Articles | Volume 20, issue 21
https://doi.org/10.5194/acp-20-13455-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-20-13455-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Sensitivity analysis of the surface ozone and fine particulate matter to meteorological parameters in China
Zhihao Shi
Jiangsu Key Laboratory of Atmospheric Environment Monitoring and
Pollution Control, Collaborative Innovation
Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology,
Nanjing 210044, China
Lin Huang
Jiangsu Key Laboratory of Atmospheric Environment Monitoring and
Pollution Control, Collaborative Innovation
Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology,
Nanjing 210044, China
Jingyi Li
Jiangsu Key Laboratory of Atmospheric Environment Monitoring and
Pollution Control, Collaborative Innovation
Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology,
Nanjing 210044, China
Qi Ying
Zachry Department of Civil and Environmental Engineering, Texas A&M
University, College Station, TX 77843, USA
Hongliang Zhang
Department of Environmental Science and Engineering, Fudan University,
Shanghai 200438, China
Institute of Eco-Chongming (SIEC), Shanghai 200062, China
Jianlin Hu
CORRESPONDING AUTHOR
Jiangsu Key Laboratory of Atmospheric Environment Monitoring and
Pollution Control, Collaborative Innovation
Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology,
Nanjing 210044, China
Related authors
No articles found.
Jianing Dai, Guy P. Brasseur, Mihalis Vrekoussis, Maria Kanakidou, Kun Qu, Yijuan Zhang, Hongliang Zhang, and Tao Wang
Atmos. Chem. Phys., 24, 12943–12962, https://doi.org/10.5194/acp-24-12943-2024, https://doi.org/10.5194/acp-24-12943-2024, 2024
Short summary
Short summary
This paper employs a regional chemical transport model to quantify the sensitivity of air pollutants and photochemical parameters to specified emission reductions in China for representative winter and summer conditions. The study provides insights into further air quality control in China with reduced primary emissions.
Shuai Wang, Mengyuan Zhang, Hui Zhao, Peng Wang, Sri Harsha Kota, Qingyan Fu, Cong Liu, and Hongliang Zhang
Earth Syst. Sci. Data, 16, 3565–3577, https://doi.org/10.5194/essd-16-3565-2024, https://doi.org/10.5194/essd-16-3565-2024, 2024
Short summary
Short summary
Long-term, open-source, gap-free daily ground-level PM2.5 and PM10 datasets for India (LongPMInd) were reconstructed using a robust machine learning model to support health assessment and air quality management.
Fei Ye, Jingyi Li, Yaqin Gao, Hongli Wang, Jingyu An, Cheng Huang, Song Guo, Keding Lu, Kangjia Gong, Haowen Zhang, Momei Qin, and Jianlin Hu
Atmos. Chem. Phys., 24, 7467–7479, https://doi.org/10.5194/acp-24-7467-2024, https://doi.org/10.5194/acp-24-7467-2024, 2024
Short summary
Short summary
Naphthalene (Nap) and methylnaphthalene (MN) are key precursors of secondary organic aerosol (SOA), yet their sources and sinks are often inadequately represented in air quality models. In this study, we incorporated detailed emissions, gas-phase chemistry, and SOA parameterization of Nap and MN into CMAQ to address this issue. The findings revealed remarkably high SOA formation potentials for these compounds despite their low emissions in the Yangtze River Delta region during summer.
Haifeng Yu, Yunhua Chang, Lin Cheng, Yusen Duan, and Jianlin Hu
EGUsphere, https://doi.org/10.5194/egusphere-2024-1488, https://doi.org/10.5194/egusphere-2024-1488, 2024
Short summary
Short summary
This study presents long-term measurements and comprehensive analysis of carbonaceous aerosols in PM2.5 in Shanghai. We further estimated POC and SOC levels, examining their temporal variations on interannual, monthly, seasonal, and diurnal scales. Through rigorous statistical analysis and correlation studies with meteorological parameters and pollutant concentrations, the origins, formation mechanisms, and spatial distribution patterns of SOC were elucidated.
Shuai Wang, Mengyuan Zhang, Yueqi Gao, Peng Wang, Qingyan Fu, and Hongliang Zhang
Geosci. Model Dev., 17, 3617–3629, https://doi.org/10.5194/gmd-17-3617-2024, https://doi.org/10.5194/gmd-17-3617-2024, 2024
Short summary
Short summary
Numerical models are widely used in air pollution modeling but suffer from significant biases. The machine learning model designed in this study shows high efficiency in identifying such biases. Meteorology (relative humidity and cloud cover), chemical composition (secondary organic components and dust aerosols), and emission sources (residential activities) are diagnosed as the main drivers of bias in modeling PM2.5, a typical air pollutant. The results will help to improve numerical models.
Bin Luo, Yuqiang Zhang, Tao Tang, Hongliang Zhang, Jianlin Hu, Jiangshan Mu, Wenxing Wang, and Likun Xue
EGUsphere, https://doi.org/10.5194/egusphere-2024-974, https://doi.org/10.5194/egusphere-2024-974, 2024
Short summary
Short summary
India is facing a severe air pollution crisis that poses significant health risks, particularly from PM2.5 and O3. Our study reveals rising levels of both pollutants from 1995 to 2014, leading to increased premature mortality. While anthropogenic emissions play a significant role, biomass burning also impacts air quality, in particular seasons and regions in India. This study highlights the urgent need for localized policies to protect public health amid escalating environmental challenges.
Yongliang She, Jingyi Li, Xiaopu Lyu, Hai Guo, Momei Qin, Xiaodong Xie, Kangjia Gong, Fei Ye, Jianjiong Mao, Lin Huang, and Jianlin Hu
Atmos. Chem. Phys., 24, 219–233, https://doi.org/10.5194/acp-24-219-2024, https://doi.org/10.5194/acp-24-219-2024, 2024
Short summary
Short summary
In this study, we use multi-site volatile organic compound (VOC) measurements to evaluate the CMAQ-model-predicted VOCs and assess the impacts of VOC bias on O3 simulation. Our results demonstrate that current modeling setups and emission inventories are likely to underpredict VOC concentrations, and this underprediction of VOCs contributes to lower O3 predictions in China.
Jianing Dai, Guy P. Brasseur, Mihalis Vrekoussis, Maria Kanakidou, Kun Qu, Yijuan Zhang, Hongliang Zhang, and Tao Wang
Atmos. Chem. Phys., 23, 14127–14158, https://doi.org/10.5194/acp-23-14127-2023, https://doi.org/10.5194/acp-23-14127-2023, 2023
Short summary
Short summary
In this study, we used a regional chemical transport model to characterize the different parameters of atmospheric oxidative capacity in recent chemical environments in China. These parameters include the production and destruction rates of ozone and other oxidants, the ozone production efficiency, the OH reactivity, and the length of the reaction chain responsible for the formation of ozone and ROx. They are also affected by the aerosol burden in the atmosphere.
Qianqian Gao, Shengqiang Zhu, Kaili Zhou, Jinghao Zhai, Shaodong Chen, Qihuang Wang, Shurong Wang, Jin Han, Xiaohui Lu, Hong Chen, Liwu Zhang, Lin Wang, Zimeng Wang, Xin Yang, Qi Ying, Hongliang Zhang, Jianmin Chen, and Xiaofei Wang
Atmos. Chem. Phys., 23, 13049–13060, https://doi.org/10.5194/acp-23-13049-2023, https://doi.org/10.5194/acp-23-13049-2023, 2023
Short summary
Short summary
Dust is a major source of atmospheric aerosols. Its chemical composition is often assumed to be similar to the parent soil. However, this assumption has not been rigorously verified. Dust aerosols are mainly generated by wind erosion, which may have some chemical selectivity. Mn, Cd and Pb were found to be highly enriched in fine-dust (PM2.5) aerosols. In addition, estimation of heavy metal emissions from dust generation by air quality models may have errors without using proper dust profiles.
Xiaodong Xie, Jianlin Hu, Momei Qin, Song Guo, Min Hu, Dongsheng Ji, Hongli Wang, Shengrong Lou, Cheng Huang, Chong Liu, Hongliang Zhang, Qi Ying, Hong Liao, and Yuanhang Zhang
Atmos. Chem. Phys., 23, 10563–10578, https://doi.org/10.5194/acp-23-10563-2023, https://doi.org/10.5194/acp-23-10563-2023, 2023
Short summary
Short summary
The atmospheric age of particles reflects how long particles have been formed and suspended in the atmosphere, which is closely associated with the evolution processes of particles. An analysis of the atmospheric age of PM2.5 provides a unique perspective on the evolution processes of different PM2.5 components. The results also shed lights on how to design effective emission control actions under unfavorable meteorological conditions.
Yiqi Zheng, Larry W. Horowitz, Raymond Menzel, David J. Paynter, Vaishali Naik, Jingyi Li, and Jingqiu Mao
Atmos. Chem. Phys., 23, 8993–9007, https://doi.org/10.5194/acp-23-8993-2023, https://doi.org/10.5194/acp-23-8993-2023, 2023
Short summary
Short summary
Biogenic secondary organic aerosols (SOAs) account for a large fraction of fine aerosol at the global scale. Using long-term measurements and a climate model, we investigate anthropogenic impacts on biogenic SOA at both decadal and centennial timescales. Results show that despite reductions in biogenic precursor emissions, SOA has been strongly amplified by anthropogenic emissions since the preindustrial era and exerts a cooling radiative forcing.
Lizi Tang, Min Hu, Dongjie Shang, Xin Fang, Jianjiong Mao, Wanyun Xu, Jiacheng Zhou, Weixiong Zhao, Yaru Wang, Chong Zhang, Yingjie Zhang, Jianlin Hu, Limin Zeng, Chunxiang Ye, Song Guo, and Zhijun Wu
Atmos. Chem. Phys., 23, 4343–4359, https://doi.org/10.5194/acp-23-4343-2023, https://doi.org/10.5194/acp-23-4343-2023, 2023
Short summary
Short summary
There was an evident distinction in the frequency of new particle formation (NPF) events at Nam Co station on the Tibetan Plateau: 15 % in pre-monsoon season and 80 % in monsoon season. The frequent NPF events in monsoon season resulted from the higher frequency of southerly air masses, which brought the organic precursors to participate in the NPF process. It increased the amount of aerosol and CCN compared with those in pre-monsoon season, which may markedly affect earth's radiation balance.
Jinlong Ma, Shengqiang Zhu, Siyu Wang, Peng Wang, Jianmin Chen, and Hongliang Zhang
Atmos. Chem. Phys., 23, 4311–4325, https://doi.org/10.5194/acp-23-4311-2023, https://doi.org/10.5194/acp-23-4311-2023, 2023
Short summary
Short summary
An updated version of the CMAQ model with biogenic volatile organic compound (BVOC) emissions from MEGAN was applied to study the impacts of different land cover inputs on O3 and secondary organic aerosol (SOA) in China. The estimated BVOC emissions ranged from 25.42 to 37.39 Tg using different leaf area index (LAI) and land cover (LC) inputs. Those differences further induced differences of 4.8–6.9 ppb in O3 concentrations and differences of 5.3–8.4 µg m−3 in SOA concentrations in China.
Peng Wang, Ruhan Zhang, Shida Sun, Meng Gao, Bo Zheng, Dan Zhang, Yanli Zhang, Gregory R. Carmichael, and Hongliang Zhang
Atmos. Chem. Phys., 23, 2983–2996, https://doi.org/10.5194/acp-23-2983-2023, https://doi.org/10.5194/acp-23-2983-2023, 2023
Short summary
Short summary
In China, the number of vehicles has jumped significantly in the last decade. This caused severe traffic congestion and aggravated air pollution. In this study, we developed a new temporal allocation approach to quantify the impacts of traffic congestion. We found that traffic congestion worsens air quality and the health burden across China, especially in the urban clusters. More effective and comprehensive vehicle emission control policies should be implemented to improve air quality in China.
