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Abstract. Meteorological conditions play important roles
in the formation of ozone (O3) and fine particulate matter
(PM2.5). China has been suffering from serious regional air
pollution problems, characterized by high concentrations of
surface O3 and PM2.5. In this study, the Community Multi-
scale Air Quality (CMAQ) model was used to quantify the
sensitivity of surface O3 and PM2.5 to key meteorological
parameters in different regions of China. Six meteorological
parameters were perturbed to create different meteorologi-
cal conditions, including temperature (T ), wind speed (WS),
absolute humidity (AH), planetary boundary layer height
(PBLH), cloud liquid water content (CLW) and precipita-
tion (PCP). Air quality simulations under the perturbed me-
teorological conditions were conducted in China in January
and July of 2013. The changes in O3 and PM2.5 concentra-
tions due to individual meteorological parameters were then
quantified. T has a great influence on the daily maximum 8 h
average O3 (O3-8 h) concentrations, which leads to O3-8 h
increases by 1.7 in January in Chongqing and 1.1 ppb K−1

in July in Beijing. WS, AH, and PBLH have a smaller but
notable influence on O3-8 h with maximum change rates
of 0.3 ppb %−1, −0.15 ppb %−1, and 0.14 ppb %−1, respec-
tively. T , WS, AH, and PBLH have important effects on
PM2.5 formation of both in January and July. In general,
PM2.5 sensitivities are negative to T , WS, and PBLH and
positive to AH in most regions of China. The sensitivi-
ties in January are much larger than in July. PM2.5 sen-
sitivity to T , WS, PBLH, and AH in January can be up

to −5 µg m−3 K−1, −3 µg m−3 %−1, −1 µg m−3 %−1, and
+0.6 µg m−3 %−1, respectively, and in July it can be up to
−2 µg m−3 K−1, −0.4 µg m−3 %−1, −0.14 µg m−3 %−1, and
+0.3 µg m−3 %−1, respectively. Other meteorological fac-
tors (CLW and PCP) have negligible effects on O3-8 h (less
than 0.01 ppb %−1) and PM2.5 (less than 0.01 µg m−3 %−1).
The results suggest that surface O3 and PM2.5 concentrations
can change significantly due to changes in meteorological pa-
rameters, and it is necessary to consider these effects when
developing emission control strategies in different regions of
China.

1 Introduction

China has serious air pollution problems, and fine particulate
matter (PM2.5) and ozone (O3) are the two major air pollu-
tants (Lin et al., 2010; Hu et al., 2016; Lu et al., 2019; Wu
et al., 2019). The annual average PM2.5 concentrations were
higher than 50 µg m−3 in 26 out of the total 31 provincial
capital cities in mainland China during 2013–2014 (Wang
et al., 2014a), and the national fourth highest daily maxi-
mum 8 h average O3 (O3-8 h) was 86.0 ppb during the warm
seasons (April–September) in 2013–2017, which is 6.3 %–
30 % higher than that in other industrialized regions of the
world (Lu et al., 2018). PM2.5 alone caused 0.87–1.36 mil-
lion deaths every year in China, and long-term exposure to
O3 was responsible for an extra 254 000 deaths (Cohen et al.,
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2017; Silver et al., 2018; Apte et al., 2015; Hu et al., 2017b).
China has made remarkable improvement in air quality dur-
ing recent years (Zhang et al., 2017; Zheng et al., 2018; Zhao
et al., 2017); however, air pollution is still severe, making it
the fourth-ranked health risk factor (Stanaway et al., 2018).

Surface PM2.5 and O3 concentrations are determined by
atmospheric processes of emissions, transport and disper-
sion, chemical transformation (due to gas-phase, aqueous-
phase, and aerosol chemistry), and dry and wet deposition.
These processes are affected by meteorological conditions.
Studies have shown that the surface O3 and PM2.5 concen-
trations are sensitive to different meteorological parameters.
For example, Dawson et al. (2007b) investigated the sensi-
tivity of surface O3 to different meteorological parameters in
the eastern United States (US) using the comprehensive air
quality model with extensions (CAMX). The results showed
that temperature (T ) had the greatest influence on daily O3-
8 h of 0.34 ppb K−1, followed by absolute humidity (AH) of
0.025 ppb %−1. Bernard et al. (2001) also confirmed that T

