragnhild Skeie, Anton Laakso, and James Haywood
Atmos. Chem. Phys., 24, 1939–1960, https://doi.org/10.5194/acp-24-1939-2024, https://doi.org/10.5194/acp-24-1939-2024, 2024
Short summary
Short summary
The 2014–15 Holuhraun eruption caused a huge aerosol plume in an otherwise unpolluted region, providing a chance to study how aerosol alters cloud properties. This two-part study uses observations and models to quantify this relationship’s impact on the Earth’s energy budget. Part 1 suggests the models capture the observed spatial and chemical evolution of the plume, yet no model plume is exact. Understanding these differences is key for Part 2, where changes to cloud properties are explored.
Lin Du, Xiaofan Lv, Makroni Lily, Kun Li, and Narcisse Tsona Tchinda
Atmos. Chem. Phys., 24, 1841–1853, https://doi.org/10.5194/acp-24-1841-2024, https://doi.org/10.5194/acp-24-1841-2024, 2024
Short summary
Short summary
This study explores the pH effect on the reaction of dissolved SO2 with selected organic peroxides. Results show that the formation of organic and/or inorganic sulfate from these peroxides strongly depends on their electronic structures, and these processes are likely to alter the chemical composition of dissolved organic matter in different ways. The rate constants of these reactions exhibit positive pH and temperature dependencies within pH 1–10 and 240–340 K ranges.
Angelo Riccio and Elena Chianese
Atmos. Chem. Phys., 24, 1673–1689, https://doi.org/10.5194/acp-24-1673-2024, https://doi.org/10.5194/acp-24-1673-2024, 2024
Short summary
Short summary
Starting from the Copernicus Atmosphere Monitoring Service (CAMS), we provided a novel ensemble statistical post-processing approach to improve their air quality predictions. Our approach is able to provide reliable short-term forecasts of pollutant concentrations, which is a key challenge in supporting national authorities in their tasks related to EU Air Quality Directives, such as planning and reporting the state of air quality to the citizens.
Yanru Huo, Mingxue Li, Xueyu Wang, Jianfei Sun, Yuxin Zhou, Yuhui Ma, and Maoxia He
EGUsphere, https://doi.org/10.5194/egusphere-2023-2856, https://doi.org/10.5194/egusphere-2023-2856, 2024
Short summary
Short summary
This work found that the A-W interface and TiO2 clusters promote the oxidation of phenolic compounds (PhCs) to varying degrees comparing with gas phase, and bulk water. Some by-products are more harmful than their parent compounds. This work provides important evidence for the rapid oxidation observed in the O3/HO• + PhCs experiments at the A-W interface and in the mineral dust.
Stella E. I. Manavi and Spyros N. Pandis
Atmos. Chem. Phys., 24, 891–909, https://doi.org/10.5194/acp-24-891-2024, https://doi.org/10.5194/acp-24-891-2024, 2024
Short summary
Short summary
Organic vapors of intermediate volatility have often been neglected as sources of atmospheric organic aerosol. In this work we use a new approach for their simulation and quantify the contribution of these compounds emitted by transportation sources (gasoline and diesel vehicles) to particulate matter over Europe. The estimated secondary organic aerosol levels are on average 60 % higher than predicted by previous approaches. However, these estimates are probably lower limits.
Zhiyuan Li, Kin-Fai Ho, Harry Fung Lee, and Steve Hung Lam Yim
Atmos. Chem. Phys., 24, 649–661, https://doi.org/10.5194/acp-24-649-2024, https://doi.org/10.5194/acp-24-649-2024, 2024
Short summary
Short summary
This study developed an integrated model framework for accurate multi-air-pollutant exposure assessments in high-density and high-rise cities. Following the proposed integrated model framework, we established multi-air-pollutant exposure models for four major PM10 chemical species as well as four criteria air pollutants with R2 values ranging from 0.73 to 0.93. The proposed framework serves as an important tool for combined exposure assessment in epidemiological studies.
Yujin Jo, Myoseon Jang, Sanghee Han, Azad Madhu, Bonyoung Koo, Yiqin Jia, Zechen Yu, Soontae Kim, and Jinsoo Park
Atmos. Chem. Phys., 24, 487–508, https://doi.org/10.5194/acp-24-487-2024, https://doi.org/10.5194/acp-24-487-2024, 2024
Short summary
Short summary
The CAMx–UNIPAR model simulated the SOA budget formed via multiphase reactions of hydrocarbons and the impact of emissions and climate on SOA characteristics under California’s urban environments during winter 2018. SOA growth was dominated by daytime oxidation of long-chain alkanes and nighttime terpene oxidation with O3 and NO−3 radicals. The spatial distributions of anthropogenic SOA were affected by the northwesterly wind, whereas those of biogenic SOA were insensitive to wind directions.
Peter Huszar, Alvaro Patricio Prieto Perez, Lukáš Bartík, Jan Karlický, and Anahi Villalba-Pradas
Atmos. Chem. Phys., 24, 397–425, https://doi.org/10.5194/acp-24-397-2024, https://doi.org/10.5194/acp-24-397-2024, 2024
Short summary
Short summary
Urbanization transforms rural land into artificial land, while due to human activities, it also introduces a great quantity of emissions. We quantify the impact of urbanization on the final particulate matter pollutant levels by looking not only at these emissions, but also at the way urban land cover influences meteorological conditions, how the removal of pollutants changes due to urban land cover, and how biogenic emissions from vegetation change due to less vegetation in urban areas.
Yinbao Jin, Yiming Liu, Xiao Lu, Xiaoyang Chen, Ao Shen, Haofan Wang, Yinping Cui, Yifei Xu, Siting Li, Jian Liu, Ming Zhang, Yingying Ma, and Qi Fan
Atmos. Chem. Phys., 24, 367–395, https://doi.org/10.5194/acp-24-367-2024, https://doi.org/10.5194/acp-24-367-2024, 2024
Short summary
Short summary
This study aims to address these issues by evaluating eight independent biomass burning (BB) emission inventories (GFED, FINN1.5, FINN2.5 MOS, FINN2.5 MOSVIS, GFAS, FEER, QFED, and IS4FIRES) using the WRF-Chem model and analyzing their impact on aerosol optical properties (AOPs) and direct radiative forcing (DRF) during wildfire events in peninsular Southeast Asia (PSEA) that occurred in March 2019.
Hamza Ahsan, Hailong Wang, Jingbo Wu, Mingxuan Wu, Steven J. Smith, Susanne Bauer, Harrison Suchyta, Dirk Olivié, Gunnar Myhre, Hitoshi Matsui, Huisheng Bian, Jean-François Lamarque, Ken Carslaw, Larry Horowitz, Leighton Regayre, Mian Chin, Michael Schulz, Ragnhild Bieltvedt Skeie, Toshihiko Takemura, and Vaishali Naik
Atmos. Chem. Phys., 23, 14779–14799, https://doi.org/10.5194/acp-23-14779-2023, https://doi.org/10.5194/acp-23-14779-2023, 2023
Short summary
Short summary
We examine the impact of the assumed effective height of SO2 injection, SO2 and BC emission seasonality, and the assumed fraction of SO2 emissions injected as SO4 on climate and chemistry model results. We find that the SO2 injection height has a large impact on surface SO2 concentrations and, in some models, radiative flux. These assumptions are a
hiddensource of inter-model variability and may be leading to bias in some climate model results.
Zhen Peng, Lili Lei, Zhe-Min Tan, Meigen Zhang, Aijun Ding, and Xingxia Kou
Atmos. Chem. Phys., 23, 14505–14520, https://doi.org/10.5194/acp-23-14505-2023, https://doi.org/10.5194/acp-23-14505-2023, 2023
Short summary
Short summary
Annual PM2.5 emissions in China consistently decreased by about 3% to 5% from 2017 to 2020 with spatial variations and seasonal dependencies. High-temporal-resolution and dynamics-based PM2.5 emission estimates provide quantitative diurnal variations for each season. Significant reductions in PM2.5 emissions in the North China Plain and northeast of China in 2020 were caused by COVID-19.