Xun Li, Momei Qin, Lin Li, Kangjia Gong, Huizhong Shen, Jingyi Li, and Jianlin Hu
Atmos. Chem. Phys., 22, 14799–14811, https://doi.org/10.5194/acp-22-14799-2022, https://doi.org/10.5194/acp-22-14799-2022, 2022
Short summary
Short summary
Photochemical indicators have been widely used to predict O3–NOx–VOC sensitivity with given thresholds. Here we assessed the effectiveness of four indicators with a case study in the Yangtze River Delta, China. The overall performance was good, while some indicators showed inconsistencies with the O3 isopleths. The methodology used to determine the thresholds may produce uncertainties. These results would improve our understanding of the use of photochemical indicators in policy implications.
Jinjin Sun, Momei Qin, Xiaodong Xie, Wenxing Fu, Yang Qin, Li Sheng, Lin Li, Jingyi Li, Ishaq Dimeji Sulaymon, Lei Jiang, Lin Huang, Xingna Yu, and Jianlin Hu
Atmos. Chem. Phys., 22, 12629–12646, https://doi.org/10.5194/acp-22-12629-2022, https://doi.org/10.5194/acp-22-12629-2022, 2022
Short summary
Short summary
NO3- has become the dominant and the least reduced chemical component of fine particulate matter in China. NO3- formation is mostly in the NH3-rich regime in the Yangtze River Delta (YRD). OH + NO2 contributes 60 %–83 % of the TNO3 production rates, and the N2O5 heterogeneous pathway contributes 10 %–36 %. The N2O5 heterogeneous pathway becomes more important in cold seasons. Local emissions and regional transportation contribute 50 %–62 % and 38 %–50 % to YRD NO3- concentrations, respectively.
Ruqian Miao, Qi Chen, Manish Shrivastava, Youfan Chen, Lin Zhang, Jianlin Hu, Yan Zheng, and Keren Liao
Atmos. Chem. Phys., 21, 16183–16201, https://doi.org/10.5194/acp-21-16183-2021, https://doi.org/10.5194/acp-21-16183-2021, 2021
Short summary
Short summary
We apply process-based and observation-constrained schemes to simulate organic aerosol in China and conduct comprehensive model–observation comparisons. The results show that anthropogenic semivolatile and intermediate-volatility organic compounds (SVOCs and IVOCs) are the main sources of secondary organic aerosol (SOA) in polluted regions, for which the residential sector is perhaps the predominant contributor. The hydroxyl radical level is also important for SOA modeling in polluted regions.
Meng Gao, Yang Yang, Hong Liao, Bin Zhu, Yuxuan Zhang, Zirui Liu, Xiao Lu, Chen Wang, Qiming Zhou, Yuesi Wang, Qiang Zhang, Gregory R. Carmichael, and Jianlin Hu
Atmos. Chem. Phys., 21, 11405–11421, https://doi.org/10.5194/acp-21-11405-2021, https://doi.org/10.5194/acp-21-11405-2021, 2021
Short summary
Short summary
Light absorption and radiative forcing of black carbon (BC) is influenced by both BC itself and its interactions with other aerosol chemical compositions. In this study, we used the online coupled WRF-Chem model to examine how emission control measures during the Asian-Pacific Economic Cooperation (APEC) conference affect the mixing state and light absorption of BC and the associated implications for BC-PBL interactions.
Peng Wang, Juanyong Shen, Men Xia, Shida Sun, Yanli Zhang, Hongliang Zhang, and Xinming Wang
Atmos. Chem. Phys., 21, 10347–10356, https://doi.org/10.5194/acp-21-10347-2021, https://doi.org/10.5194/acp-21-10347-2021, 2021
Short summary
Short summary
Ozone (O3) pollution has received extensive attention due to worsening air quality and rising health risks. The Chinese National Day holiday (CNDH), which is associated with intensive commercial and tourist activities, serves as a valuable experiment to evaluate the O3 response during the holiday. We find sharply increasing trends of observed O3 concentrations throughout China during the CNDH, leading to 33 % additional total daily deaths.
Lian Zong, Yuanjian Yang, Meng Gao, Hong Wang, Peng Wang, Hongliang Zhang, Linlin Wang, Guicai Ning, Chao Liu, Yubin Li, and Zhiqiu Gao
Atmos. Chem. Phys., 21, 9105–9124, https://doi.org/10.5194/acp-21-9105-2021, https://doi.org/10.5194/acp-21-9105-2021, 2021
Short summary
Short summary
In recent years, summer O3 pollution over eastern China has become more serious, and it is even the case that surface O3 and PM2.5 pollution can co-occur. However, the synoptic weather pattern (SWP) related to this compound pollution remains unclear. Regional PM2.5 and O3 compound pollution is characterized by various SWPs with different dominant factors. Our findings provide insights into the regional co-occurring high PM2.5 and O3 levels via the effects of certain meteorological factors.
Jinlong Ma, Juanyong Shen, Peng Wang, Shengqiang Zhu, Yu Wang, Pengfei Wang, Gehui Wang, Jianmin Chen, and Hongliang Zhang
Atmos. Chem. Phys., 21, 7343–7355, https://doi.org/10.5194/acp-21-7343-2021, https://doi.org/10.5194/acp-21-7343-2021, 2021
Short summary
Short summary
Due to the reduced anthropogenic emissions during the COVID-19 lockdown, mainly from the transportation and industrial sectors, PM2.5 decreased significantly in the whole Yangtze River Delta (YRD) and its major cities. However, the contributions and relative importance of different source sectors and regions changed differently, indicating that control strategies should be adjusted accordingly for further pollution control.
Mengyuan Zhang, Arpit Katiyar, Shengqiang Zhu, Juanyong Shen, Men Xia, Jinlong Ma, Sri Harsha Kota, Peng Wang, and Hongliang Zhang
Atmos. Chem. Phys., 21, 4025–4037, https://doi.org/10.5194/acp-21-4025-2021, https://doi.org/10.5194/acp-21-4025-2021, 2021
Short summary
Short summary
We studied changes in air quality in India induced by the COVID-19 lockdown through both surface observations and the CMAQ model. Our results show that emission reductions improved the air quality across India during the lockdown. On average, the levels of PM2.5 and O3 decreased by 28 % and 15 %, indicating positive effects of lockdown measures. We suggest that more stringent and localized emission control strategies should be implemented in India to mitigate air pollutions.
Junjun Deng, Hao Guo, Hongliang Zhang, Jialei Zhu, Xin Wang, and Pingqing Fu
Atmos. Chem. Phys., 20, 14419–14435, https://doi.org/10.5194/acp-20-14419-2020, https://doi.org/10.5194/acp-20-14419-2020, 2020
Short summary
Short summary
One-year source apportionment of BC aerosols in a coastal city in China was conducted with the light-absorption observation-based method and source-oriented model. Source contributions identified by the two source apportionment methods were compared. Temporal variability, potential sources and transport pathways of BC from fossil fuel and biomass burning were characterized. Significant influence of biomass burning in North and East–Central China on BC in the region was highlighted.
Jingyi Li, Haowen Zhang, Qi Ying, Zhijun Wu, Yanli Zhang, Xinming Wang, Xinghua Li, Yele Sun, Min Hu, Yuanhang Zhang, and Jianlin Hu
Atmos. Chem. Phys., 20, 7291–7306, https://doi.org/10.5194/acp-20-7291-2020, https://doi.org/10.5194/acp-20-7291-2020, 2020
Short summary
Short summary
Large gaps still exist in modeled and observed secondary organic aerosol (SOA) mass loading and properties. Here we investigated the impacts of water partitioning into organic aerosol and nonideality of the organic–water mixture on SOA over eastern China using a regional 3D model. SOA is increased more significantly in humid and hot environments. Increases in SOA further cause an enhancement of the cooling effects of aerosols. It is crucial to consider the above processes in modeling SOA.
Meng Gao, Jinhui Gao, Bin Zhu, Rajesh Kumar, Xiao Lu, Shaojie Song, Yuzhong Zhang, Beixi Jia, Peng Wang, Gufran Beig, Jianlin Hu, Qi Ying, Hongliang Zhang, Peter Sherman, and Michael B. McElroy
Atmos. Chem. Phys., 20, 4399–4414, https://doi.org/10.5194/acp-20-4399-2020, https://doi.org/10.5194/acp-20-4399-2020, 2020
Short summary
Short summary
A regional fully coupled meteorology–chemistry model, Weather Research and Forecasting model with Chemistry (WRF-Chem), was employed to study the seasonality of ozone (O3) pollution and its sources in both China and India.
Xin Yu, Melissa Venecek, Anikender Kumar, Jianlin Hu, Saffet Tanrikulu, Su-Tzai Soon, Cuong Tran, David Fairley, and Michael J. Kleeman
Atmos. Chem. Phys., 19, 14677–14702, https://doi.org/10.5194/acp-19-14677-2019, https://doi.org/10.5194/acp-19-14677-2019, 2019
Short summary
Short summary
Predictions and measurements of ultrafine particle number and mass concentrations were in overall good agreement at 14 sites across California in the years 2012, 2015, and 2016. On-road vehicles, food cooking, and aircraft were important sources of ultrafine particles as expected, but natural gas combustion was also a significant source at all locations across California. These results can be used to study the health effects of ultrafine particles.
Jingwei Liu, Xin Li, Yiming Yang, Haichao Wang, Yusheng Wu, Xuewei Lu, Mindong Chen, Jianlin Hu, Xiaobo Fan, Limin Zeng, and Yuanhang Zhang
Atmos. Meas. Tech., 12, 4439–4453, https://doi.org/10.5194/amt-12-4439-2019, https://doi.org/10.5194/amt-12-4439-2019, 2019
Short summary
Short summary
Incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS) has been proven to be a reliable method for measuring glyoxal and methylglyoxal in the atmosphere. However, the commonly overlying strong spectral absorption of nitrogen dioxide hampers the accurate and sensitive resolve of the weak absorption features of glyoxal and methylglyoxal. Here, we report a custom-built IBBCEAS system that could overcome this problem by quantitatively removing nitrogen dioxide from the sample air.
Xionghui Qiu, Qi Ying, Shuxiao Wang, Lei Duan, Jian Zhao, Jia Xing, Dian Ding, Yele Sun, Baoxian Liu, Aijun Shi, Xiao Yan, Qingcheng Xu, and Jiming Hao
Atmos. Chem. Phys., 19, 6737–6747, https://doi.org/10.5194/acp-19-6737-2019, https://doi.org/10.5194/acp-19-6737-2019, 2019
Short summary
Short summary
Current chemical transport models cannot capture the diurnal and nocturnal variation in atmospheric nitrate, which may be relative to the missing atmospheric chlorine chemistry. In this work, the Community Multiscale Air Quality (CMAQ) model with improved chlorine heterogeneous chemistry is applied to simulate the impact of chlorine chemistry on summer nitrate concentrations in Beijing. The results of this work can improve our understanding of nitrate formation.
