Articles | Volume 20, issue 22
https://doi.org/10.5194/acp-20-14347-2020
https://doi.org/10.5194/acp-20-14347-2020
Research article
 | 
25 Nov 2020
Research article |  | 25 Nov 2020

Quantifying the emission changes and associated air quality impacts during the COVID-19 pandemic on the North China Plain: a response modeling study

Jia Xing, Siwei Li, Yueqi Jiang, Shuxiao Wang, Dian Ding, Zhaoxin Dong, Yun Zhu, and Jiming Hao

Related authors

Current and future prediction of inter-provincial transport of ambient PM2.5 in China
Shansi Wang, Siwei Li, Jia Xing, Yu Ding, Senlin Hu, Shuchang Liu, Yu Qin, Zhaoxin Dong, Jiaxin Dong, Ge Song, and Lechao Dong
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-368,https://doi.org/10.5194/acp-2022-368, 2022
Preprint withdrawn
Short summary
The pathway of impacts of aerosol direct effects on secondary inorganic aerosol formation
Jiandong Wang, Jia Xing, Shuxiao Wang, Rohit Mathur, Jiaping Wang, Yuqiang Zhang, Chao Liu, Jonathan Pleim, Dian Ding, Xing Chang, Jingkun Jiang, Peng Zhao, Shovan Kumar Sahu, Yuzhi Jin, David C. Wong, and Jiming Hao
Atmos. Chem. Phys., 22, 5147–5156, https://doi.org/10.5194/acp-22-5147-2022,https://doi.org/10.5194/acp-22-5147-2022, 2022
Short summary
Impacts of emission changes in China from 2010 to 2017 on domestic and intercontinental air quality and health effect
Yuqiang Zhang, Drew Shindell, Karl Seltzer, Lu Shen, Jean-Francois Lamarque, Qiang Zhang, Bo Zheng, Jia Xing, Zhe Jiang, and Lei Zhang
Atmos. Chem. Phys., 21, 16051–16065, https://doi.org/10.5194/acp-21-16051-2021,https://doi.org/10.5194/acp-21-16051-2021, 2021
Short summary
Improving the representation of HONO chemistry in CMAQ and examining its impact on haze over China
Shuping Zhang, Golam Sarwar, Jia Xing, Biwu Chu, Chaoyang Xue, Arunachalam Sarav, Dian Ding, Haotian Zheng, Yujing Mu, Fengkui Duan, Tao Ma, and Hong He
Atmos. Chem. Phys., 21, 15809–15826, https://doi.org/10.5194/acp-21-15809-2021,https://doi.org/10.5194/acp-21-15809-2021, 2021
Short summary
Exploring deep learning for air pollutant emission estimation
Lin Huang, Song Liu, Zeyuan Yang, Jia Xing, Jia Zhang, Jiang Bian, Siwei Li, Shovan Kumar Sahu, Shuxiao Wang, and Tie-Yan Liu
Geosci. Model Dev., 14, 4641–4654, https://doi.org/10.5194/gmd-14-4641-2021,https://doi.org/10.5194/gmd-14-4641-2021, 2021
Short summary