Stylianos Kakavas, Spyros N. Pandis, and Athanasios Nenes
Atmos. Chem. Phys., 23, 13555–13564, https://doi.org/10.5194/acp-23-13555-2023, https://doi.org/10.5194/acp-23-13555-2023, 2023
Short summary
Short summary
Water uptake from organic species in aerosol can affect the partitioning of semi-volatile inorganic compounds but are not considered in global and chemical transport models. We address this with a version of the PM-CAMx model that considers such organic water effects and use it to carry out 1-year aerosol simulations over the continental US. We show that such organic water impacts can increase dry PM1 levels by up to 2 μg m-3 when RH levels and PM1 concentrations are high.
Benjamin N. Murphy, Darrell Sonntag, Karl M. Seltzer, Havala O. T. Pye, Christine Allen, Evan Murray, Claudia Toro, Drew R. Gentner, Cheng Huang, Shantanu Jathar, Li Li, Andrew A. May, and Allen L. Robinson
Atmos. Chem. Phys., 23, 13469–13483, https://doi.org/10.5194/acp-23-13469-2023, https://doi.org/10.5194/acp-23-13469-2023, 2023
Short summary
Short summary
We update methods for calculating organic particle and vapor emissions from mobile sources in the USA. Conventionally, particulate matter (PM) and volatile organic carbon (VOC) are speciated without consideration of primary semivolatile emissions. Our methods integrate state-of-the-science speciation profiles and correct for common artifacts when sampling emissions in a laboratory. We quantify impacts of the emission updates on ambient pollution with the Community Multiscale Air Quality model.
Yanshun Li, Randall V. Martin, Chi Li, Brian L. Boys, Aaron van Donkelaar, Jun Meng, and Jeffrey R. Pierce
Atmos. Chem. Phys., 23, 12525–12543, https://doi.org/10.5194/acp-23-12525-2023, https://doi.org/10.5194/acp-23-12525-2023, 2023
Short summary
Short summary
We developed and evaluated processes affecting within-day (diel) variability in PM2.5 concentrations in a chemical transport model over the contiguous US. Diel variability in PM2.5 for the contiguous US is driven by early-morning accumulation into a shallow mixed layer, decreases from mid-morning through afternoon with mixed-layer growth, increases from mid-afternoon through evening as the mixed-layer collapses, and decreases overnight as emissions decrease.
Chupeng Zhang, Shangfei Hai, Yang Gao, Yuhang Wang, Shaoqing Zhang, Lifang Sheng, Bin Zhao, Shuxiao Wang, Jingkun Jiang, Xin Huang, Xiaojing Shen, Junying Sun, Aura Lupascu, Manish Shrivastava, Jerome D. Fast, Wenxuan Cheng, Xiuwen Guo, Ming Chu, Nan Ma, Juan Hong, Qiaoqiao Wang, Xiaohong Yao, and Huiwang Gao
Atmos. Chem. Phys., 23, 10713–10730, https://doi.org/10.5194/acp-23-10713-2023, https://doi.org/10.5194/acp-23-10713-2023, 2023
Short summary
Short summary
New particle formation is an important source of atmospheric particles, exerting critical influences on global climate. Numerical models are vital tools to understanding atmospheric particle evolution, which, however, suffer from large biases in simulating particle numbers. Here we improve the model chemical processes governing particle sizes and compositions. The improved model reveals substantial contributions of newly formed particles to climate through effects on cloud condensation nuclei.
Xiaodong Xie, Jianlin Hu, Momei Qin, Song Guo, Min Hu, Dongsheng Ji, Hongli Wang, Shengrong Lou, Cheng Huang, Chong Liu, Hongliang Zhang, Qi Ying, Hong Liao, and Yuanhang Zhang
Atmos. Chem. Phys., 23, 10563–10578, https://doi.org/10.5194/acp-23-10563-2023, https://doi.org/10.5194/acp-23-10563-2023, 2023
Short summary
Short summary
The atmospheric age of particles reflects how long particles have been formed and suspended in the atmosphere, which is closely associated with the evolution processes of particles. An analysis of the atmospheric age of PM2.5 provides a unique perspective on the evolution processes of different PM2.5 components. The results also shed lights on how to design effective emission control actions under unfavorable meteorological conditions.
Lea Fink, Matthias Karl, Volker Matthias, Sonia Oppo, Richard Kranenburg, Jeroen Kuenen, Sara Jutterström, Jana Moldanova, Elisa Majamäki, and Jukka-Pekka Jalkanen
Atmos. Chem. Phys., 23, 10163–10189, https://doi.org/10.5194/acp-23-10163-2023, https://doi.org/10.5194/acp-23-10163-2023, 2023
Short summary
Short summary
The Mediterranean Sea is a heavily trafficked shipping area, and air quality monitoring stations in numerous cities along the Mediterranean coast have detected high levels of air pollutants originating from shipping emissions. The current study investigates how existing restrictions on shipping-related emissions to the atmosphere ensure compliance with legislation. Focus was laid on fine particles and particle species, which were simulated with five different chemical transport models.
Noah A. Stanton and Neil F. Tandon
Atmos. Chem. Phys., 23, 9191–9216, https://doi.org/10.5194/acp-23-9191-2023, https://doi.org/10.5194/acp-23-9191-2023, 2023
Short summary
Short summary
Chemistry in Earth’s atmosphere has a potentially strong but very uncertain impact on climate. Past attempts to fully model chemistry in Earth’s troposphere (the lowest layer of the atmosphere) typically simplified the representation of Earth’s surface, which in turn limited the ability to simulate changes in climate. The cutting-edge model that we use in this study does not require such simplification, and we use it to examine the climate effects of chemical interactions in the troposphere.
Yiqi Zheng, Larry W. Horowitz, Raymond Menzel, David J. Paynter, Vaishali Naik, Jingyi Li, and Jingqiu Mao
Atmos. Chem. Phys., 23, 8993–9007, https://doi.org/10.5194/acp-23-8993-2023, https://doi.org/10.5194/acp-23-8993-2023, 2023
Short summary
Short summary
Biogenic secondary organic aerosols (SOAs) account for a large fraction of fine aerosol at the global scale. Using long-term measurements and a climate model, we investigate anthropogenic impacts on biogenic SOA at both decadal and centennial timescales. Results show that despite reductions in biogenic precursor emissions, SOA has been strongly amplified by anthropogenic emissions since the preindustrial era and exerts a cooling radiative forcing.
Yuyang Li, Jiewen Shen, Bin Zhao, Runlong Cai, Shuxiao Wang, Yang Gao, Manish Shrivastava, Da Gao, Jun Zheng, Markku Kulmala, and Jingkun Jiang
Atmos. Chem. Phys., 23, 8789–8804, https://doi.org/10.5194/acp-23-8789-2023, https://doi.org/10.5194/acp-23-8789-2023, 2023
Short summary
Short summary
We set up a new parameterization for 1.4 nm particle formation rates from sulfuric acid–dimethylamine (SA–DMA) nucleation, fully including the effects of coagulation scavenging and cluster stability. Incorporating the new parameterization into 3-D chemical transport models, we achieved better consistencies between simulation results and observation data. This new parameterization provides new insights into atmospheric nucleation simulations and its effects on atmospheric pollution or health.
Cited articles
Ahmadov, R., McKeen, S. A., Robinson, A. L., Bahreini, R., Middlebrook, A. M., de Gouw, J. A., Meagher, J., Hsie, E.-Y., Edgerton, E., Shaw, S., and Trainer, M.: A volatility basis set model for summertime secondary organic aerosols over the eastern United States in 2006, J. Geophys. Res.-Atmos., 117, D06301, https://doi.org/10.1029/2011jd016831, 2012.
Akherati, A., Cappa, C. D., Kleeman, M. J., Docherty, K. S., Jimenez, J. L., Griffith, S. M., Dusanter, S., Stevens, P. S., and Jathar, S. H.: Simulating secondary organic aerosol in a regional air quality model using the statistical oxidation model – Part 3: Assessing the influence of semi-volatile and intermediate-volatility organic compounds and NOx, Atmos. Chem. Phys., 19, 4561–4594, https://doi.org/10.5194/acp-19-4561-2019, 2019.