Xue Qiao, Hao Guo, Ya Tang, Pengfei Wang, Wenye Deng, Xing Zhao, Jianlin Hu, Qi Ying, and Hongliang Zhang
Atmos. Chem. Phys., 19, 5791–5803, https://doi.org/10.5194/acp-19-5791-2019, https://doi.org/10.5194/acp-19-5791-2019, 2019
Short summary
Short summary
A source-oriented version of the CMAQ model was used to quantify contributions from nine regions to PM2.5 and its components in the 18 cities within Sichuan Basin. Nonlocal emissions contribute 39–66 % and 25–52 % to the citywide average PM2.5 concentrations of 45–126 and 14–31 µg m3 in the winter and summer, respectively. This study demonstrates the importance of joint emission control efforts among cities within the SCB and neighboring regions to the east.
Xinghua Li, Junzan Han, Philip K. Hopke, Jingnan Hu, Qi Shu, Qing Chang, and Qi Ying
Atmos. Chem. Phys., 19, 2327–2341, https://doi.org/10.5194/acp-19-2327-2019, https://doi.org/10.5194/acp-19-2327-2019, 2019
Short summary
Short summary
HULIS are widely distributed in atmospheric aerosol. Their sources are rarely studied quantitatively. Biomass burning is generally accepted as a major primary source with additional secondary material formed in the atmosphere. The present study provides direct evidence that residential coal burning is also a significant source of ambient HULIS in northern China based on source measurements, ambient sampling and analysis, and apportionment with source-oriented CMAQ modeling.
Junfeng Wang, Dantong Liu, Xinlei Ge, Yangzhou Wu, Fuzhen Shen, Mindong Chen, Jian Zhao, Conghui Xie, Qingqing Wang, Weiqi Xu, Jie Zhang, Jianlin Hu, James Allan, Rutambhara Joshi, Pingqing Fu, Hugh Coe, and Yele Sun
Atmos. Chem. Phys., 19, 447–458, https://doi.org/10.5194/acp-19-447-2019, https://doi.org/10.5194/acp-19-447-2019, 2019
Short summary
Short summary
This work is part of the UK-China APHH campaign. We used a laser-only Aerodyne soot particle aerosol mass spectrometer, for the first time, to investigate the concentrations, size distributions and chemical compositions for those ambient submicron aerosol particles only with black carbon as cores. Our findings are valuable to understand the BC properties and processes in the densely populated megacities.
Zhaofeng Lv, Huan Liu, Qi Ying, Mingliang Fu, Zhihang Meng, Yue Wang, Wei Wei, Huiming Gong, and Kebin He
Atmos. Chem. Phys., 18, 15811–15824, https://doi.org/10.5194/acp-18-15811-2018, https://doi.org/10.5194/acp-18-15811-2018, 2018
Short summary
Short summary
This study comprehensively analyzed the impacts of the marine transport sector to the concentrations of PM2.5 and its components in eastern China on multiple temporal and spatial scales. Furthermore, a source-oriented CMAQ was used to identify the contributions of shipping emissions from different maritime areas to the inland air quality. This work supplemented the insufficiency of multi-scale researches on the influences of the shipping sector on the inland air quality.
Hao Guo, Sri Harsha Kota, Kaiyu Chen, Shovan Kumar Sahu, Jianlin Hu, Qi Ying, Yuan Wang, and Hongliang Zhang
Atmos. Chem. Phys., 18, 15219–15229, https://doi.org/10.5194/acp-18-15219-2018, https://doi.org/10.5194/acp-18-15219-2018, 2018
Short summary
Short summary
A total of 1.04 million premature mortalities and up to 2 years of life lost (YLL) per person were estimated in India in 2015 due to PM2.5. Premature mortality due to cerebrovascular disease (CEVD) was the highest (0.44 million), followed by ischaemic heart disease (IHD, 0.40 million). The residential sector was the largest contributor, followed by industry, agriculture and energy. Reducing PM2.5 concentrations would lead to a significant reduction in premature mortality and YLL.
Mingjie Kang, Pingqing Fu, Kimitaka Kawamura, Fan Yang, Hongliang Zhang, Zhengchen Zang, Hong Ren, Lujie Ren, Ye Zhao, Yele Sun, and Zifa Wang
Atmos. Chem. Phys., 18, 13947–13967, https://doi.org/10.5194/acp-18-13947-2018, https://doi.org/10.5194/acp-18-13947-2018, 2018
Short summary
Short summary
Molecular characterization and spatial distribution of biogenic primary organic aerosol (POA) and secondary organic aerosol (SOA) in the marine atmosphere are not well known. Here, we analysed the organic molecular composition of marine aerosols collected during a marine cruise in the East China Sea during May–June 2014. Our results suggest that the Asian continent can be a natural emitter of biogenic POA and SOA, which can be transported to the downwind marine atmosphere.
Nan Li, Qingyang He, Jim Greenberg, Alex Guenther, Jingyi Li, Junji Cao, Jun Wang, Hong Liao, Qiyuan Wang, and Qiang Zhang
Atmos. Chem. Phys., 18, 7489–7507, https://doi.org/10.5194/acp-18-7489-2018, https://doi.org/10.5194/acp-18-7489-2018, 2018
Short summary
Short summary
O3 pollution has been increasing in most Chinese cities in recent years. Our study reveals that the synergistic impact of individual source contributions to O3 formation should be considered in the formation of air pollution control strategies, especially for big cities in the vicinity of forests.
Jingyi Li, Jingqiu Mao, Arlene M. Fiore, Ronald C. Cohen, John D. Crounse, Alex P. Teng, Paul O. Wennberg, Ben H. Lee, Felipe D. Lopez-Hilfiker, Joel A. Thornton, Jeff Peischl, Ilana B. Pollack, Thomas B. Ryerson, Patrick Veres, James M. Roberts, J. Andrew Neuman, John B. Nowak, Glenn M. Wolfe, Thomas F. Hanisco, Alan Fried, Hanwant B. Singh, Jack Dibb, Fabien Paulot, and Larry W. Horowitz
Atmos. Chem. Phys., 18, 2341–2361, https://doi.org/10.5194/acp-18-2341-2018, https://doi.org/10.5194/acp-18-2341-2018, 2018
Short summary
Short summary
We present the first comprehensive model evaluation of summertime reactive oxidized nitrogen using a high-resolution chemistry–climate model with up-to-date isoprene oxidation chemistry, along with a series of observations from aircraft campaigns and ground measurement networks from 2004 to 2013 over the Southeast US. We investigate the impact of NOx emission reductions on changes in reactive nitrogen speciation and export efficiency as well as ozone in the past and future decade.
Jianlin Hu, Xun Li, Lin Huang, Qi Ying, Qiang Zhang, Bin Zhao, Shuxiao Wang, and Hongliang Zhang
Atmos. Chem. Phys., 17, 13103–13118, https://doi.org/10.5194/acp-17-13103-2017, https://doi.org/10.5194/acp-17-13103-2017, 2017
Short summary
Short summary
The model performance of CMAQ with WRF using four different emission inventories in China was validated and compared to obtain the best air pollutants prediction for health effect studies of severe air pollution. The differences in performance of chemical transport model were analyzed for different months and regions in the vast part of China and ensemble predictions were firstly obtained from different inventories for health analysis with minimized errors for pollutants including PM2.5 and O3.
Chen Wang, Tiange Yuan, Stephen A. Wood, Kai-Uwe Goss, Jingyi Li, Qi Ying, and Frank Wania
Atmos. Chem. Phys., 17, 7529–7540, https://doi.org/10.5194/acp-17-7529-2017, https://doi.org/10.5194/acp-17-7529-2017, 2017
Short summary
Short summary
Three property prediction methods are used to predict equilibrium partitioning coefficients for a set of 3414 compounds implicated in secondary organic aerosol formation. Partitioning from the gas phase to water is found to be much more uncertain than estimates of partitioning into the organic matter of aerosol. This uncertainty matters, as phase distribution is very different depending on which prediction method is applied.
Jianlin Hu, Shantanu Jathar, Hongliang Zhang, Qi Ying, Shu-Hua Chen, Christopher D. Cappa, and Michael J. Kleeman
Atmos. Chem. Phys., 17, 5379–5391, https://doi.org/10.5194/acp-17-5379-2017, https://doi.org/10.5194/acp-17-5379-2017, 2017
Short summary
Short summary
Organic aerosol is a major constituent of ultrafine particulate matter (PM0.1). In this study, a source-oriented air quality model was used to simulate the concentrations and sources of primary and secondary organic aerosols in PM0.1 in California for a 9-year modeling period to provide useful information for epidemiological studies to further investigate the associations with health outcomes.
Jianlin Hu, Peng Wang, Qi Ying, Hongliang Zhang, Jianjun Chen, Xinlei Ge, Xinghua Li, Jingkun Jiang, Shuxiao Wang, Jie Zhang, Yu Zhao, and Yingyi Zhang
Atmos. Chem. Phys., 17, 77–92, https://doi.org/10.5194/acp-17-77-2017, https://doi.org/10.5194/acp-17-77-2017, 2017
Short summary
Short summary
An annual simulation of secondary organic aerosol (SOA) concentrations in China with updated SOA formation pathways reveals that SOA can be a significant contributor to PM2.5 in major urban areas. Summer SOA is dominated by emissions from biogenic sources, while winter SOA is dominated by anthropogenic emissions such as alkanes and aromatic compounds. Reactive surface uptake of dicarbonyls throughout the year and isoprene epoxides in summer is the most important contributor.
Jianlin Hu, Jianjun Chen, Qi Ying, and Hongliang Zhang
Atmos. Chem. Phys., 16, 10333–10350, https://doi.org/10.5194/acp-16-10333-2016, https://doi.org/10.5194/acp-16-10333-2016, 2016
Short summary
Short summary
A yearlong (2013) air-quality simulation was conducted to provide detailed temporal and spatial information of ozone, PM2.5 total and chemical components. The paper firstly compared the simulated air pollutants in China with country-wide public available observations for a whole year. It proves the ability of CMAQ in reproducing severe air pollution in China, shows directions that need to be improved, and benefits future source apportionment and human exposure studies.
Hsiang-He Lee, Shu-Hua Chen, Michael J. Kleeman, Hongliang Zhang, Steven P. DeNero, and David K. Joe
Atmos. Chem. Phys., 16, 8353–8374, https://doi.org/10.5194/acp-16-8353-2016, https://doi.org/10.5194/acp-16-8353-2016, 2016
Short summary
Short summary
A source-oriented CCN module was implemented in a source-oriented chemistry model to study the effect of aerosol mixing state on fog formation. The fraction of aerosols activating into CCN at a supersaturation of 0.5 % in the Central Valley decreased from 94 % in the internal mixture model to 80 % in the source-oriented model. The internal mixture model predicted greater CCN activation than the source-oriented model due to artificial coating of hydrophobic particles with hygroscopic components.
J. Hu, H. Zhang, Q. Ying, S.-H. Chen, F. Vandenberghe, and M. J. Kleeman
Atmos. Chem. Phys., 15, 3445–3461, https://doi.org/10.5194/acp-15-3445-2015, https://doi.org/10.5194/acp-15-3445-2015, 2015
Short summary
Short summary
Air quality model simulations have been conducted for California from 2000 to 2009 with 4km spatial resolution to provide exposure data for health effect studies. Comprehensive analysis shows that predicted concentrations for many pollutants are in agreement with measurements at monitoring stations, building confidence that the fields may be useful at times and locations where measurements are not available. Data can be downloaded for free at http://faculty.engineering.ucdavis.edu/kleeman/.