presented a notable positive correlation with the surface O3
concentration. The effects of meteorological parameters on
PM2.5 are even more complicated. Tran and Mölders (2011)
showed that elevated PM2.5 concentrations tended to occur
under the conditions of calm wind, low T , and relative hu-
midity in Fairbanks, Alaska. Olvera Alvarez et al. (2018)
used a land use regression model to analyze the effects of dif-
ferent meteorological parameters on PM2.5 in El Paso, Texas,
and obtained the same conclusion in winter, but in spring, the
high PM2.5 level was associated with high wind speed (WS)
and low humidity. Dawson et al. (2007a) studied the effects
of individual meteorological parameters in the eastern US
and found that PM2.5 concentration decreased markedly as
the precipitation increased (PCP) in winter, but in summer,
the main meteorological factors affecting the PM2.5 concen-
tration were T , WS, and planetary boundary layer height
(PBLH). Dawson et al. (2009) simulated the effects of cli-
mate change on regional and urban air quality in the east-
ern US and found that PM2.5 concentration decreased by
0.3 µg m−3 in January, mostly due to increasing PCP, and
increased by 2.5 µg m−3 in July, largely due to decreasing
PBLH and WS. Horne and Dabdub (2017) altered various
meteorological parameters to investigate their effects on O3,
PM2.5, and secondary organic aerosols (SOA) and found that
the T predominated the effects of meteorology in California.

Many studies have proved that meteorological conditions
play very important roles in air pollution events in China.
Studies found that the pollutant concentrations could vary
by up to several times, due to meteorological changes with
the same emission sources (Zhang et al., 2010; Zheng et al.,
2015; Cai et al., 2017; Ning et al., 2018; Yang et al., 2018; Li
et al., 2019b; Xing et al., 2011; Liu et al., 2017). For example,
Xing et al. (2011) studied the difference between the effects
of 2007 and 2008 meteorological conditions on air quality
during the 2008 Beijing Olympics. They found that higher
humidity in August 2008 was beneficial to the formation of

SO2−
4 by up to ∼ 60 %, and lower T prevented the evapora-

tion of NO−3 by up to ∼ 60 %. Liu et al. (2017) reported that
the monthly mean PM2.5 concentrations in the Jing–Jin–Ji
(JJJ) area in December 2015 increased by 5 %–137 % due to
the unfavorable weather conditions such as low WS and high
humidity.

A few studies investigated the relationships between air
quality and meteorological conditions in China. Zhang et
al. (2015) conducted a correlation analysis between air qual-
ity and meteorology in three megacities: Beijing, Shanghai,
and Guangzhou in China. The result showed that air pollu-
tants were significantly negatively correlated with WS, and
O3 had a positive correlation with T . Yin et al. (2016) found
that the relationship between WS and PM2.5 has a compli-
cated influence, with higher PM at low and high WS than
in light to moderate winds in Beijing from 2008 to 2014.
Xu et al. (2018) examined the variations of PM2.5 concen-
tration in January 2017 in China compared to that in Jan-
uary 2016 and found that meteorological conditions of low
WS, high humidity, low PBLH, and low PCP contributed
to PM2.5 concentration worsening by 29.7 %, 42.6 %, and
7.9 % in the JJJ region, the Pearl River delta (PRD) region,
and the Cheng–Yu Basin (CYB) region, respectively. Ma et
al. (2019) analyzed the effects of meteorology on air pollu-
tion in the Yangtze River delta (YRD) region during 2014–
2016 and found that PM2.5 was highly negatively correlated
with WS, while O3 concentration was positively correlated
with T but negatively related to relative humidity. Zhu et
al. (2017) reported that the surface concentrations of O3 in-
creased by 2–6 in January and 8–12 ppb in July 2014 in the
PRD, mainly due to the increase in T and the decrease in
NOx emissions.

These studies have investigated the impacts of meteorolog-
ical conditions on PM2.5 and O3 in certain regions of China;
however, quantitative sensitivity of PM2.5 and O3 to meteo-
rological parameters has not been examined. The objective
of this study is to quantify the sensitivity of O3 and PM2.5
to different meteorological parameters in winter and summer
in different regions of China. The paper is constructed as fol-
lows: Sect. 2 describes the method used to estimate the sensi-
tivity, and Sect. 3 presents the effects of each meteorological
variable on O3 and PM2.5 in China and in five representative
cities. Conclusions are then summarized in Sect. 4.

2 Methods

The sensitivity of O3 and PM2.5 associated with changes in
meteorological parameters was quantified using the Commu-
nity Multiscale Air Quality (CMAQ) model version 5.0.2.
The meteorological parameters include T , WS, AH, PBLH,
PCP, and cloud liquid water content (CLW). A base case
was firstly simulated with meteorological fields predicted
by the Weather Research and Forecasting (WRF) model
v3.7.1 (https://www2.mmm.ucar.edu/wrf/users/) using the
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Table 1. Meteorological perturbations imposed in this study.