Aksoyoglu, S., Keller, J., Barmpadimos, I., Oderbolz, D., Lanz, V. A., Prévôt, A. S. H., and Baltensperger, U.: Aerosol modelling in Europe with a focus on Switzerland during summer and winter episodes, Atmos. Chem. Phys., 11, 7355–7373, https://doi.org/10.5194/acp-11-7355-2011, 2011.
Aumont, B., Szopa, S., and Madronich, S.: Modelling the evolution of organic carbon during its gas-phase tropospheric oxidation: development of an explicit model based on a self generating approach, Atmos. Chem. Phys., 5, 2497–2517, https://doi.org/10.5194/acp-5-2497-2005, 2005.
Belis, C. A., Karagulian, F., Larsen, B. R., and Hopke, P. K.: Critical
review and meta-analysis of ambient particulate matter source apportionment
using receptor models in Europe, Atmos. Environ., 69, 94–108,
https://doi.org/10.1016/j.atmosenv.2012.11.009, 2013.
Bergström, R., Denier van der Gon, H. A. C., Prévôt, A. S. H., Yttri, K. E., and Simpson, D.: Modelling of organic aerosols over Europe (2002–2007) using a volatility basis set (VBS) framework: application of different assumptions regarding the formation of secondary organic aerosol, Atmos. Chem. Phys., 12, 8499–8527, https://doi.org/10.5194/acp-12-8499-2012, 2012.
Bessagnet, B., Hodzic, A., Vautard, R., Beekmann, M., Cheinet, S.,
Honoré, C., Liousse, C., and Rouil, L.: Aerosol modeling with CHIMERE –
Preliminary evaluation at the continental scale, Atmos. Environ., 38,
2803–2817, https://doi.org/10.1016/j.atmosenv.2004.02.034, 2004.
Bessagnet, B., Menut, L., Curci, G., Hodzic, A., Guillaume, B., Liousse, C.,
Moukhtar, S., Pun, B., Seigneur, C., and Schulz, M.: Regional modeling of
carbonaceous aerosols over Europe—focus on secondary organic aerosols, J.
Atmos. Chem., 61, 175–202, https://doi.org/10.1007/s10874-009-9129-2,
2009.
Bessagnet, B., Seigneur, C., and Menut, L.: Impact of dry deposition of
semi-volatile organic compounds on secondary organic aerosols, Atmos.
Environ., 44, 1781–1787,
https://doi.org/10.1016/j.atmosenv.2010.01.027, 2010.
Bessagnet, B., Pirovano, G., Mircea, M., Cuvelier, C., Aulinger, A., Calori, G., Ciarelli, G., Manders, A., Stern, R., Tsyro, S., García Vivanco, M., Thunis, P., Pay, M.-T., Colette, A., Couvidat, F., Meleux, F., Rouïl, L., Ung, A., Aksoyoglu, S., Baldasano, J. M., Bieser, J., Briganti, G., Cappelletti, A., D'Isidoro, M., Finardi, S., Kranenburg, R., Silibello, C., Carnevale, C., Aas, W., Dupont, J.-C., Fagerli, H., Gonzalez, L., Menut, L., Prévôt, A. S. H., Roberts, P., and White, L.: Presentation of the EURODELTA III intercomparison exercise – evaluation of the chemistry transport models' performance on criteria pollutants and joint analysis with meteorology, Atmos. Chem. Phys., 16, 12667–12701, https://doi.org/10.5194/acp-16-12667-2016, 2016.
Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster,
P., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh,
S. K., Sherwood, S., Stevens, B., and Zhang, X. Y.: Clouds and Aerosols, in
Climate Change 2013 – The Physical Science Basis. Contribution of Working
Group I to the Fifth Assessment Report of the Intergovernmental Panel on
Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.
K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, UK and New
York, NY, USA,
571–658, 2013.
Boylan, J. W. and Russell, A. G.: PM and light extinction model performance
metrics, goals, and criteria for three-dimensional air quality models,
Atmos. Environ., 40, 4946–4959,
https://doi.org/10.1016/j.atmosenv.2005.09.087, 2006.
Brégonzio-Rozier, L., Giorio, C., Siekmann, F., Pangui, E., Morales, S. B., Temime-Roussel, B., Gratien, A., Michoud, V., Cazaunau, M., DeWitt, H. L., Tapparo, A., Monod, A., and Doussin, J.-F.: Secondary organic aerosol formation from isoprene photooxidation during cloud condensation–evaporation cycles, Atmos. Chem. Phys., 16, 1747–1760, https://doi.org/10.5194/acp-16-1747-2016, 2016.
Camredon, M., Aumont, B., Lee-Taylor, J., and Madronich, S.: The SOA/VOC/NOx system: an explicit model of secondary organic aerosol formation, Atmos. Chem. Phys., 7, 5599–5610, https://doi.org/10.5194/acp-7-5599-2007, 2007.
Canagaratna, M. R., Jimenez, J. L., Kroll, J. H., Chen, Q., Kessler, S. H., Massoli, P., Hildebrandt Ruiz, L., Fortner, E., Williams, L. R., Wilson, K. R., Surratt, J. D., Donahue, N. M., Jayne, J. T., and Worsnop, D. R.: Elemental ratio measurements of organic compounds using aerosol mass spectrometry: characterization, improved calibration, and implications, Atmos. Chem. Phys., 15, 253–272, https://doi.org/10.5194/acp-15-253-2015, 2015.
Cappa, C. D. and Wilson, K. R.: Multi-generation gas-phase oxidation, equilibrium partitioning, and the formation and evolution of secondary organic aerosol, Atmos. Chem. Phys., 12, 9505–9528, https://doi.org/10.5194/acp-12-9505-2012, 2012.
Cappa, C. D., Jathar, S. H., Kleeman, M. J., Docherty, K. S., Jimenez, J. L., Seinfeld, J. H., and Wexler, A. S.: Simulating secondary organic aerosol in a regional air quality model using the statistical oxidation model – Part 2: Assessing the influence of vapor wall losses, Atmos. Chem. Phys., 16, 3041–3059, https://doi.org/10.5194/acp-16-3041-2016, 2016.
Carlton, A. G., Wiedinmyer, C., and Kroll, J. H.: A review of Secondary Organic Aerosol (SOA) formation from isoprene, Atmos. Chem. Phys., 9, 4987–5005, https://doi.org/10.5194/acp-9-4987-2009, 2009.
Carter, W. P. L.: A detailed mechanism for the gas-phase atmospheric
reactions of organic compounds, Atmos. Environ., 24, 481–518,
https://doi.org/10.1016/0960-1686(90)90005-8, 1990.
Chrit, M., Sartelet, K., Sciare, J., Pey, J., Marchand, N., Couvidat, F., Sellegri, K., and Beekmann, M.: Modelling organic aerosol concentrations and properties during ChArMEx summer campaigns of 2012 and 2013 in the western Mediterranean region, Atmos. Chem. Phys., 17, 12509–12531, https://doi.org/10.5194/acp-17-12509-2017, 2017.
Ciarelli, G., Aksoyoglu, S., Crippa, M., Jimenez, J.-L., Nemitz, E., Sellegri, K., Äijälä, M., Carbone, S., Mohr, C., O'Dowd, C., Poulain, L., Baltensperger, U., and Prévôt, A. S. H.: Evaluation of European air quality modelled by CAMx including the volatility basis set scheme, Atmos. Chem. Phys., 16, 10313–10332, https://doi.org/10.5194/acp-16-10313-2016, 2016.
Ciarelli, G., Aksoyoglu, S., El Haddad, I., Bruns, E. A., Crippa, M., Poulain, L., Äijälä, M., Carbone, S., Freney, E., O'Dowd, C., Baltensperger, U., and Prévôt, A. S. H.: Modelling winter organic aerosol at the European scale with CAMx: evaluation and source apportionment with a VBS parameterization based on novel wood burning smog chamber experiments, Atmos. Chem. Phys., 17, 7653–7669, https://doi.org/10.5194/acp-17-7653-2017, 2017.
Couvidat, F. and Sartelet, K.: The Secondary Organic Aerosol Processor (SOAP v1.0) model: a unified model with different ranges of complexity based on the molecular surrogate approach, Geosci. Model Dev., 8, 1111–1138, https://doi.org/10.5194/gmd-8-1111-2015, 2015.