H. Zhang, S. P. DeNero, D. K. Joe, H.-H. Lee, S.-H. Chen, J. Michalakes, and M. J. Kleeman
Atmos. Chem. Phys., 14, 485–503, https://doi.org/10.5194/acp-14-485-2014, https://doi.org/10.5194/acp-14-485-2014, 2014
Related subject area
Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Revealing dominant patterns of aerosol regimes in the lower troposphere and their evolution from preindustrial times to the future in global climate model simulations
Improving estimation of a record-breaking east Asian dust storm emission with lagged aerosol Ångström exponent observations
Impact of biomass burning aerosols (BBA) on the tropical African climate in an ocean–atmosphere–aerosol coupled climate model
Retrieval of refractive index and water content for the coating materials of aged black carbon aerosol based on optical properties: a theoretical analysis
Predicting hygroscopic growth of organosulfur aerosol particles using COSMOtherm
Dust aerosol from the Aralkum Desert influences the radiation budget and atmospheric dynamics of Central Asia
Global modeling of aerosol nucleation with a semi-explicit chemical mechanism for highly oxygenated organic molecules (HOMs)
Synergistic effects of the winter North Atlantic Oscillation (NAO) and El Niño–Southern Oscillation (ENSO) on dust activities in North China during the following spring
Aerosol composition, air quality, and boundary layer dynamics in the urban background of Stuttgart in winter
Measurement report: Source attribution and estimation of black carbon levels in an urban hotspot of the central Po Valley – an integrated approach combining high-resolution dispersion modelling and micro-aethalometers
Microphysical modelling of aerosol scavenging by different types of clouds: description and validation of the approach
Insights into the sources of ultrafine particle numbers at six European urban sites obtained by investigating COVID-19 lockdowns
In-plume and out-of-plume analysis of aerosol–cloud interactions derived from the 2014–2015 Holuhraun volcanic eruption
Impacts of atmospheric circulation patterns and cloud inhibition on aerosol radiative effect and boundary layer structure during winter air pollution in Sichuan Basin, China
Investigating the sign of stratocumulus adjustments to aerosols in the ICON global storm-resolving model
A model study investigating the sensitivity of aerosol forcing to the volatilities of semi-volatile organic compounds
Decomposing the effective radiative forcing of anthropogenic aerosols based on CMIP6 Earth system models
The role of interfacial tension in the size-dependent phase separation of atmospheric aerosol particles
Modeling impacts of dust mineralogy on fast climate response
Representation of iron aerosol size distributions is critical in evaluating atmospheric soluble iron input to the ocean
Gaps in our understanding of ice-nucleating particle sources exposed by global simulation of the UK climate model
Uncertainties in laboratory-measured shortwave refractive indices of mineral dust aerosols and derived optical properties: a theoretical assessment
Diagnosing uncertainties in global biomass burning emission inventories and their impact on modeled air pollutants
Solar radiation estimation in West Africa: impact of dust conditions during 2021 dry season
Role of atmospheric aerosols in severe winter fog over the Indo-Gangetic Plain of India: a case study
Long-term variability in black carbon emissions constrained by gap-filled absorption aerosol optical depth and associated premature mortality in China
Intercomparison of aerosol optical depths from four reanalyses and their multi-reanalysis consensus
Biomass Burning Emissions Analysis Based on MODIS AOD and AeroCom Multi-Model Simulations
Global aviation contrail climate effects from 2019 to 2021
Multi-model effective radiative forcing of the 2020 sulphur cap for shipping
Rapid iodine oxoacid nucleation enhanced by dimethylamine in broad marine regions
Simulations of the impact of cloud condensation nuclei and ice-nucleating particles perturbations on the microphysics and radar reflectivity factor of stratiform mixed-phase clouds
Warming effects of reduced sulfur emissions from shipping
Aerosols in the central Arctic cryosphere: satellite and model integrated insights during Arctic spring and summer
Observationally constrained regional variations of shortwave absorption by iron oxides emphasize the cooling effect of dust
Droplet collection efficiencies inferred from satellite retrievals constrain effective radiative forcing of aerosol–cloud interactions
Global aerosol-type classification using a new hybrid algorithm and Aerosol Robotic Network data
Tropospheric aerosols over the western North Atlantic Ocean during the winter and summer campaigns of ACTIVATE 2020: Life cycle, transport, and distribution
Simulated phase state and viscosity of secondary organic aerosols over China
Comparing the simulated influence of biomass burning plumes on low-level clouds over the southeastern Atlantic under varying smoke conditions
A global dust emission dataset for estimating dust radiative forcings in climate models
Improved simulations of biomass burning aerosol optical properties and lifetimes in the NASA GEOS Model during the ORACLES-I campaign
Sharp increase in Saharan dust intrusions over the western Euro-Mediterranean in February–March 2020–2022 and associated atmospheric circulation
Temporal and spatial variations in dust activity in Australia based on remote sensing and reanalysis datasets
Sensitivity of global direct aerosol shortwave radiative forcing to uncertainties in aerosol optical properties
Molecular-level study on the role of methanesulfonic acid in iodine oxoacid nucleation
Regional to global distributions, trends, and drivers of biogenic volatile organic compound emission from 2001 to 2020
Impacts of ice-nucleating particles on cirrus clouds and radiation derived from global model simulations with MADE3 in EMAC
Seasonal characteristics of emission, distribution, and radiative effect of marine organic aerosols over the western Pacific Ocean: an investigation with a coupled regional climate aerosol model
Fire–precipitation interactions amplify the quasi-biennial variability in fires over southern Mexico and Central America
Jingmin Li, Mattia Righi, Johannes Hendricks, Christof G. Beer, Ulrike Burkhardt, and Anja Schmidt
Atmos. Chem. Phys., 24, 12727–12747, https://doi.org/10.5194/acp-24-12727-2024, https://doi.org/10.5194/acp-24-12727-2024, 2024
Short summary
Short summary
Aiming to understand underlying patterns and trends in aerosols, we characterize the spatial patterns and long-term evolution of lower tropospheric aerosols by clustering multiple aerosol properties from preindustrial times to the year 2050 under three Shared
Socioeconomic Pathway scenarios. The results provide a clear and condensed picture of the spatial extent and distribution of aerosols for different time periods and emission scenarios.
Socioeconomic Pathway scenarios. The results provide a clear and condensed picture of the spatial extent and distribution of aerosols for different time periods and emission scenarios.
Yueming Cheng, Tie Dai, Junji Cao, Daisuke Goto, Jianbing Jin, Teruyuki Nakajima, and Guangyu Shi
Atmos. Chem. Phys., 24, 12643–12659, https://doi.org/10.5194/acp-24-12643-2024, https://doi.org/10.5194/acp-24-12643-2024, 2024
Short summary
Short summary
In March 2021, east Asia experienced an outbreak of severe dust storms after an absence of 1.5 decades. Here, we innovatively used the time-lagged ground-based aerosol size information with the fixed-lag ensemble Kalman smoother to optimize dust emission and reproduce the dust storm. This work is valuable for not only the quantification of health damage, aviation risks, and profound impacts on the Earth's system but also revealing the climatic driving force and the process of desertification.
Marc Mallet, Aurore Voldoire, Fabien Solmon, Pierre Nabat, Thomas Drugé, and Romain Roehrig
Atmos. Chem. Phys., 24, 12509–12535, https://doi.org/10.5194/acp-24-12509-2024, https://doi.org/10.5194/acp-24-12509-2024, 2024
Short summary
Short summary
This study investigates the interactions between smoke aerosols and climate in tropical Africa using a coupled ocean–atmosphere–aerosol climate model. The work shows that smoke plumes have a significant impact by increasing the low-cloud fraction, decreasing the ocean and continental surface temperature and reducing the precipitation of coastal western Africa. It also highlights the role of the ocean temperature response and its feedbacks for the September–November season.
Jia Liu, Cancan Zhu, Donghui Zhou, and Jinbao Han
Atmos. Chem. Phys., 24, 12341–12354, https://doi.org/10.5194/acp-24-12341-2024, https://doi.org/10.5194/acp-24-12341-2024, 2024
Short summary
Short summary
The hydrophilic coatings of aged black carbon (BC) particles absorb moisture during the hygroscopic growth process, but it is difficult to characterize how much water is absorbed under different relative humidities (RHs). In this study, we propose a method to obtain the water content in the coatings based on the equivalent complex refractive index retrieved from optical properties. This method is verified from a theoretical perspective, and it performs well for thickly coated BC at high RHs.
Zijun Li, Angela Buchholz, and Noora Hyttinen
Atmos. Chem. Phys., 24, 11717–11725, https://doi.org/10.5194/acp-24-11717-2024, https://doi.org/10.5194/acp-24-11717-2024, 2024
Short summary
Short summary
Evaluating organosulfur (OS) hygroscopicity is important for assessing aerosol–cloud climate interactions in the post-fossil-fuel future, when SO2 emissions decrease and OS compounds become increasingly important. Here a state-of-the-art quantum-chemistry-based method was used to predict the hygroscopic growth factors (HGFs) of a group of atmospherically relevant OS compounds and their mixtures with (NH4)2SO4. A good agreement was observed between their model-estimated and experimental HGFs.
Jamie R. Banks, Bernd Heinold, and Kerstin Schepanski
Atmos. Chem. Phys., 24, 11451–11475, https://doi.org/10.5194/acp-24-11451-2024, https://doi.org/10.5194/acp-24-11451-2024, 2024
Short summary
Short summary
The Aralkum is a new desert in Central Asia formed by the desiccation of the Aral Sea. This has created a source of atmospheric dust, with implications for the balance of solar and thermal radiation. Simulating these effects using a dust transport model, we find that Aralkum dust adds radiative cooling effects to the surface and atmosphere on average but also adds heating events. Increases in surface pressure due to Aralkum dust strengthen the Siberian High and weaken the summer Asian heat low.
Xinyue Shao, Minghuai Wang, Xinyi Dong, Yaman Liu, Wenxiang Shen, Stephen R. Arnold, Leighton A. Regayre, Meinrat O. Andreae, Mira L. Pöhlker, Duseong S. Jo, Man Yue, and Ken S. Carslaw
Atmos. Chem. Phys., 24, 11365–11389, https://doi.org/10.5194/acp-24-11365-2024, https://doi.org/10.5194/acp-24-11365-2024, 2024
Short summary
Short summary
Highly oxygenated organic molecules (HOMs) play an important role in atmospheric new particle formation (NPF). By semi-explicitly coupling the chemical mechanism of HOMs and a comprehensive nucleation scheme in a global climate model, the updated model shows better agreement with measurements of nucleation rate, growth rate, and NPF event frequency. Our results reveal that HOM-driven NPF leads to a considerable increase in particle and cloud condensation nuclei burden globally.
Falei Xu, Shuang Wang, Yan Li, and Juan Feng
Atmos. Chem. Phys., 24, 10689–10705, https://doi.org/10.5194/acp-24-10689-2024, https://doi.org/10.5194/acp-24-10689-2024, 2024
Short summary
Short summary
This study examines how the winter North Atlantic Oscillation (NAO) and El Niño–Southern Oscillation (ENSO) affect dust activities in North China during the following spring. The results show that the NAO and ENSO, particularly in their negative phases, greatly influence dust activities. When both are negative, their combined effect on dust activities is even greater. This research highlights the importance of these climate patterns in predicting spring dust activities in North China.
Hengheng Zhang, Wei Huang, Xiaoli Shen, Ramakrishna Ramisetty, Junwei Song, Olga Kiseleva, Christopher Claus Holst, Basit Khan, Thomas Leisner, and Harald Saathoff
Atmos. Chem. Phys., 24, 10617–10637, https://doi.org/10.5194/acp-24-10617-2024, https://doi.org/10.5194/acp-24-10617-2024, 2024
Short summary
Short summary
Our study unravels how stagnant winter conditions elevate aerosol levels in Stuttgart. Cloud cover at night plays a pivotal role, impacting morning air quality. Validating a key model, our findings aid accurate air quality predictions, crucial for effective pollution mitigation in urban areas.