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Chemistry–climate feedback of atmospheric methane in a methane-emission-flux-driven chemistry–climate model
Laura Stecher, Franziska Winterstein, Patrick Jöckel, Michael Ponater, Mariano Mertens, and Martin Dameris
Atmos. Chem. Phys., 25, 5133–5158, https://doi.org/10.5194/acp-25-5133-2025,https://doi.org/10.5194/acp-25-5133-2025, 2025
Short summary
Surface ozone trend variability across the United States and the impact of heat waves (1990–2023)
Kai-Lan Chang, Brian C. McDonald, Colin Harkins, and Owen R. Cooper
Atmos. Chem. Phys., 25, 5101–5132, https://doi.org/10.5194/acp-25-5101-2025,https://doi.org/10.5194/acp-25-5101-2025, 2025
Short summary
Sensitivity of climate effects of hydrogen to leakage size, location, and chemical background
Ragnhild Bieltvedt Skeie, Marit Sandstad, Srinath Krishnan, Gunnar Myhre, and Maria Sand
Atmos. Chem. Phys., 25, 4929–4942, https://doi.org/10.5194/acp-25-4929-2025,https://doi.org/10.5194/acp-25-4929-2025, 2025
Short summary
Evaluating tropospheric nitrogen dioxide in UKCA using OMI satellite retrievals over south and east Asia
Alok K. Pandey, David S. Stevenson, Alcide Zhao, Richard J. Pope, Ryan Hossaini, Krishan Kumar, and Martyn P. Chipperfield
Atmos. Chem. Phys., 25, 4785–4802, https://doi.org/10.5194/acp-25-4785-2025,https://doi.org/10.5194/acp-25-4785-2025, 2025
Short summary
Technical note: A comparative study of chemistry schemes for volcanic sulfur dioxide in Lagrangian transport simulations – a case study of the 2019 Raikoke eruption
Mingzhao Liu, Lars Hoffmann, Jens-Uwe Grooß, Zhongyin Cai, Sabine Grießbach, and Yi Heng
Atmos. Chem. Phys., 25, 4403–4418, https://doi.org/10.5194/acp-25-4403-2025,https://doi.org/10.5194/acp-25-4403-2025, 2025
Short summary

Cited articles

Cao, H., Fu, T.-M., Zhang, L., Henze, D. K., Miller, C. C., Lerot, C., Abad, G. G., De Smedt, I., Zhang, Q., van Roozendael, M., Hendrick, F., Chance, K., Li, J., Zheng, J., and Zhao, Y.: Adjoint inversion of Chinese non-methane volatile organic compound emissions using space-based observations of formaldehyde and glyoxal, Atmos. Chem. Phys., 18, 15017–15046, https://doi.org/10.5194/acp-18-15017-2018, 2018. 
Ding, D., Xing, J., Wang, S., Liu, K., and Hao, J.: Estimated contributions of emissions controls, meteorological factors, population growth, and changes in baseline mortality to reductions in ambient PM2.5 and PM2.5-related mortality in China, 2013–2017, Environ. Health Persp., 127, 067009, https://doi.org/10.1289/EHP4157, 2019. 
Hartley, D. and Prinn, R.: Feasibility of determining surface emissions of trace gases using an inverse method in a three-dimensional chemical transport model, J. Geophys. Res.-Atmos., 98, 5183–5197, 1993. 
Huang, X., Ding, A., Gao, J., Zheng, B., Zhou, D., Qi, X., Tang, R., Wang, J., Ren, C., Nie, W., Chi, X., Xu, Z., Chen, L., Li, Y., Che, F., Pan, N., Wang, H., Tong, D., Qin, W., Cheng, W., Liu, W., Fu, Q., Liu, B., Chai, F., Davis, S. J., Zhang, Q., and He, K.: Enhanced secondary pollution offset reduction of primary emissions during covid-19 lockdown in china, National Science Review, nwaa137, https://doi.org/10.1093/nsr/nwaa137, 2020. 
Li, L., Li, Q., Huang, L., Wang, Q., Zhu, A., Xu, J., Liu, Z., Li, H., Shi, L., Li, R., and Azari, M.: Air quality changes during the COVID-19 lockdown over the Yangtze River Delta Region: An insight into the impact of human activity pattern changes on air pollution variation, Sci. Total Environ., 732, 139282 https://doi.org/10.1016/j.scitotenv.2020.139282, 2020. 
Download
Short summary
Quantifying emission changes is a prerequisite for assessment of control effectiveness in improving air quality. However, traditional bottom-up methods usually take months to perform and limit timely assessments. A novel method was developed by using a response model that provides real-time estimation of emission changes based on air quality observations. It was successfully applied to quantify emission changes on the North China Plain due to the COVID-19 pandemic shutdown.
Share
Altmetrics
Final-revised paper
Preprint