Couvidat, F. and Seigneur, C.: Modeling secondary organic aerosol formation from isoprene oxidation under dry and humid conditions, Atmos. Chem. Phys., 11, 893–909, https://doi.org/10.5194/acp-11-893-2011, 2011.
Couvidat, F., Debry, É., Sartelet, K., and Seigneur, C.: A
hydrophilic/hydrophobic organic (H2O) aerosol model: Development, evaluation
and sensitivity analysis, J. Geophys. Res., 117, D10304,
https://doi.org/10.1029/2011JD017214, 2012.
Couvidat, F., Kim, Y., Sartelet, K., Seigneur, C., Marchand, N., and Sciare, J.: Modeling secondary organic aerosol in an urban area: application to Paris, France, Atmos. Chem. Phys., 13, 983–996, https://doi.org/10.5194/acp-13-983-2013, 2013.
Couvidat, F., Bessagnet, B., Garcia-Vivanco, M., Real, E., Menut, L., and Colette, A.: Development of an inorganic and organic aerosol model (CHIMERE 2017 β v1.0): seasonal and spatial evaluation over Europe, Geosci. Model Dev., 11, 165–194, https://doi.org/10.5194/gmd-11-165-2018, 2018.
Crippa, M., Canonaco, F., Lanz, V. A., Äijälä, M., Allan, J. D., Carbone, S., Capes, G., Ceburnis, D., Dall'Osto, M., Day, D. A., DeCarlo, P. F., Ehn, M., Eriksson, A., Freney, E., Hildebrandt Ruiz, L., Hillamo, R., Jimenez, J. L., Junninen, H., Kiendler-Scharr, A., Kortelainen, A.-M., Kulmala, M., Laaksonen, A., Mensah, A. A., Mohr, C., Nemitz, E., O'Dowd, C., Ovadnevaite, J., Pandis, S. N., Petäjä, T., Poulain, L., Saarikoski, S., Sellegri, K., Swietlicki, E., Tiitta, P., Worsnop, D. R., Baltensperger, U., and Prévôt, A. S. H.: Organic aerosol components derived from 25 AMS data sets across Europe using a consistent ME-2 based source apportionment approach, Atmos. Chem. Phys., 14, 6159–6176, https://doi.org/10.5194/acp-14-6159-2014, 2014.
Crounse, J. D., Nielsen, L. B., Jørgensen, S., Kjaergaard, H. G., and
Wennberg, P. O.: Autoxidation of organic compounds in the atmosphere, J.
Phys. Chem. Lett., 4, 3513–3520, https://doi.org/10.1021/jz4019207,
2013.
Debry, E., Fahey, K., Sartelet, K., Sportisse, B., and Tombette, M.: Technical Note: A new SIze REsolved Aerosol Model (SIREAM), Atmos. Chem. Phys., 7, 1537–1547, https://doi.org/10.5194/acp-7-1537-2007, 2007.
Denier van der Gon, H. A. C., Bergström, R., Fountoukis, C., Johansson, C., Pandis, S. N., Simpson, D., and Visschedijk, A. J. H.: Particulate emissions from residential wood combustion in Europe – revised estimates and an evaluation, Atmos. Chem. Phys., 15, 6503–6519, https://doi.org/10.5194/acp-15-6503-2015, 2015.
Denjean, C., Formenti, P., Picquet-Varrault, B., Camredon, M., Pangui, E., Zapf, P., Katrib, Y., Giorio, C., Tapparo, A., Temime-Roussel, B., Monod, A., Aumont, B., and Doussin, J. F.: Aging of secondary organic aerosol generated from the ozonolysis of α-pinene: effects of ozone, light and temperature, Atmos. Chem. Phys., 15, 883–897, https://doi.org/10.5194/acp-15-883-2015, 2015.
Denkenberger, K. A., Moffet, R. C., Holecek, J. C., Rebotier, T. P., and
Prather, K. A.: Real-time, single-particle measurements of oligomers in aged
ambient aerosol particles, Environ. Sci. Technol., 41, 5439–5446,
https://doi.org/10.1021/es070329l, 2007.
Dommen, J., Metzger, A., Duplissy, J., Kalberer, M., Alfarra, M. R., Gascho,
A., Weingartner, E., Prevot, A. S. H., Verheggen, B., and Baltensperger, U.:
Laboratory observation of oligomers in the aerosol from isoprene/NOx
photooxidation, Geophys. Res. Lett., 33, 1–5,
https://doi.org/10.1029/2006GL026523, 2006.
Donahue, N. M., Huff Hartz, K. E., Chuong, B., Presto, A. A., Stanier, C.
O., Rosenhorn, T., Robinson, A. L., and Pandis, S. N.: Critical factors
determining the variation in SOA yields from terpene ozonolysis: A combined
experimental and computational study, Faraday Discuss., 130, 295–309,
https://doi.org/10.1039/b417369d, 2005.
Donahue, N. M., Robinson, A. L., Stanier, C. O., and Pandis, S. N.: Coupled
partitioning, dilution, and chemical aging of semivolatile organics,
Environ. Sci. Technol., 40, 2635–2643,
https://doi.org/10.1021/es052297c, 2006.
Donahue, N. M., Kroll, J. H., Pandis, S. N., and Robinson, A. L.: A two-dimensional volatility basis set – Part 2: Diagnostics of organic-aerosol evolution, Atmos. Chem. Phys., 12, 615–634, https://doi.org/10.5194/acp-12-615-2012, 2012.
Ebel, A., Friedrich, R., and Rodhe, H.: GENEMIS: Assessment, Improvement, and
Temporal and Spatial Disaggregation of European Emission Data, in
Tropospheric Modelling and Emission Estimation, Springer
Berlin Heidelberg, Berlin, Heidelberg, Germany, 181–214, 1997.
Ehn, M., Thornton, J. A., Kleist, E., Sipila, M., Junninen, H., Pullinen,
I., Springer, M., Rubach, F., Tillmann, R., Lee, B., Lopez-Hilfiker, F.,
Andres, S., Acir, I. H., Rissanen, M., Jokinen, T., Schobesberger, S.,
Kangasluoma, J., Kontkanen, J., Nieminen, T., Kurten, T., Nielsen, L. B.,
Jorgensen, S., Kjaergaard, H. G., Canagaratna, M., Dal Maso, M., Berndt, T.,
Petaja, T., Wahner, A., Kerminen, V. M., Kulmala, M., Worsnop, D. R., Wildt,
J., and Mentel, T. F.: A large source of low-volatility secondary organic
aerosol, Nature, 506, 476–479, https://doi.org/10.1038/Nature13032,
2014.
Emmons, L. K., Walters, S., Hess, P. G., Lamarque, J.-F., Pfister, G. G., Fillmore, D., Granier, C., Guenther, A., Kinnison, D., Laepple, T., Orlando, J., Tie, X., Tyndall, G., Wiedinmyer, C., Baughcum, S. L., and Kloster, S.: Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4), Geosci. Model Dev., 3, 43–67, https://doi.org/10.5194/gmd-3-43-2010, 2010.
Fountoukis, C. and Nenes, A.: ISORROPIA II: a computationally efficient
thermodynamic equilibrium model for
K+–Ca2+–Mg2+– –Na+– – –Cl−–H2O
aerosols, Atmos. Chem. Phys., 7, 4639–4659,
https://doi.org/10.5194/acp-7-4639-2007, 2007.
Fraser, M., Cass, G., Simoneit, B., and Rasmussen, R.: Air quality model
evaluation data for organics .4. C2–C36 non-aromatic hydrocarbons, Environ.
Sci. Technol., 31, 2356–2367, https://doi.org/10.1021/es960980g, 1997.
Fredenslund, A., Jones, R. L., and Prausnitz, J. M.: Group-contribution
estimation of activity coefficients in nonideal liquid mixtures, AIChE J.,
21, 1086–1099, https://doi.org/10.1002/aic.690210607, 1975.
Friedrich, R.: GENEMIS: Generation of European Emission Data for Episodes,
in Transport and Chemical Transformation of Pollutants in the Troposphere,
Springer Berlin Heidelberg, Berlin, Heidelberg, Germany, 375–386, 2000.