Giorgio Veratti, Alessandro Bigi, Michele Stortini, Sergio Teggi, and Grazia Ghermandi
Atmos. Chem. Phys., 24, 10475–10512, https://doi.org/10.5194/acp-24-10475-2024, https://doi.org/10.5194/acp-24-10475-2024, 2024
Short summary
Short summary
In a study of two consecutive winter seasons, we used measurements and modelling tools to identify the levels and sources of black carbon pollution in a medium-sized urban area of the Po Valley, Italy. Our findings show that biomass burning and traffic-related emissions (especially from Euro 4 diesel cars) significantly contribute to BC concentrations. This research offers crucial insights for policymakers and urban planners aiming to improve air quality in cities.
Pascal Lemaitre, Arnaud Quérel, Alexis Dépée, Alice Guerra Devigne, Marie Monier, Thibault Hiron, Chloé Soto Minguez, Daniel Hardy, and Andrea Flossmann
Atmos. Chem. Phys., 24, 9713–9732, https://doi.org/10.5194/acp-24-9713-2024, https://doi.org/10.5194/acp-24-9713-2024, 2024
Short summary
Short summary
A new in-cloud scavenging scheme is proposed. It is based on a microphysical model of cloud formation and may be applied to long-distance atmospheric transport models (> 100 km) and climatic models. This model is applied to the two most extreme precipitating cloud types in terms of both relative humidity and vertical extension: cumulonimbus and stratus.
Alex Rowell, James Brean, David C. S. Beddows, Tuukka Petäjä, Máté Vörösmarty, Imre Salma, Jarkko V. Niemi, Hanna E. Manninen, Dominik van Pinxteren, Thomas Tuch, Kay Weinhold, Zongbo Shi, and Roy M. Harrison
Atmos. Chem. Phys., 24, 9515–9531, https://doi.org/10.5194/acp-24-9515-2024, https://doi.org/10.5194/acp-24-9515-2024, 2024
Short summary
Short summary
Different sources of airborne particles in the atmospheres of four European cities were distinguished by recognising their particle size distributions using a statistical procedure, positive matrix factorisation. The various sources responded differently to the changes in emissions associated with COVID-19 lockdowns, and the reasons are investigated. While traffic emissions generally decreased, particles formed from reactions of atmospheric gases decreased in some cities but increased in others.
Amy H. Peace, Ying Chen, George Jordan, Daniel G. Partridge, Florent Malavelle, Eliza Duncan, and Jim M. Haywood
Atmos. Chem. Phys., 24, 9533–9553, https://doi.org/10.5194/acp-24-9533-2024, https://doi.org/10.5194/acp-24-9533-2024, 2024
Short summary
Short summary
Natural aerosols from volcanic eruptions can help us understand how anthropogenic aerosols modify climate. We use observations and model simulations of the 2014–2015 Holuhraun eruption plume to examine aerosol–cloud interactions in September 2014. We find a shift to clouds with smaller, more numerous cloud droplets in the first 2 weeks of the eruption. In the third week, the background meteorology and previous conditions experienced by air masses modulate the aerosol perturbation to clouds.
Hua Lu, Min Xie, Bingliang Zhuang, Danyang Ma, Bojun Liu, Yangzhihao Zhan, Tijian Wang, Shu Li, Mengmeng Li, and Kuanguang Zhu
Atmos. Chem. Phys., 24, 8963–8982, https://doi.org/10.5194/acp-24-8963-2024, https://doi.org/10.5194/acp-24-8963-2024, 2024
Short summary
Short summary
To identify cloud, aerosol, and planetary boundary layer (PBL) interactions from an air quality perspective, we summarized two pollution patterns characterized by denser liquid cloud and by obvious cloud radiation interaction (CRI). Numerical simulation experiments showed CRI could cause a 50 % reduction in aerosol radiation interaction (ARI) under a low-trough system. The results emphasized the nonnegligible role of CRI and its inhibition of ARI under wet and cloudy pollution synoptic patterns.
Emilie Fons, Ann Kristin Naumann, David Neubauer, Theresa Lang, and Ulrike Lohmann
Atmos. Chem. Phys., 24, 8653–8675, https://doi.org/10.5194/acp-24-8653-2024, https://doi.org/10.5194/acp-24-8653-2024, 2024
Short summary
Short summary
Aerosols can modify the liquid water path (LWP) of stratocumulus and, thus, their radiative effect. We compare storm-resolving model and satellite data that disagree on the sign of LWP adjustments and diagnose this discrepancy with causal inference. We find that strong precipitation, the absence of wet scavenging, and cloud deepening under a weak inversion contribute to positive LWP adjustments to aerosols in the model, despite weak negative effects from cloud-top entrainment enhancement.
Muhammed Irfan, Thomas Kühn, Taina Yli-Juuti, Anton Laakso, Eemeli Holopainen, Douglas R. Worsnop, Annele Virtanen, and Harri Kokkola
Atmos. Chem. Phys., 24, 8489–8506, https://doi.org/10.5194/acp-24-8489-2024, https://doi.org/10.5194/acp-24-8489-2024, 2024
Short summary
Short summary
The study examines how the volatility of semi-volatile organic compounds affects secondary organic aerosol (SOA) formation and climate. Our simulations show that uncertainties in these volatilities influence aerosol mass and climate impacts. Accurate representation of these compounds in climate models is crucial for predicting global climate patterns.
Alkiviadis Kalisoras, Aristeidis K. Georgoulias, Dimitris Akritidis, Robert J. Allen, Vaishali Naik, Chaincy Kuo, Sophie Szopa, Pierre Nabat, Dirk Olivié, Twan van Noije, Philippe Le Sager, David Neubauer, Naga Oshima, Jane Mulcahy, Larry W. Horowitz, and Prodromos Zanis
Atmos. Chem. Phys., 24, 7837–7872, https://doi.org/10.5194/acp-24-7837-2024, https://doi.org/10.5194/acp-24-7837-2024, 2024
Short summary
Short summary
Effective radiative forcing (ERF) is a metric for estimating how human activities and natural agents change the energy flow into and out of the Earth’s climate system. We investigate the anthropogenic aerosol ERF, and we estimate the contribution of individual processes to the total ERF using simulations from Earth system models within the Coupled Model Intercomparison Project Phase 6 (CMIP6). Our findings highlight that aerosol–cloud interactions drive ERF variability during the last 150 years.
Ryan Schmedding and Andreas Zuend
EGUsphere, https://doi.org/10.5194/egusphere-2024-1690, https://doi.org/10.5194/egusphere-2024-1690, 2024
Short summary
Short summary
Four different approaches for computing the interfacial tension between liquid phases in aerosol particles were tested for particles with diameters from 10 nm to more than 5 μm. Antonov's rule led to the strongest reductions in the onset relative humidity of liquid–liquid phase separation and reproduced measured interfacial tensions for highly immiscible systems. A modified form of the Butler equation was able to best reproduce measured interfacial tensions in more miscible systems.
Qianqian Song, Paul Ginoux, María Gonçalves Ageitos, Ron L. Miller, Vincenzo Obiso, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 24, 7421–7446, https://doi.org/10.5194/acp-24-7421-2024, https://doi.org/10.5194/acp-24-7421-2024, 2024
Short summary
Short summary
We implement and simulate the distribution of eight dust minerals in the GFDL AM4.0 model. We found that resolving the eight minerals reduces dust absorption compared to the homogeneous dust used in the standard GFDL AM4.0 model that assumes a globally uniform hematite content of 2.7 % by volume. Resolving dust mineralogy results in significant impacts on radiation, land surface temperature, surface winds, and precipitation over North Africa in summer.
Mingxu Liu, Hitoshi Matsui, Douglas Hamilton, Sagar Rathod, Kara Lamb, and Natalie Mahowald
EGUsphere, https://doi.org/10.5194/egusphere-2024-1454, https://doi.org/10.5194/egusphere-2024-1454, 2024
Short summary
Short summary
Atmospheric aerosol deposition provides iron to promote marine primary production, yet its amount remains highly uncertain. This study demonstrates that iron-containing particle size at emission is a critical factor in regulating their input to open oceans by performing global aerosol simulations. Further observational constraints on this are needed to reduce modelling uncertainties.
Ross J. Herbert, Alberto Sanchez-Marroquin, Daniel P. Grosvenor, Kirsty J. Pringle, Stephen R. Arnold, Benjamin J. Murray, and Kenneth S. Carslaw
EGUsphere, https://doi.org/10.5194/egusphere-2024-1538, https://doi.org/10.5194/egusphere-2024-1538, 2024
Short summary
Short summary
Aerosol particles that help form ice in clouds vary in number and type around the world and with time. However, in many weather and climate models cloud ice is not linked to aerosol that are known to nucleate ice. Here we report the first steps towards representing ice-nucleating particles within the UK's Earth System Model. We conclude that in addition to ice nucleation by sea spray and mineral components of soil dust we also need to represent ice nucleation by the organic components of soils.
Senyi Kong, Zheng Wang, and Lei Bi
Atmos. Chem. Phys., 24, 6911–6935, https://doi.org/10.5194/acp-24-6911-2024, https://doi.org/10.5194/acp-24-6911-2024, 2024
Short summary
Short summary
The retrieval of refractive indices of dust aerosols from laboratory optical measurements is commonly done assuming spherical particles. This paper aims to investigate the uncertainties in the shortwave refractive indices and corresponding optical properties by considering non-spherical and inhomogeneous models for dust samples. The study emphasizes the significance of using non-spherical models for simulating dust aerosols.
Wenxuan Hua, Sijia Lou, Xin Huang, Lian Xue, Ke Ding, Zilin Wang, and Aijun Ding
Atmos. Chem. Phys., 24, 6787–6807, https://doi.org/10.5194/acp-24-6787-2024, https://doi.org/10.5194/acp-24-6787-2024, 2024
Short summary
Short summary
In this study, we diagnose uncertainties in carbon monoxide and organic carbon emissions from four inventories for seven major wildfire-prone regions. Uncertainties in vegetation classification methods, fire detection products, and cloud obscuration effects lead to bias in these biomass burning (BB) emission inventories. By comparing simulations with measurements, we provide certain inventory recommendations. Our study has implications for reducing uncertainties in emissions in further studies.
Léo Clauzel, Sandrine Anquetin, Christophe Lavaysse, Gilles Bergametti, Christel Bouet, Guillaume Siour, Rémy Lapere, Béatrice Marticorena, and Jennie Thomas
EGUsphere, https://doi.org/10.5194/egusphere-2024-1604, https://doi.org/10.5194/egusphere-2024-1604, 2024
Short summary
Short summary
Solar energy production in West Africa is set to rise, needing accurate solar radiation estimates, which is affected by desert dust. This work analyses a March 2021 dust event using a modelling strategy incorporating desert dust. Results show that considering desert dust cut errors in solar radiation estimates by 75 % and reduces surface solar radiation by 18 %. This highlights the importance of incorporating dust aerosols into solar forecasting for better accuracy.
Chandrakala Bharali, Mary Barth, Rajesh Kumar, Sachin D. Ghude, Vinayak Sinha, and Baerbel Sinha
Atmos. Chem. Phys., 24, 6635–6662, https://doi.org/10.5194/acp-24-6635-2024, https://doi.org/10.5194/acp-24-6635-2024, 2024
Short summary
Short summary
This study examines the role of atmospheric aerosols in winter fog over the Indo-Gangetic Plains of India using WRF-Chem. The increase in RH with aerosol–radiation feedback (ARF) is found to be important for fog formation as it promotes the growth of aerosols in the polluted environment. Aqueous-phase chemistry in the fog increases PM2.5 concentration, further affecting ARF. ARF and aqueous-phase chemistry affect the fog intensity and the timing of fog formation by ~1–2 h.
