

Supplement of

Sensitivity analysis of the surface ozone and fine particulate matter to meteorological parameters in China

Zhihao Shi et al.

Correspondence to: Jianlin Hu (jianlinhu@nuist.edu.cn)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

Supplemental Materials

Fig. S1 Observed and predicted relationships between surface MDA8 O_3 (ppb) and daily T_{max} (K) in the 5 cities in July 2013.

Fig.S2 Changes in monthly average O₃-8h (ppb) in January and July, 2013 due to (a) T+1.5K, (b) WS-20%, (c) AH+20%, (d) PBLH-30%, (e) CLW+20%, (f) PCP+20%.

Fig.S3 Changes in monthly average O₃-8h (ppb) in January and July, 2013 due to (a) T+0.5K, (b) WS+5%, (c) AH+5%, (d) PBLH+10%, (e) CLW+5%, (f) PCP+5%.

Fig. S4 Changes in monthly average O₃-8h (ppb) in January and July, 2013 due to (a) T-0.5K, (b) WS-5%, (c) AH-5%, (d) PBLH-10%, (e) CLW-5%, (f) PCP-5%.

Fig.S5 Changes in monthly average $PM_{2.5}$ concentration (µg m⁻³) in January and July, 2013 due to (a) T+1.5K, (b) WS-20%, (c) AH+20%, (d) PBLH-30%, (e) CLW+20%, (f) PCP+20%.

Fig.S6 Changes in monthly average $PM_{2.5}$ concentration (µg m⁻³) in January and July, 2013 due to (a) T+0.5K, (b) WS+5%, (c) AH+5%, (d) PBLH +10%, (e) CLW+5%, (f) PCP+5%.

Fig.S7 Changes in monthly average $PM_{2.5}$ concentration (µg m⁻³) in January and July, 2013 due to (a) T-0.5K, (b) WS-5%, (c) AH-5%, (d) PBLH-10%, (e) CLW-5%, (f) PCP-5%.

Fig. S8 The combined-change simulation of monthly average O_3 -8 h (ppb) in (a) January and (b) July, and monthly average PM_{2.5} (µg m⁻³) in (c) January and (d) July 2013. These perturbations include T+1.0K, WS-10%, AH+10%, PBLH-20%, CLW+10%, and PCP+10%.

Fig.S9 The monthly average fraction of different components in PM_{2.5} in (a) January and (b) July.

Fig.S10 Changes of O₃-8h concentration (ppb) in January and July 2013 caused by temperature perturbation: (a) is Beijing; (b) is Shanghai; (c) is Guangzhou; (d) is Chongqing; (e) is Xi'an

Fig.S11 Same as Fig. S10, but meteorological perturbation is wind speed.

Fig.S12 Same as Fig. S10, but meteorological perturbation is absolute humidity.

Fig.S13 Change of total $PM_{2.5}$ concentration (µg m⁻³) in January and July 2013 caused by temperature perturbation: (a) is Beijing; (b) is Shanghai; (c) is Guangzhou; (d) is Chongqing; (e) is Xi'an.

Fig.S14 Same as Fig.S13, but meteorological perturbation is wind speed.

Fig.S15 Same as Fig. S13, but meteorological perturbation is absolute humidity.