Gelencsér, A., May, B., Simpson, D., Sánchez-Ochoa, A.,
Kasper-Giebl, A., Puxbaum, H., Caseiro, A., Pio, C., and Legrand, M.: Source
apportionment of PM2.5 organic aerosol over Europe: Primary/secondary,
natural/anthropogenic, and fossil/biogenic origin, J. Geophys. Res.,
112, D23S04, https://doi.org/10.1029/2006JD008094, 2007.
Gentner, D. R., Isaacman, G., Worton, D. R., Chan, A. W. H., Dallmann, T.
R., Davis, L., Liu, S., Day, D. A., Russell, L. M., Wilson, K. R., Weber,
R., Guha, A., Harley, R. A., and Goldstein, A. H.: Elucidating secondary
organic aerosol from diesel and gasoline vehicles through detailed
characterization of organic carbon emissions, P. Natl. Acad. Sci. USA,
109, 18318–18323, https://doi.org/10.1073/pnas.1212272109, 2012.
Grieshop, A. P., Logue, J. M., Donahue, N. M., and Robinson, A. L.: Laboratory investigation of photochemical oxidation of organic aerosol from wood fires 1: measurement and simulation of organic aerosol evolution, Atmos. Chem. Phys., 9, 1263–1277, https://doi.org/10.5194/acp-9-1263-2009, 2009.
Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., and Wang, X.: The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions, Geosci. Model Dev., 5, 1471–1492, https://doi.org/10.5194/gmd-5-1471-2012, 2012.
Han, S., Bian, H., Zhang, Y., Wu, J., Wang, Y., Tie, X., Li, Y., Li, X., and
Yao, Q.: Effect of Aerosols on Visibility and Radiation in Spring 2009 in
Tianjin, China, Aerosol Air Qual. Res., 12, 211–217,
https://doi.org/10.4209/aaqr.2011.05.0073, 2012.
Hatch, L. E., Rivas-Ubach, A., Jen, C. N., Lipton, M., Goldstein, A. H., and Barsanti, K. C.: Measurements of I/SVOCs in biomass-burning smoke using solid-phase extraction disks and two-dimensional gas chromatography, Atmos. Chem. Phys., 18, 17801–17817, https://doi.org/10.5194/acp-18-17801-2018, 2018.
Heald, C. L., Jacob, D. J., Park, R. J., Russell, L. M., Huebert, B. J.,
Seinfeld, J. H., Liao, H., and Weber, R. J.: A large organic aerosol source
in the free troposphere missing from current models, Geophys. Res. Lett.,
32, L18809, https://doi.org/10.1029/2005GL023831, 2005.
Hodzic, A., Jimenez, J. L., Madronich, S., Canagaratna, M. R., DeCarlo, P. F., Kleinman, L., and Fast, J.: Modeling organic aerosols in a megacity: potential contribution of semi-volatile and intermediate volatility primary organic compounds to secondary organic aerosol formation, Atmos. Chem. Phys., 10, 5491–5514, https://doi.org/10.5194/acp-10-5491-2010, 2010.
Hodzic, A., Aumont, B., Knote, C., Lee-Taylor, J., Madronich, S., and
Tyndall, G.: Volatility dependence of Henry's law constants of condensable
organics: Application to estimate depositional loss of secondary organic
aerosols, Geophys. Res. Lett., 41, 4795–4804,
https://doi.org/10.1002/2014GL060649, 2014.
Im, U., Bianconi, R., Solazzo, E., Kioutsioukis, I., Badia, A., Balzarini,
A., Baró, R., Bellasio, R., Brunner, D., Chemel, C., Curci, G.,
Flemming, J., Forkel, R., Giordano, L., Jiménez-Guerrero, P., Hirtl, M.,
Hodzic, A., Honzak, L., Jorba, O., Knote, C., Kuenen, J. J. P., Makar, P.
A., Manders-Groot, A., Neal, L., Pérez, J. L., Pirovano, G., Pouliot,
G., San Jose, R., Savage, N., Schroder, W., Sokhi, R. S., Syrakov, D.,
Torian, A., Tuccella, P., Werhahn, J., Wolke, R., Yahya, K., Zabkar, R.,
Zhang, Y., Zhang, J., Hogrefe, C., and Galmarini, S.: Evaluation of
operational on-line-coupled regional air quality models over Europe and
North America in the context of AQMEII phase 2. Part I: Ozone, Atmos.
Environ., 115, 404–420, https://doi.org/10.1016/j.atmosenv.2014.09.042,
2015.
Jacobson, M. Z., Turco, R. P., Jensen, E. J., and Toon, O. B.: Modeling
coagulation among particles of different composition and size, Atmos.
Environ., 28, 1327–1338, https://doi.org/10.1016/1352-2310(94)90280-1,
1994.
Jathar, S. H., Cappa, C. D., Wexler, A. S., Seinfeld, J. H., and Kleeman, M. J.: Multi-generational oxidation model to simulate secondary organic aerosol in a 3-D air quality model, Geosci. Model Dev., 8, 2553–2567, https://doi.org/10.5194/gmd-8-2553-2015, 2015.
Jathar, S. H., Woody, M., Pye, H. O. T., Baker, K. R., and Robinson, A. L.: Chemical transport model simulations of organic aerosol in southern California: model evaluation and gasoline and diesel source contributions, Atmos. Chem. Phys., 17, 4305–4318, https://doi.org/10.5194/acp-17-4305-2017, 2017.
Jimenez, J. L., Canagaratna, M. R., Donahue, N. M., Prevot, A. S. H., Zhang,
Q., Kroll, J. H., DeCarlo, P. F., Allan, J. D., Coe, H., Ng, N. L., Aiken,
A. C., Docherty, K. S., Ulbrich, I. M., Grieshop, A. P., Robinson, A. L.,
Duplissy, J., Smith, J. D., Wilson, K. R., Lanz, V. A., Hueglin, C., Sun, Y.
L., Tian, J., Laaksonen, A., Raatikainen, T., Rautiainen, J., Vaattovaara,
P., Ehn, M., Kulmala, M., Tomlinson, J. M., Collins, D. R., Cubison, M. J.,
Dunlea, E. J., Huffman, J. A., Onasch, T. B., Alfarra, M. R., Williams, P.
I., Bower, K., Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., Weimer,
S., Demerjian, K., Salcedo, D., Cottrell, L., Griffin, R., Takami, A.,
Miyoshi, T., Hatakeyama, S., Shimono, A., Sun, J. Y., Zhang, Y. M., Dzepina,
K., Kimmel, J. R., Sueper, D., Jayne, J. T., Herndon, S. C., Trimborn, A.
M., Williams, L. R., Wood, E. C., Middlebrook, A. M., Kolb, C. E.,
Baltensperger, U., and Worsnop, D. R.: Evolution of organic aerosols in the
atmosphere., Science, 326, 1525–9,
https://doi.org/10.1126/science.1180353, 2009.
Kalberer, M., Sax, M., and Samburova, V.: Molecular size evolution of
oligomers in organic aerosols collected in urban atmospheres and generated
in a smog chamber, Environ. Sci. Technol., 40, 5917–5922,
https://doi.org/10.1021/es0525760, 2006.
Knote, C., Hodzic, A., Jimenez, J. L., Volkamer, R., Orlando, J. J., Baidar, S., Brioude, J., Fast, J., Gentner, D. R., Goldstein, A. H., Hayes, P. L., Knighton, W. B., Oetjen, H., Setyan, A., Stark, H., Thalman, R., Tyndall, G., Washenfelder, R., Waxman, E., and Zhang, Q.: Simulation of semi-explicit mechanisms of SOA formation from glyoxal in aerosol in a 3-D model, Atmos. Chem. Phys., 14, 6213–6239, https://doi.org/10.5194/acp-14-6213-2014, 2014.
Kroll, J. H. and Seinfeld, J. H.: Chemistry of secondary organic aerosol:
Formation and evolution of low-volatility organics in the atmosphere, Atmos.
Environ., 42, 3593–3624,
https://doi.org/10.1016/j.atmosenv.2008.01.003, 2008.