Wenxin Zhao, Yu Zhao, Yu Zheng, Dong Chen, Jinyuan Xin, Kaitao Li, Huizheng Che, Zhengqiang Li, Mingrui Ma, and Yun Hang
Atmos. Chem. Phys., 24, 6593–6612, https://doi.org/10.5194/acp-24-6593-2024, https://doi.org/10.5194/acp-24-6593-2024, 2024
Short summary
Short summary
We evaluate the long-term (2000–2020) variabilities of aerosol absorption optical depth, black carbon emissions, and associated health risks in China with an integrated framework that combines multiple observations and modeling techniques. We demonstrate the remarkable emission abatement resulting from the implementation of national pollution controls and show how human activities affected the emissions with a spatiotemporal heterogeneity, thus supporting differentiated policy-making by region.
Peng Xian, Jeffrey S. Reid, Melanie Ades, Angela Benedetti, Peter R. Colarco, Arlindo da Silva, Tom F. Eck, Johannes Flemming, Edward J. Hyer, Zak Kipling, Samuel Rémy, Tsuyoshi Thomas Sekiyama, Taichu Tanaka, Keiya Yumimoto, and Jianglong Zhang
Atmos. Chem. Phys., 24, 6385–6411, https://doi.org/10.5194/acp-24-6385-2024, https://doi.org/10.5194/acp-24-6385-2024, 2024
Short summary
Short summary
The study compares and evaluates monthly AOD of four reanalyses (RA) and their consensus (i.e., ensemble mean). The basic verification characteristics of these RA versus both AERONET and MODIS retrievals are presented. The study discusses the strength of each RA and identifies regions where divergence and challenges are prominent. The RA consensus usually performs very well on a global scale in terms of how well it matches the observational data, making it a good choice for various applications.
Mariya Petrenko, Ralph Kahn, Mian Chin, Susanne E. Bauer, Tommi Bergman, Huisheng Bian, Gabriele Curci, Ben Johnson, Johannes Kaiser, Zak Kipling, Harri Kokkola, Xiaohong Liu, Keren Mezuman, Tero Mielonen, Gunnar Myhre, Xiaohua Pan, Anna Protonotariou, Samuel Remy, Ragnhild Bieltvedt Skeie, Philip Stier, Toshihiko Takemura, Kostas Tsigaridis, Hailong Wang, Duncan Watson-Parris, and Kai Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2024-1487, https://doi.org/10.5194/egusphere-2024-1487, 2024
Short summary
Short summary
We compared smoke plume simulations from 11 global models to each other and to satellite smoke-amount observations, aimed at constraining smoke source strength. In regions where plumes are thick and background aerosol is low, models and satellites compare well. However, the input emission inventory tends to underestimate in many places, and particle property and loss-rate assumptions vary enormously among models, causing uncertainties that require systematic in-situ measurements to resolve.
Roger Teoh, Zebediah Engberg, Ulrich Schumann, Christiane Voigt, Marc Shapiro, Susanne Rohs, and Marc E. J. Stettler
Atmos. Chem. Phys., 24, 6071–6093, https://doi.org/10.5194/acp-24-6071-2024, https://doi.org/10.5194/acp-24-6071-2024, 2024
Short summary
Short summary
The radiative forcing (RF) due to aviation contrails is comparable to that caused by CO2. We estimate that global contrail net RF in 2019 was 62.1 mW m−2. This is ~1/2 the previous best estimate for 2018. Contrail RF varies regionally due to differences in conditions required for persistent contrails. COVID-19 reduced contrail RF by 54% in 2020 relative to 2019. Globally, 2 % of all flights account for 80 % of the annual contrail energy forcing, suggesting a opportunity to mitigate contrail RF.
Ragnhild Bieltvedt Skeie, Rachael Byrom, Øivind Hodnebrog, Caroline Jouan, and Gunnar Myhre
EGUsphere, https://doi.org/10.5194/egusphere-2024-1394, https://doi.org/10.5194/egusphere-2024-1394, 2024
Short summary
Short summary
In 2020 new regulations by the International Maritime Organization of sulphur emissions came into force that reduced emissions of SO2 from the shipping sector by approximately 80 %. In this study, we use multiple models to calculate by how much the Earth energy balance changed due to the emission reduction, the so called effective radiative forcing. The calculated effective radiative forcing is weak, comparable to the effect of the increase in CO2 over the last two to three years.
Haotian Zu, Biwu Chu, Yiqun Lu, Ling Liu, and Xiuhui Zhang
Atmos. Chem. Phys., 24, 5823–5835, https://doi.org/10.5194/acp-24-5823-2024, https://doi.org/10.5194/acp-24-5823-2024, 2024
Short summary
Short summary
The nucleation of iodic acid (HIO3) and iodous acid (HIO2) was proven to be critical in marine areas. However, HIO3–HIO2 nucleation cannot effectively derive the rapid nucleation in some polluted coasts. We find a significant enhancement of dimethylamine (DMA) on the HIO3–HIO2 nucleation in marine and polar regions with abundant DMA sources, which may establish reasonable connections between the HIO3–HIO2 nucleation and the rapid formation of new particles in polluted marine and polar regions.
Junghwa Lee, Patric Seifert, Tempei Hashino, Maximilian Maahn, Fabian Senf, and Oswald Knoth
Atmos. Chem. Phys., 24, 5737–5756, https://doi.org/10.5194/acp-24-5737-2024, https://doi.org/10.5194/acp-24-5737-2024, 2024
Short summary
Short summary
Spectral bin model simulations of an idealized supercooled stratiform cloud were performed with the AMPS model for variable CCN and INP concentrations. We performed radar forward simulations with PAMTRA to transfer the simulations into radar observational space. The derived radar reflectivity factors were compared to observational studies of stratiform mixed-phase clouds. These studies report a similar response of the radar reflectivity factor to aerosol perturbations as we found in our study.
Masaru Yoshioka, Daniel P. Grosvenor, Ben B. B. Booth, Colin P. Morice, and Kenneth S. Carslaw
EGUsphere, https://doi.org/10.5194/egusphere-2024-1428, https://doi.org/10.5194/egusphere-2024-1428, 2024
Short summary
Short summary
Sulfur emissions from shipping has been reduced by about 80 % as a result of the new regulation introduced in 2020. This has reduced aerosol in the atmosphere and its cooling effect through interactions with clouds. As a result, our coupled climate model simulations predict a global warming of 0.04 K averaged over three decades, potentially surpassing the Paris target of 1.5 K or contributing to recent temperature spikes, particularly notable in the Arctic with a mean warming of 0.15 K.
Basudev Swain, Marco Vountas, Aishwarya Singh, Nidhi L. Anchan, Adrien Deroubaix, Luca Lelli, Yanick Ziegler, Sachin S. Gunthe, Hartmut Bösch, and John P. Burrows
Atmos. Chem. Phys., 24, 5671–5693, https://doi.org/10.5194/acp-24-5671-2024, https://doi.org/10.5194/acp-24-5671-2024, 2024
Short summary
Short summary
Arctic amplification (AA) accelerates the warming of the central Arctic cryosphere and affects aerosol dynamics. Limited observations hinder a comprehensive analysis. This study uses AEROSNOW aerosol optical density (AOD) data and GEOS-Chem simulations to assess AOD variability. Discrepancies highlight the need for improved observational integration into models to refine our understanding of aerosol effects on cloud microphysics, ice nucleation, and radiative forcing under evolving AA.
Vincenzo Obiso, María Gonçalves Ageitos, Carlos Pérez García-Pando, Jan P. Perlwitz, Gregory L. Schuster, Susanne E. Bauer, Claudia Di Biagio, Paola Formenti, Kostas Tsigaridis, and Ron L. Miller
Atmos. Chem. Phys., 24, 5337–5367, https://doi.org/10.5194/acp-24-5337-2024, https://doi.org/10.5194/acp-24-5337-2024, 2024
Short summary
Short summary
We calculate the dust direct radiative effect (DRE) in an Earth system model accounting for regionally varying soil mineralogy through a new observationally constrained method. Linking dust absorption at solar wavelengths to the varying amount of specific minerals (i.e., iron oxides) improves the modeled range of dust single scattering albedo compared to observations and increases the global cooling by dust. Our results may contribute to improved estimates of the dust DRE and its climate impact.
Charlotte M. Beall, Po-Lun Ma, Matthew W. Christensen, Johannes Mülmenstädt, Adam Varble, Kentaroh Suzuki, and Takuro Michibata
Atmos. Chem. Phys., 24, 5287–5302, https://doi.org/10.5194/acp-24-5287-2024, https://doi.org/10.5194/acp-24-5287-2024, 2024
Short summary
Short summary
Single-layer warm liquid clouds cover nearly one-third of the Earth's surface, and uncertainties regarding the impact of aerosols on their radiative properties pose a significant challenge to climate prediction. Here, we demonstrate how satellite observations can be used to constrain Earth system model estimates of the radiative forcing from the interactions of aerosols with clouds due to warm rain processes.
Xiaoli Wei, Qian Cui, Leiming Ma, Feng Zhang, Wenwen Li, and Peng Liu
Atmos. Chem. Phys., 24, 5025–5045, https://doi.org/10.5194/acp-24-5025-2024, https://doi.org/10.5194/acp-24-5025-2024, 2024
Short summary
Short summary
A new aerosol-type classification algorithm has been proposed. It includes an optical database built by Mie scattering and a complex refractive index working as a baseline to identify different aerosol types. The new algorithm shows high accuracy and efficiency. Hence, a global map of aerosol types was generated to characterize aerosol types across the five continents. It will help improve the accuracy of aerosol inversion and determine the sources of aerosol pollution.
Hongyu Liu, Bo Zhang, Richard H. Moore, Luke D. Ziemba, Richard A. Ferrare, Hyundeok Choi, Armin Sorooshian, David Painemal, Hailong Wang, Michael A. Shook, Amy Jo Scarino, Johnathan W. Hair, Ewan C. Crosbie, Marta A. Fenn, Taylor J. Shingler, Chris A. Hostetler, Gao Chen, Mary M. Kleb, Gan Luo, Fangqun Yu, Jason L. Tackett, Mark A. Vaughan, Yongxiang Hu, Glenn S. Diskin, John B. Nowak, Joshua P. DiGangi, Yonghoon Choi, Christoph A. Keller, and Matthew S. Johnson
EGUsphere, https://doi.org/10.5194/egusphere-2024-1127, https://doi.org/10.5194/egusphere-2024-1127, 2024
Short summary
Short summary
We use the GEOS-Chem model to simulate aerosols over the western North Atlantic Ocean (WNAO) during the winter and summer campaigns of ACTIVATE 2020. Model results are evaluated against in situ and remote sensing measurements from two aircraft as well as ground-based and satellite observations. The improved understanding of the aerosol life cycle, composition, transport pathways, and distribution has important implications for characterizing aerosol-cloud-meteorology interactions over the WNAO.