Kulmala, M., Laaksonen, A., and Pirjola, L.: Parameterizations for sulfuric
acid/water nucleation rates, J. Geophys. Res.-Atmos., 103, 8301–8307,
https://doi.org/10.1029/97JD03718, 1998.
La, Y. S., Camredon, M., Ziemann, P. J., Valorso, R., Matsunaga, A., Lannuque, V., Lee-Taylor, J., Hodzic, A., Madronich, S., and Aumont, B.: Impact of chamber wall loss of gaseous organic compounds on secondary organic aerosol formation: explicit modeling of SOA formation from alkane and alkene oxidation, Atmos. Chem. Phys., 16, 1417–1431, https://doi.org/10.5194/acp-16-1417-2016, 2016.
Lane, T. E., Donahue, N. M., and Pandis, S. N.: Effect of NOx on secondary
organic aerosol concentrations, Environ. Sci. Technol., 42, 6022–6027,
https://doi.org/10.1021/es703225a, 2008.
Lannuque, V., Camredon, M., Couvidat, F., Hodzic, A., Valorso, R., Madronich, S., Bessagnet, B., and Aumont, B.: Exploration of the influence of environmental conditions on secondary organic aerosol formation and organic species properties using explicit simulations: development of the VBS-GECKO parameterization, Atmos. Chem. Phys., 18, 13411–13428, https://doi.org/10.5194/acp-18-13411-2018, 2018a.
Lannuque, V., Couvidat, F., Camredon, M., Aumont, B., and Bessagnet, B.: Modeling organic aerosol over Europe in summer conditions with the VBS-GECKO parameterization: sensitivity to secondary organic compound properties and IVOC emissions [Dataset], Zenodo, https://doi.org/10.5281/zenodo.1654297, 2018b.
Lecœur, È. and Seigneur, C.: Dynamic evaluation of a multi-year model simulation of particulate matter concentrations over Europe, Atmos. Chem. Phys., 13, 4319–4337, https://doi.org/10.5194/acp-13-4319-2013, 2013.
Lemaire, V., Coll, I., Couvidat, F., Mouchel-Vallon, C., Seigneur, C., and Siour, G.: Oligomer formation in the troposphere: from experimental knowledge to 3-D modeling, Geosci. Model Dev., 9, 1361–1382, https://doi.org/10.5194/gmd-9-1361-2016, 2016.
Louvaris, E. E., Karnezi, E., Kostenidou, E., Kaltsonoudis, C., and Pandis, S. N.: Estimation of the volatility distribution of organic aerosol combining thermodenuder and isothermal dilution measurements, Atmos. Meas. Tech., 10, 3909–3918, https://doi.org/10.5194/amt-10-3909-2017, 2017.
Lu, Q., Zhao, Y., and Robinson, A. L.: Comprehensive organic emission profiles for gasoline, diesel, and gas-turbine engines including intermediate and semi-volatile organic compound emissions, Atmos. Chem. Phys., 18, 17637–17654, https://doi.org/10.5194/acp-18-17637-2018, 2018.
Mailler, S., Menut, L., Khvorostyanov, D., Valari, M., Couvidat, F., Siour, G., Turquety, S., Briant, R., Tuccella, P., Bessagnet, B., Colette, A., Létinois, L., Markakis, K., and Meleux, F.: CHIMERE-2017: from urban to hemispheric chemistry-transport modeling, Geosci. Model Dev., 10, 2397–2423, https://doi.org/10.5194/gmd-10-2397-2017, 2017.
Matsunaga, A. and Ziemann, P. J.: Aerosol Science and Technology Gas-Wall
Partitioning of Organic Compounds in a Teflon Film Chamber and Potential
Effects on Reaction Product and Aerosol Yield Measurements Gas-Wall
Partitioning of Organic Compounds in a Teflon Film Chamber and Potential E,
Aerosol Sci. Tech., 44, 881–892,
https://doi.org/10.1080/02786826.2010.501044, 2010.
May, A. A., Presto, A. A., Hennigan, C. J., Nguyen, N. T., Gordon, T. D., and
Robinson, A. L.: Gas-particle partitioning of primary organic aerosol
emissions: (1) Gasoline vehicle exhaust, Atmos. Environ., 77, 128–139,
https://doi.org/10.1016/j.atmosenv.2013.04.060, 2013a.
May, A. A., Presto, A. A., Hennigan, C. J., Nguyen, N. T., Gordon, T. D., and
Robinson, A. L.: Gas-particle partitioning of primary organic aerosol
emissions: (2) diesel vehicles, Environ. Sci. Technol., 47, 8288–8296,
https://doi.org/10.1021/es400782j, 2013b.
May, A. A., Levin, E. J. T., Hennigan, C. J., Riipinen, I., Lee, T.,
Collett, J. L., Jimenez, J. L., Kreidenweis, S. M., and Robinson, A. L.:
Gas-particle partitioning of primary organic aerosol emissions: 3. Biomass
burning, J. Geophys. Res.-Atmos., 118, 11327–11338,
https://doi.org/10.1002/jgrd.50828, 2013c.
McMurry, P. H. and Grosjean, D.: Gas and aerosol wall losses in Teflon film
smog chambers, Environ. Sci. Technol., 19, 1176–1182,
https://doi.org/10.1021/es00142a006, 1985.
McVay, R. C., Zhang, X., Aumont, B., Valorso, R., Camredon, M., La, Y. S., Wennberg, P. O., and Seinfeld, J. H.: SOA formation from the photooxidation of α-pinene: systematic exploration of the simulation of chamber data, Atmos. Chem. Phys., 16, 2785–2802, https://doi.org/10.5194/acp-16-2785-2016, 2016.
Menut, L., Bessagnet, B., Khvorostyanov, D., Beekmann, M., Blond, N., Colette, A., Coll, I., Curci, G., Foret, G., Hodzic, A., Mailler, S., Meleux, F., Monge, J.-L., Pison, I., Siour, G., Turquety, S., Valari, M., Vautard, R., and Vivanco, M. G.: CHIMERE 2013: a model for regional atmospheric composition modelling, Geosci. Model Dev., 6, 981–1028, https://doi.org/10.5194/gmd-6-981-2013, 2013.
Mircea, M., Bessagnet, B., D'Isidoro, M., Pirovano, G., Aksoyoglu, S.,
Ciarelli, G., Tsyro, S., Manders, A., Bieser, J., Stern, R., Vivanco, M. G.,
Cuvelier, C., Aas, W., Prévôt, A. S. H., Aulinger, A., Briganti, G.,
Calori, G., Cappelletti, A., Colette, A., Couvidat, F., Fagerli, H.,
Finardi, S., Kranenburg, R., Rouïl, L., Silibello, C., Spindler, G.,
Poulain, L., Herrmann, H., Jimenez, J. L., Day, D. A., Tiitta, P., and
Carbone, S.: EURODELTA III exercise: An evaluation of air quality models'
capacity to reproduce the carbonaceous aerosol, Atmos. Environ., 2,
100018, https://doi.org/10.1016/j.aeaoa.2019.100018, 2019.
Molteni, U., Bianchi, F., Klein, F., El Haddad, I., Frege, C., Rossi, M. J., Dommen, J., and Baltensperger, U.: Formation of highly oxygenated organic molecules from aromatic compounds, Atmos. Chem. Phys., 18, 1909–1921, https://doi.org/10.5194/acp-18-1909-2018, 2018.
Murphy, B. N., Woody, M. C., Jimenez, J. L., Carlton, A. M. G., Hayes, P. L., Liu, S., Ng, N. L., Russell, L. M., Setyan, A., Xu, L., Young, J., Zaveri, R. A., Zhang, Q., and Pye, H. O. T.: Semivolatile POA and parameterized total combustion SOA in CMAQv5.2: impacts on source strength and partitioning, Atmos. Chem. Phys., 17, 11107–11133, https://doi.org/10.5194/acp-17-11107-2017, 2017.
Ng, N. L., Chhabra, P. S., Chan, A. W. H., Surratt, J. D., Kroll, J. H., Kwan, A. J., McCabe, D. C., Wennberg, P. O., Sorooshian, A., Murphy, S. M., Dalleska, N. F., Flagan, R. C., and Seinfeld, J. H.: Effect of NOx level on secondary organic aerosol (SOA) formation from the photooxidation of terpenes, Atmos. Chem. Phys., 7, 5159–5174, https://doi.org/10.5194/acp-7-5159-2007, 2007.