Zhiqiang Zhang, Ying Li, Haiyan Ran, Junling An, Yu Qu, Wei Zhou, Weiqi Xu, Weiwei Hu, Hongbin Xie, Zifa Wang, Yele Sun, and Manabu Shiraiwa
Atmos. Chem. Phys., 24, 4809–4826, https://doi.org/10.5194/acp-24-4809-2024, https://doi.org/10.5194/acp-24-4809-2024, 2024
Short summary
Short summary
Secondary organic aerosols (SOAs) can exist in liquid, semi-solid, or amorphous solid states, which are rarely accounted for in current chemical transport models. We predict the phase state of SOA particles over China and find that in northwestern China SOA particles are mostly highly viscous or glassy solid. Our results indicate that the particle phase state should be considered in SOA formation in chemical transport models for more accurate prediction of SOA mass concentrations.
Alejandro Baró Pérez, Michael S. Diamond, Frida A.-M. Bender, Abhay Devasthale, Matthias Schwarz, Julien Savre, Juha Tonttila, Harri Kokkola, Hyunho Lee, David Painemal, and Annica M. L. Ekman
Atmos. Chem. Phys., 24, 4591–4610, https://doi.org/10.5194/acp-24-4591-2024, https://doi.org/10.5194/acp-24-4591-2024, 2024
Short summary
Short summary
We use a numerical model to study interactions between humid light-absorbing aerosol plumes, clouds, and radiation over the southeast Atlantic. We find that the warming produced by the aerosols reduces cloud cover, especially in highly polluted situations. Aerosol impacts on drizzle play a minor role. However, aerosol effects on cloud reflectivity and moisture-induced changes in cloud cover dominate the climatic response and lead to an overall cooling by the biomass burning plumes.
Danny M. Leung, Jasper F. Kok, Longlei Li, David M. Lawrence, Natalie M. Mahowald, Simone Tilmes, and Erik Kluzek
EGUsphere, https://doi.org/10.5194/egusphere-2024-1124, https://doi.org/10.5194/egusphere-2024-1124, 2024
Short summary
Short summary
This study derives a desert dust emission dataset for 1841–2000, by employing a combination of observed dust records from sedimentary cores as well as reanalyzed global dust cycle constraints. We evaluate the ability of global models to replicate the observed historical dust variability by using the emission dataset to force a historical simulation in an Earth system model. We show that prescribing our emissions forces the model to match better against observations than other mechanistic models.
Sampa Das, Peter R. Colarco, Huisheng Bian, and Santiago Gassó
Atmos. Chem. Phys., 24, 4421–4449, https://doi.org/10.5194/acp-24-4421-2024, https://doi.org/10.5194/acp-24-4421-2024, 2024
Short summary
Short summary
The smoke aerosols emitted from vegetation burning can alter the regional energy budget via multiple pathways. We utilized detailed observations from the NASA ORACLES airborne campaign based in Namibia during September 2016 to improve the representation of smoke aerosol properties and lifetimes in our GEOS Earth system model. The improved model simulations are for the first time able to capture the observed changes in the smoke absorption during long-range plume transport.
Emilio Cuevas-Agulló, David Barriopedro, Rosa Delia García, Silvia Alonso-Pérez, Juan Jesús González-Alemán, Ernest Werner, David Suárez, Juan José Bustos, Gerardo García-Castrillo, Omaira García, África Barreto, and Sara Basart
Atmos. Chem. Phys., 24, 4083–4104, https://doi.org/10.5194/acp-24-4083-2024, https://doi.org/10.5194/acp-24-4083-2024, 2024
Short summary
Short summary
During February–March (FM) 2020–2022, unusually intense dust storms from northern Africa hit the western Euro-Mediterranean (WEM). Using dust products from satellites and atmospheric reanalysis for 2003–2022, results show that cut-off lows and European blocking are key drivers of FM dust intrusions over the WEM. A higher frequency of cut-off lows associated with subtropical ridges is observed in the late 2020–2022 period.
Yahui Che, Bofu Yu, and Katherine Bracco
Atmos. Chem. Phys., 24, 4105–4128, https://doi.org/10.5194/acp-24-4105-2024, https://doi.org/10.5194/acp-24-4105-2024, 2024
Short summary
Short summary
Dust events occur more frequently during the Austral spring and summer in dust regions, including central Australia, the southwest of Western Australia, and the northern and southern regions of eastern Australia using remote sensing and reanalysis datasets. High-concentration dust is distributed around central Australia and in the downwind northern and southern Australia. Typically, around 50 % of the dust lifted settles on Australian land, with the remaining half being deposited in the ocean.
Jonathan Elsey, Nicolas Bellouin, and Claire Ryder
Atmos. Chem. Phys., 24, 4065–4081, https://doi.org/10.5194/acp-24-4065-2024, https://doi.org/10.5194/acp-24-4065-2024, 2024
Short summary
Short summary
Aerosols influence the Earth's energy balance. The uncertainty in this radiative forcing is large depending partly on uncertainty in measurements of aerosol optical properties. We have developed a freely available new framework of millions of radiative transfer simulations spanning aerosol uncertainty and assess the impact on radiative forcing uncertainty. We find that reducing these uncertainties would reduce radiative forcing uncertainty, but non-aerosol uncertainties must also be considered.
Jing Li, Nan Wu, Biwu Chu, An Ning, and Xiuhui Zhang
Atmos. Chem. Phys., 24, 3989–4000, https://doi.org/10.5194/acp-24-3989-2024, https://doi.org/10.5194/acp-24-3989-2024, 2024
Short summary
Short summary
Iodic acid (HIO3) nucleates with iodous acid (HIO2) efficiently in marine areas; however, whether methanesulfonic acid (MSA) can synergistically participate in the HIO3–HIO2-based nucleation is unclear. We provide molecular-level evidence that MSA can efficiently promote the formation of HIO3–HIO2-based clusters using a theoretical approach. The proposed MSA-enhanced iodine nucleation mechanism may help us to deeply understand marine new particle formation events with bursts of iodine particles.
Hao Wang, Xiaohong Liu, Chenglai Wu, and Guangxing Lin
Atmos. Chem. Phys., 24, 3309–3328, https://doi.org/10.5194/acp-24-3309-2024, https://doi.org/10.5194/acp-24-3309-2024, 2024
Short summary
Short summary
We quantified different global- and regional-scale drivers of biogenic volatile organic compound (BVOC) emission trends over the past 20 years. The results show that global greening trends significantly boost BVOC emissions and deforestation reduces BVOC emissions in South America and Southeast Asia. Elevated temperature in Europe and increased soil moisture in East and South Asia enhance BVOC emissions. The results deepen our understanding of long-term BVOC emission trends in hotspots.
Christof G. Beer, Johannes Hendricks, and Mattia Righi
Atmos. Chem. Phys., 24, 3217–3240, https://doi.org/10.5194/acp-24-3217-2024, https://doi.org/10.5194/acp-24-3217-2024, 2024
Short summary
Short summary
Ice-nucleating particles (INPs) have important influences on cirrus clouds and the climate system; however, the understanding of their global impacts is still uncertain. We perform numerical simulations with a global aerosol–climate model to analyse INP-induced cirrus changes and the resulting climate impacts. We evaluate various sources of uncertainties, e.g. the ice-nucleating ability of INPs and the role of model dynamics, and provide a new estimate for the global INP–cirrus effect.
Jiawei Li, Zhiwei Han, Pingqing Fu, Xiaohong Yao, and Mingjie Liang
Atmos. Chem. Phys., 24, 3129–3161, https://doi.org/10.5194/acp-24-3129-2024, https://doi.org/10.5194/acp-24-3129-2024, 2024
Short summary
Short summary
Organic aerosols of marine origin are important for aerosol climatic effects but are poorly understood. For the first time, an online coupled regional chemistry–climate model is applied to explore the characteristics of emission, distribution, and direct and indirect radiative effects of marine organic aerosols over the western Pacific, which reveals an important role of marine organic aerosols in perturbing cloud and radiation and promotes understanding of global aerosol climatic impact.
Yawen Liu, Yun Qian, Philip J. Rasch, Kai Zhang, Lai-yung Ruby Leung, Yuhang Wang, Minghuai Wang, Hailong Wang, Xin Huang, and Xiu-Qun Yang
Atmos. Chem. Phys., 24, 3115–3128, https://doi.org/10.5194/acp-24-3115-2024, https://doi.org/10.5194/acp-24-3115-2024, 2024
Short summary
Short summary
Fire management has long been a challenge. Here we report that spring-peak fire activity over southern Mexico and Central America (SMCA) has a distinct quasi-biennial signal by measuring multiple fire metrics. This signal is initially driven by quasi-biennial variability in precipitation and is further amplified by positive feedback of fire–precipitation interaction at short timescales. This work highlights the importance of fire–climate interactions in shaping fires on an interannual scale.
Cited articles
Apte, J. S., Marshall, J. D., Cohen, A. J., and Brauer, M.: Addressing
global mortality from ambient PM2.5, Environ. Sci. Technol.,
49, 8057–8066, 2015.
Bernard, S. M., Samet, J. M., Grambsch, A., Ebi, K. L., and Romieu, I.: The
potential impacts of climate variability and change on air pollution-related
health effects in the United States, Environ. Health Persp., 109,
199–209, 2001.
Cai, W., Li, K., Liao, H., Wang, H., and Wu, L.: Weather conditions
conducive to Beijing severe haze more frequent under climate change, Nat.
Clim. Change, 7, 257–262, 2017.
Cohen, A. J., Brauer, M., Burnett, R., Anderson, H. R., Frostad, J., Estep,
K., Balakrishnan, K., Brunekreef, B., Dandona, L., Dandona, R., Feigin, V.,
Freedman, G., Hubbell, B., Jobling, A., Kan, H., Knibbs, L., Liu, Y.,
Martin, R., Morawska, L., Pope, C. A., Shin, H., Straif, K., Shaddick, G.,
Thomas, M., van Dingenen, R., van Donkelaar, A., Vos, T., Murray, C. J. L.,
and Forouzanfar, M. H.: Estimates and 25 year trends of the global burden of
disease attributable to ambient air pollution: an analysis of data from the
Global Burden of Diseases Study 2015, Lancet, 389, 1907–1918, https://doi.org/10.1016/S0140-6736(17)30505-6, 2017.
Dawson, J. P., Adams, P. J., and Pandis, S. N.: Sensitivity of PM2.5 to climate in the Eastern US: a modeling case study, Atmos. Chem. Phys., 7, 4295–4309, https://doi.org/10.5194/acp-7-4295-2007, 2007a.
Dawson, J. P., Adams, P. J., and Pandis, S. N.: Sensitivity of ozone to
summertime climate in the eastern USA: A modeling case study, Atmos.
Environ., 41, 1494–1511, 2007b.
Dawson, J. P., Racherla, P. N., Lynn, B. H., Adams, P. J., and Pandis, S.
N.: Impacts of climate change on regional and urban air quality in the
eastern United States: Role of meteorology, J. Geophys. Res.-Atmos., 114, D05308, https://doi.org/10.1029/2008JD009849, 2009.
Gen, M. S., Zhang, R. F., Huang, D. D., Li, Y. J., and Chan, C. K.:
Heterogeneous SO2 Oxidation in Sulfate Formation by Photolysis of
Particulate Nitrate, Environ. Sci. Tech. Let., 6,
86–91, 2019.
Horne, J. R. and Dabdub, D.: Impact of global climate change on ozone,
particulate matter, and secondary organic aerosol concentrations in
California: A model perturbation analysis, Atmos. Environ., 153,
1–17, https://doi.org/10.1016/j.atmosenv.2016.12.049, 2017.
Hu, J., Wu, L., Zheng, B., Zhang, Q., He, K., Chang, Q., Li, X., Yang, F.,
Ying, Q., and Zhang, H.: Source contributions and regional transport of
primary particulate matter in China, Environ. Pollut., 207, 31–42,
https://doi.org/10.1016/j.envpol.2015.08.037, 2015.