Ntziachristos, L., Gkatzoflias, D., Kouridis, C., and Samaras, Z.: COPERT: A
European Road Transport Emission Inventory Model, edited by:
Athanasiadis, I. N., Rizzoli, A. E., Mitkas, P. A., and Gómez, J. M., Springer, Berlin, Heidelberg, Germany,
491–504, 2009.
Odum, J. R., Hoffmann, T., Bowman, F., Collins, D., Flagan, R. C., and
Seinfeld, J. H.: Gas particle partitioning and secondary organic aerosol
yields, Environ. Sci. Technol., 30, 2580–2585,
https://doi.org/10.1021/es950943+, 1996.
Ots, R., Young, D. E., Vieno, M., Xu, L., Dunmore, R. E., Allan, J. D., Coe, H., Williams, L. R., Herndon, S. C., Ng, N. L., Hamilton, J. F., Bergström, R., Di Marco, C., Nemitz, E., Mackenzie, I. A., Kuenen, J. J. P., Green, D. C., Reis, S., and Heal, M. R.: Simulating secondary organic aerosol from missing diesel-related intermediate-volatility organic compound emissions during the Clean Air for London (ClearfLo) campaign, Atmos. Chem. Phys., 16, 6453–6473, https://doi.org/10.5194/acp-16-6453-2016, 2016.
Pandis, S. N., Wexler, A. S., and Seinfeld, J. H.: Secondary organic aerosol
formation and transport – II. Predicting the ambient secondary organic
aerosol size distribution, Atmos. Environ., 27, 2403–2416,
https://doi.org/10.1016/0960-1686(93)90408-Q, 1993.
Passant, N. R.: Speciation of UK emissions of non-methane volatile organic
compounds, AEA Technology Report ENV-0545, Culham, Abingdon, UK, 2002.
Paulot, F., Crounse, J. D., Kjaergaard, H. G., Kurten, A., St. Clair, J. M.,
Seinfeld, J. H., and Wennberg, P. O.: Unexpected Epoxide Formation in the
Gas-Phase Photooxidation of Isoprene, Science, 325, 730–733,
https://doi.org/10.1126/science.1172910, 2009.
Petetin, H., Beekmann, M., Sciare, J., Bressi, M., Rosso, A., Sanchez, O., and Ghersi, V.: A novel model evaluation approach focusing on local and advected contributions to urban PM2.5 levels – application to Paris, France, Geosci. Model Dev., 7, 1483–1505, https://doi.org/10.5194/gmd-7-1483-2014, 2014.
Pun, B. K., Griffin, R. J., Seigneur, C., and Seinfeld, J. H.: Secondary
organic aerosol 2. Thermodynamic model for gas/particle partitioning of
molecular constituents, J. Geophys. Res.-Atmos., 107, AAC4/1–AAC4/15,
https://doi.org/10.1029/2001JD000542, 2002.
Pun, B. K., Wu, S. Y., Seigneur, C., Seinfeld, J. H., Griffin, R. J., and
Pandis, S. N.: Uncertainties in modeling secondary organic aerosols:
Three-dimensional modeling studies in Nashville/Western Tennessee, Environ.
Sci. Technol., 37, 3647–3661, https://doi.org/10.1021/es0341541, 2003.
Pun, B. K., Seigneur, C., Vijayaraghavan, K., Wu, S. Y., Chen, S. Y.,
Knipping, E. M., and Kumar, N.: Modeling regional haze in the BRAVO study
using CMAQ-MADRID: 1. Model evaluation, J. Geophys. Res.-Atmos., 111,
1–25, https://doi.org/10.1029/2004JD005608, 2006a.
Pun, B. K., Seigneur, C., and Lohman, K.: Modeling secondary organic aerosol
formation via multiphase partitioning with molecular data, Environ. Sci.
Technol., 40, 4722–4731, https://doi.org/10.1021/es0522736, 2006b.
Pye, H. O. T., Zuend, A., Fry, J. L., Isaacman-VanWertz, G., Capps, S. L., Appel, K. W., Foroutan, H., Xu, L., Ng, N. L., and Goldstein, A. H.: Coupling of organic and inorganic aerosol systems and the effect on gas–particle partitioning in the southeastern US, Atmos. Chem. Phys., 18, 357–370, https://doi.org/10.5194/acp-18-357-2018, 2018.
Rissanen, M. P., Kurtén, T., Sipilä, M., Thornton, J. A., Kausiala,
O., Garmash, O., Kjaergaard, H. G., Petäjä, T., Worsnop, D. R., Ehn,
M., and Kulmala, M.: Effects of chemical complexity on the autoxidation
mechanisms of endocyclic alkene ozonolysis products: From methylcyclohexenes
toward understanding? α-pinene, J. Phys. Chem. A, 119,
4633–4650, https://doi.org/10.1021/jp510966g, 2015.
Robinson, A. L., Donahue, N. M., Shrivastava, M. K., Weitkamp, E. A., Sage,
A. M., Grieshop, A. P., Lane, T. E., Pierce, J. R., and Pandis, S. N.:
Rethinking Organic Aerosols: Semivolatile Emissions and Photochemical Aging,
Science, 315, 1259–1262,
https://doi.org/10.1126/science.1133061, 2007.
Rudich, Y., Donahue, N. M., and Mentel, T. F.: Aging of Organic Aerosol:
Bridging the Gap Between Laboratory and Field Studies, Annu. Rev. Phys.
Chem., 58, 321–352,
https://doi.org/10.1146/annurev.physchem.58.032806.104432, 2007.
Sarwar, G., Godowitch, J., Henderson, B. H., Fahey, K., Pouliot, G., Hutzell, W. T., Mathur, R., Kang, D., Goliff, W. S., and Stockwell, W. R.: A comparison of atmospheric composition using the Carbon Bond and Regional Atmospheric Chemistry Mechanisms, Atmos. Chem. Phys., 13, 9695–9712, https://doi.org/10.5194/acp-13-9695-2013, 2013.
Schauer, J. J., Kleeman, M. J., Cass, G. R., and Simoneit, B. R. T.:
Measurement of emissions from air pollution sources. 2. C1 through C30
organic compounds from medium duty diesel trucks, Environ. Sci. Technol.,
33, 1578–1587, https://doi.org/10.1021/es980081n, 1999.
Schauer, J. J., Kleeman, M. J., Cass, G. R., and Simoneit, B. R. T.:
Measurement of emissions from air pollution sources. 5. C1–C32 organic
compounds from gasoline-powered motor vehicles, Environ. Sci. Technol.,
36, 1169–1180, https://doi.org/10.1021/es0108077, 2002.
Schell, B., Ackermann, I. J., Hass, H., Binkowski, F. S., and Ebel, A.:
Modeling the formation of secondary organic aerosol within a comprehensive
air quality model system, J. Geophys. Res.-Atmos., 106, 28275–28293,
https://doi.org/10.1029/2001JD000384, 2001.
Schmidt, H., Derognat, C., Vautard, R., and Beekmann, M.: A comparison of
simulated and observed ozone mixing ratios for the summer of 1998 in Western
Europe, Atmos. Environ., 35, 6277–6297,
https://doi.org/10.1016/S1352-2310(01)00451-4, 2001.
Shiraiwa, M., Zuend, A., Bertram, A. K., and Seinfeld, J. H.: Gas–particle
partitioning of atmospheric aerosols: interplay of physical state, non-ideal
mixing and morphology, Phys. Chem. Chem. Phys., 15, 11441,
https://doi.org/10.1039/c3cp51595h, 2013.