Hu, J., Chen, J., Ying, Q., and Zhang, H.: One-year simulation of ozone and particulate matter in China using WRF/CMAQ modeling system, Atmos. Chem. Phys., 16, 10333–10350, https://doi.org/10.5194/acp-16-10333-2016, 2016.
Hu, J., Wang, P., Ying, Q., Zhang, H., Chen, J., Ge, X., Li, X., Jiang, J., Wang, S., Zhang, J., Zhao, Y., and Zhang, Y.: Modeling biogenic and anthropogenic secondary organic aerosol in China, Atmos. Chem. Phys., 17, 77–92, https://doi.org/10.5194/acp-17-77-2017, 2017a.
Hu, J. L., Huang, L., Chen, M. D., Liao, H., Zhang, H. L., Wang, S. X.,
Zhang, Q., and Ying, Q.: Premature Mortality Attributable to Particulate
Matter in China: Source Contributions and Responses to Reductions,
Environ. Sci. Technol., 51, 9950–9959,
https://doi.org/10.1021/acs.est.7b03193, 2017b.
Huang, L., An, J., Koo, B., Yarwood, G., Yan, R., Wang, Y., Huang, C., and Li, L.: Sulfate formation during heavy winter haze events and the potential contribution from heterogeneous SO2 + NO2 reactions in the Yangtze River Delta region, China, Atmos. Chem. Phys., 19, 14311–14328, https://doi.org/10.5194/acp-19-14311-2019, 2019.
Li, M. M., Wang, T. J., Xie, M., Li, S., Zhuang, B. L., Huang, X., Chen, P.
L., Zhao, M., and Liu, J. E.: Formation and Evolution Mechanisms for Two
Extreme Haze Episodes in the Yangtze River Delta Region of China During
Winter 2016, J. Geophys. Res.-Atmos., 124, 3607–3623, 2019a.
Li, X., Gao, Z., Li, Y., Gao, C. Y., Ren, J., and Zhang, X.: Meteorological
conditions for severe foggy haze episodes over north China in 2016–2017
winter, Atmos. Environ., 199, 284–298, 2019b.
Lin, J., Nielsen, C. P., Zhao, Y., Lei, Y., Liu, Y., and McElroy, M. B.:
Recent Changes in Particulate Air Pollution over China Observed from Space
and the Ground: Effectiveness of Emission Control, Environ. Sci. Technol., 44, 7771–7776, https://doi.org/10.1021/es101094t, 2010.
Liu, T., Gong, S., He, J., Yu, M., Wang, Q., Li, H., Liu, W., Zhang, J., Li, L., Wang, X., Li, S., Lu, Y., Du, H., Wang, Y., Zhou, C., Liu, H., and Zhao, Q.: Attributions of meteorological and emission factors to the 2015 winter severe haze pollution episodes in China's Jing-Jin-Ji area, Atmos. Chem. Phys., 17, 2971–2980, https://doi.org/10.5194/acp-17-2971-2017, 2017.
Lu, H., Lyu, X., Cheng, H., Ling, Z., and Guo, H.: Overview on the
spatial-temporal characteristics of the ozone formation regime in China,
Environm. Sci.: Processes and Impacts, 21, 916–929, ,https://doi.org/10.1039/C9EM00098D, 2019.
Lu, X., Hong, J., Zhang, L., Cooper, O. R., Schultz, M. G., Xu, X., Wang,
T., Gao, M., Zhao, Y., and Zhang, Y.: Severe Surface Ozone Pollution in
China: A Global Perspective, Environ. Sci. Tech. Let.,
5, 487–494, https://doi.org/10.1021/acs.estlett.8b00366, 2018.
Ma, T., Duan, F., He, K., Qin, Y., Tong, D., Geng, G., Liu, X., Li, H.,
Yang, S., Ye, S., Xu, B., Zhang, Q., and Ma, Y.: Air pollution
characteristics and their relationship with emissions and meteorology in the
Yangtze River Delta region during 2014–2016, J. Environ. Sci., 83, 8–20, https://doi.org/10.1016/j.jes.2019.02.031,
2019.
Ning, G., Wang, S., Yim, S. H. L., Li, J., Hu, Y., Shang, Z., Wang, J., and Wang, J.: Impact of low-pressure systems on winter heavy air pollution in the northwest Sichuan Basin, China, Atmos. Chem. Phys., 18, 13601–13615, https://doi.org/10.5194/acp-18-13601-2018, 2018.
Olvera Alvarez, H. A., Myers, O. B., Weigel, M., and Armijos, R. X.: The
value of using seasonality and meteorological variables to model intra-urban
PM2.5 variation, Atmos. Environ., 182, 1–8, https://doi.org/10.1016/j.atmosenv.2018.03.007, 2018.
Rasmussen, D., Fiore, A., Naik, V., Horowitz, L., McGinnis, S., and Schultz,
M.: Surface ozone-temperature relationships in the eastern US: A monthly
climatology for evaluating chemistry-climate models, Atmos. Environ., 47, 142–153, 2012.
Silver, B., Reddington, C. L., Arnold, S. R., and Spracklen, D. V.:
Substantial changes in air pollution across China during 2015–2017,
Environ. Res. Lett., 13, 114012, https://doi.org/10.1088/1748-9326/aae718, 2018.
Stanaway, J. D., Afshin, A., Gakidou, E., Lim, S. S., Abate, D., Abate, K.
H., Abbafati, C., Abbasi, N., Abbastabar, H., and Abd-Allah, F. J. T. L.:
Global, regional, and national comparative risk assessment of 84
behavioural, environmental and occupational, and metabolic risks or clusters
of risks for 195 countries and territories, 1990–2017: a systematic
analysis for the Global Burden of Disease Study 2017, The Lancet, 392, 1923–1994, 2018.
Tran, H. N. Q. and Mölders, N.: Investigations on meteorological
conditions for elevated PM2.5 in Fairbanks, Alaska, Atmos. Res.,
99, 39–49, https://doi.org/10.1016/j.atmosres.2010.08.028, 2011.
Wang, Y., Ying, Q., Hu, J., and Zhang, H.: Spatial and temporal variations
of six criteria air pollutants in 31 provincial capital cities in China
during 2013–2014, Environ. Int., 73, 413–422, https://doi.org/10.1016/j.envint.2014.08.016, 2014a.
Wang, Y. X., Zhang, Q. Q., Jiang, J. K., Zhou, W., Wang, B. Y., He, K. B.,
Duan, F. K., Zhang, Q., Philip, S., and Xie, Y. Y.: Enhanced sulfate
formation during China's severe winter haze episode in January 2013 missing
from current models, J. Geophys. Res.-Atmos., 119, 10425–10440, https://doi.org/10.1002/2013JD021426, 2014b.
Wu, C., Hu, W., Zhou, M., Li, S., and Jia, Y.: Data-driven regionalization
for analyzing the spatiotemporal characteristics of air quality in China,
Atmos. Environ., 203, 172–182, https://doi.org/10.1016/j.atmosenv.2019.01.048,
2019.
Xing, J., Zhang, Y., Wang, S., Liu, X., Cheng, S., Zhang, Q., Chen, Y.,
Streets, D. G., Jang, C., Hao, J., and Wang, W.: Modeling study on the air
quality impacts from emission reductions and atypical meteorological
conditions during the 2008 Beijing Olympics, Atmos. Environ., 45,
1786–1798, https://doi.org/10.1016/j.atmosenv.2011.01.025, 2011.
Xu, Y., Xue, W., Lei, Y., Zhao, Y., Cheng, S., Ren, Z., and Huang, Q.:
Impact of Meteorological Conditions on PM2.5 Pollution in China during
Winter, Atmosphere-Basel, 9, 429, https://doi.org/10.3390/atmos9110429, 2018.
Yang, Y., Zheng, X., Gao, Z., Wang, H., Wang, T., Li, Y., Lau, G. N., and
Yim, S. H.: Long-term trends of persistent synoptic circulation events in
planetary boundary layer and their relationships with haze pollution in
winter half year over eastern China, J. Geophys. Res.-Atmos., 123, 10991–11007, https://doi.org/10.1029/2018JD028982, 2018.
Yin, Q., Wang, J., Hu, M., and Wong, H.: Estimation of daily PM2.5
concentration and its relationship with meteorological conditions in
Beijing, J. Environ. Sci., 48, 161–168,
https://doi.org/10.1016/j.jes.2016.03.024, 2016.
Ying, Q., Cureño, I. V., Chen, G., Ali, S., Zhang, H., Malloy, M.,
Bravo, H. A., and Sosa, R.: Impacts of Stabilized Criegee Intermediates,
surface uptake processes and higher aromatic secondary organic aerosol
yields on predicted PM2.5 concentrations in the Mexico City Metropolitan Zone, Atmos. Environ., 94, 438–447,
https://doi.org/10.1016/j.atmosenv.2014.05.056, 2014.
Zhang, H., Wang, Y., Hu, J., Ying, Q., and Hu, X.-M.: Relationships between
meteorological parameters and criteria air pollutants in three megacities in
China, Environ. Res., 140, 242–254, https://doi.org/10.1016/j.envres.2015.04.004,
2015.
Zhang, J., Reid, J. S., Alfaro-Contreras, R., and Xian, P.: Has China been
exporting less particulate air pollution over the past decade?, Geophys.
Res. Lett., 44, 2941–2948, https://doi.org/10.1002/2017gl072617, 2017.
Zhang, L., Liao, H., and Li, J.: Impacts of Asian summer monsoon on seasonal
and interannual variations of aerosols over eastern China, J. Geophys. Res.-Atmos., 115, D00K05, https://doi.org/10.1029/2009JD012299, 2010.
Zhao, B., Jiang, J. H., Gu, Y., Diner, D., Worden, J., Liou, K.-N., Su, H.,
Xing, J., Garay, M., and Huang, L.: Decadal-scale trends in regional aerosol
particle properties and their linkage to emission changes, Environ.
Res. Lett., 12, 054021, https://doi.org/10.1088/1748-9326/aa6cb2, 2017.
Zheng, B., Chevallier, F., Ciais, P., Yin, Y., Deeter, M. N., Worden, H. M.,
Wang, Y., Zhang, Q., and He, K.: Rapid decline in carbon monoxide emissions
and export from East Asia between years 2005 and 2016, Environ.
Res. Lett., 13, 044007, https://doi.org/10.1088/1748-9326/aab2b3, 2018.
Zheng, X. Y., Fu, Y. F., Yang, Y. J., and Liu, G. S.: Impact of atmospheric circulations on aerosol distributions in autumn over eastern China: observational evidence, Atmos. Chem. Phys., 15, 12115–12138, https://doi.org/10.5194/acp-15-12115-2015, 2015.
Zhu, K., Xie, M., Wang, T., Cai, J., Li, S., and Feng, W.: A modeling study
on the effect of urban land surface forcing to regional meteorology and air
quality over South China, Atmos. Enviro., 152, 389–404, https://doi.org/10.1016/j.atmosenv.2016.12.053, 2017.
Short summary
Meteorological conditions play important roles in the formation of O3 and PM2.5 pollution in China. O3 is most sensitive to temperature and the sensitivity is dependent on the O3 chemistry formation or loss regime. PM2.5 is negatively sensitive to temperature, wind speed, and planetary boundary layer height and positively sensitive to humidity. The results imply that air quality in certain regions of China is sensitive to climate changes.
Meteorological conditions play important roles in the formation of O3 and PM2.5 pollution in...
Altmetrics
Final-revised paper
Preprint