Solazzo, E., Bianconi, R., Pirovano, G., Matthias, V., Vautard, R., Moran,
M. D., Wyat Appel, K., Bessagnet, B., Brandt, J., Christensen, J. H.,
Chemel, C., Coll, I., Ferreira, J., Forkel, R., Francis, X. V, Grell, G.,
Grossi, P., Hansen, A. B., Miranda, A. I., Nopmongcol, U., Prank, M.,
Sartelet, K. N., Schaap, M., Silver, J. D., Sokhi, R. S., Vira, J., Werhahn,
J., Wolke, R., Yarwood, G., Zhang, J., Rao, S. T., and Galmarini, S.:
Operational model evaluation for particulate matter in Europe and North
America in the context of AQMEII, Atmos. Environ., 53, 75–92,
https://doi.org/10.1016/j.atmosenv.2012.02.045, 2012.
Surratt, J. D., Chan, A. W. H., Eddingsaas, N. C., Chan, M., Loza, C. L.,
Kwan, A. J., Hersey, S. P., Flagan, R. C., Wennberg, P. O., and Seinfeld, J.
H.: Reactive intermediates revealed in secondary organic aerosol formation
from isoprene, P. Natl. Acad. Sci. USA, 107, 6640–6645,
https://doi.org/10.1073/pnas.0911114107, 2010.
Tørseth, K., Aas, W., Breivik, K., Fjæraa, A. M., Fiebig, M., Hjellbrekke, A. G., Lund Myhre, C., Solberg, S., and Yttri, K. E.: Introduction to the European Monitoring and Evaluation Programme (EMEP) and observed atmospheric composition change during 1972–2009, Atmos. Chem. Phys., 12, 5447–5481, https://doi.org/10.5194/acp-12-5447-2012, 2012.
Trump, E. R. and Donahue, N. M.: Oligomer formation within secondary organic aerosols: equilibrium and dynamic considerations, Atmos. Chem. Phys., 14, 3691–3701, https://doi.org/10.5194/acp-14-3691-2014, 2014.
Tsigaridis, K., Daskalakis, N., Kanakidou, M., Adams, P. J., Artaxo, P., Bahadur, R., Balkanski, Y., Bauer, S. E., Bellouin, N., Benedetti, A., Bergman, T., Berntsen, T. K., Beukes, J. P., Bian, H., Carslaw, K. S., Chin, M., Curci, G., Diehl, T., Easter, R. C., Ghan, S. J., Gong, S. L., Hodzic, A., Hoyle, C. R., Iversen, T., Jathar, S., Jimenez, J. L., Kaiser, J. W., Kirkevåg, A., Koch, D., Kokkola, H., Lee, Y. H., Lin, G., Liu, X., Luo, G., Ma, X., Mann, G. W., Mihalopoulos, N., Morcrette, J.-J., Müller, J.-F., Myhre, G., Myriokefalitakis, S., Ng, N. L., O'Donnell, D., Penner, J. E., Pozzoli, L., Pringle, K. J., Russell, L. M., Schulz, M., Sciare, J., Seland, Ø., Shindell, D. T., Sillman, S., Skeie, R. B., Spracklen, D., Stavrakou, T., Steenrod, S. D., Takemura, T., Tiitta, P., Tilmes, S., Tost, H., van Noije, T., van Zyl, P. G., von Salzen, K., Yu, F., Wang, Z., Wang, Z., Zaveri, R. A., Zhang, H., Zhang, K., Zhang, Q., and Zhang, X.: The AeroCom evaluation and intercomparison of organic aerosol in global models, Atmos. Chem. Phys., 14, 10845–10895, https://doi.org/10.5194/acp-14-10845-2014, 2014.
Tsimpidi, A. P., Karydis, V. A., Zavala, M., Lei, W., Molina, L., Ulbrich, I. M., Jimenez, J. L., and Pandis, S. N.: Evaluation of the volatility basis-set approach for the simulation of organic aerosol formation in the Mexico City metropolitan area, Atmos. Chem. Phys., 10, 525–546, https://doi.org/10.5194/acp-10-525-2010, 2010.
Valorso, R., Aumont, B., Camredon, M., Raventos-Duran, T., Mouchel-Vallon, C., Ng, N. L., Seinfeld, J. H., Lee-Taylor, J., and Madronich, S.: Explicit modelling of SOA formation from α-pinene photooxidation: sensitivity to vapour pressure estimation, Atmos. Chem. Phys., 11, 6895–6910, https://doi.org/10.5194/acp-11-6895-2011, 2011.
Vestreng, V.: Review and revision, emission data reported to CLRTAP, MSC-W Status Report 2003, 134, available at:
http://tfeip-secretariat.org/assets/Meetings/Documents/Previous-Meetings/Poland-Sept-2003/ReviewandrevisionMSCWStatusReport2003.pdf (last access: 20 April 2020),
2003.
Volkamer, R., Jimenez, J. L., San Martini, F., Dzepina, K., Zhang, Q.,
Salcedo, D., Molina, L. T., Worsnop, D. R., and Molina, M. J.: Secondary
organic aerosol formation from anthropogenic air pollution: Rapid and higher
than expected, Geophys. Res. Lett., 33, L17811,
https://doi.org/10.1029/2006GL026899, 2006.
Wang, S., Wu, R., Berndt, T., Ehn, M., and Wang, L.: Formation of Highly
Oxidized Radicals and Multifunctional Products from the Atmospheric
Oxidation of Alkylbenzenes, Environ. Sci. Technol., 51, 8442–8449,
https://doi.org/10.1021/acs.est.7b02374, 2017.
Wesely, M. L.: Parameterization of surface resistances to gaseous dry
deposition in regional-scale numerical models, Atmos. Environ., 23,
1293–1304, https://doi.org/10.1016/0004-6981(89)90153-4, 1989.
WHO Regional Office for Europe and OECD: Economic cost of the health impact of air pollution in Europe: Clean air, health and wealth, WHO Regional Office for Europe, Copenhagen, Denmark, 2015.
Woody, M. C., West, J. J., Jathar, S. H., Robinson, A. L., and Arunachalam, S.: Estimates of non-traditional secondary organic aerosols from aircraft SVOC and IVOC emissions using CMAQ, Atmos. Chem. Phys., 15, 6929–6942, https://doi.org/10.5194/acp-15-6929-2015, 2015.
Woody, M. C., Baker, K. R., Hayes, P. L., Jimenez, J. L., Koo, B., and Pye, H. O. T.: Understanding sources of organic aerosol during CalNex-2010 using the CMAQ-VBS, Atmos. Chem. Phys., 16, 4081–4100, https://doi.org/10.5194/acp-16-4081-2016, 2016.
Zhao, Y., Nguyen, N. T., Presto, A. A., Hennigan, C. J., May, A. A., and
Robinson, A. L.: Intermediate Volatility Organic Compound Emissions from
On-Road Diesel Vehicles: Chemical Composition, Emission Factors, and
Estimated Secondary Organic Aerosol Production, Environ. Sci. Technol.,
49, 11516–11526, https://doi.org/10.1021/acs.est.5b02841, 2015.
Zhao, Y., Nguyen, N. T., Presto, A. A., Hennigan, C. J., May, A. A., and
Robinson, A. L.: Intermediate Volatility Organic Compound Emissions from
On-Road Gasoline Vehicles and Small Off-Road Gasoline Engines, Environ. Sci.
Technol., 50, 4554–4563, https://doi.org/10.1021/acs.est.5b06247, 2016.
Zhu, S., Sartelet, K. N., Healy, R. M., and Wenger, J. C.: Simulation of
particle diversity and mixing state over Greater Paris: a model–measurement
inter-comparison, Faraday Discuss., 189, 547–566,
https://doi.org/10.1039/C5FD00175G, 2016a.
Zhu, S., Sartelet, K., Zhang, Y., and Nenes, A.: Three-dimensional modeling
of the mixing state of particles over Greater Paris, J. Geophys. Res.-Atmos., 121, 5930–5947, https://doi.org/10.1002/2015JD024241, 2016b.
Short summary
Large uncertainties remain in modeling secondary organic aerosol (SOA) and evolution and properties in air quality models. In this article, the recently developed VBS-GECKO parameterization for SOA formation has been implemented in the air quality model CHIMERE. Simulations have been driven to identify the main SOA sources and to evaluate the sensitivity of simulated SOA concentrations to (i) secondary organic compound properties and (ii) emissions from traffic and transportation sources.
Large uncertainties remain in modeling secondary organic aerosol (SOA) and evolution and...
Altmetrics
Final-revised paper
Preprint