Meteorological parameter Changes in values examined

Temperature (T ) ±0.5, ±1.0, ±1.5 K
Wind speed (WS) ±5 %, ±10 %, ±20 %
Absolute humidity (AH) ±5%, ±10%, ±20 %
Boundary layer height (PBLH) ±10 %, ±20%, ±30 %
Cloud liquid content (CLW) ±5 %, ±10 %, ±20 %
Precipitation (PCP) ±5 %, ±10 %, ±20 %

NCEP FNL Operational Model Global Tropospheric Anal-
yses dataset as the initial and boundary conditions. The base
case has been described in a previous study and the model
configurations of the base case were reported there (Hu et al.,
2015). The WRF-predicted meteorological parameters and
the CMAQ-predicted surface O3 and PM2.5 have been eval-
uated against observations at 422 sites in 60 major cities in
China, and the accuracy of the model performance has been
validated (Hu et al., 2016).

A suite of perturbation scenarios was created, and in each
scenario, a certain meteorological parameter was perturbed
to a certain extent. The details of the perturbation scenarios
are listed in Table 1. Among those changes, T was absolute
changes and other parameters were relative variations. The
magnitude ranges of perturbations are based on the IPCC
AR5 report and the study of Dawson et al. (2007a, 2007b),
and the references therein. For each parameter, three positive
and three negative perturbations were then designed within
its range to have a more comprehensive examination of the
sensitivity of PM2.5 and O3 to this parameter. All perturba-
tions were implemented uniformly in space on the model-
ing domain and in time through the modeling periods. The
perturbations on temperature, wind speed, and absolute hu-
midity were made in all layers. To separate the effects of in-
dividual meteorological parameters, only one parameter was
changed in each case, while all the other parameters were
kept unchanged. Therefore, cloud dissipating or forming in
response to changing temperature was not considered in the
simulations. Please note that these types of perturbations are
not what happens in the real world, where meteorological pa-
rameters are inter-linked. When perturbing horizontal wind
speed, to avoid unphysical situations that mass would not be
conserved, the vertical wind speed was adjusted in the verti-
cal transport calculation based on the air density changes to
conserve mass.

Then the CMAQ model was re-run to predict the air qual-
ity under the perturbed meteorological condition. The emis-
sions and other inputs were kept unchanged in each perturbed
meteorological scenario; therefore, the difference of O3 and
PM2.5 concentrations between each of the perturbation case
and the base case was due to the change in the specific mete-
orological parameter, and the sensitivity of O3 and PM2.5 to
individual meteorological parameters could be quantitatively
determined. It is worthwhile noting that some meteorological

parameters could have significant impacts on emissions, such
as the effect of T on biogenic VOC and soil NOx emissions,
the cloud cover/convection on lightning NOx emissions, and
the effect of T on power plant NOx emissions (high T leads
to higher electricity demand in summer), which would af-
fect air quality. Therefore, the sensitivities in this study only
include the “direct” effects of individual meteorological pa-
rameters on air quality. A full evaluation of the impacts of
climate/weather changes on air quality should consider ef-
fects of the emissions changes.

The modeling domain covers East Asia, including all of
China, with a horizontal resolution of 36×36 km2. The base
and perturbation cases were conducted in January and July
in 2013, representing the winter and summer conditions, re-
spectively. In addition to the regional analysis, five repre-
sentative megacities were selected, i.e., Beijing, Shanghai,
Guangzhou, Chongqing, and Xi’an (Fig. 1). These cities are
located in the North China Plain (NCP), YRD, PRD, CYB,
and Guanzhong Plain, respectively, where serious air pol-
lution problems often occur. In this study, O3-8 h was used
in the O3 analyses, and 24 h average PM2.5 was used in the
PM2.5 analyses, if not specifically stated. The O3–T relation-
ship is examined using the method in Rasmussen et al. (2012)
in the five cities. Observed and predicted O3–T relationships
were estimated using the daily observed and predicted O3-8 h
concentrations and daily maximum T in July (O3 observa-
tions became available from March 2013 in China, so no O3
observations in January). The results are shown in Fig. S1 (in
the Supplement). CMAQ predicts a positive O3–T relation-
ship in most cities except in Beijing, and the model tends to
underestimate the daily O3–T relationship except in Shang-
hai. The underestimation of O3–T by the CMAQ model in
this study is consistent with the findings in Rasmussen et
al. (2012). Please note that we only have 1-month data and
that we use daily O3-8 h and daily maximum temperature
in the evaluation, while a much more meaningful evaluation
should be performed to use monthly average O3 and monthly
average temperature over a long-term period (Rasmussen et
al., 2012).

3 Results and discussion

3.1 Impacts of meteorological parameters on surface
O3

Figure 2a and b show the spatial distribution of the predicted
monthly average O3-8 h concentrations in January and July,
respectively. In January, the highest average concentrations
are about 70 ppb in the Sichuan basin, and the concentrations
in South and East China are generally higher than those in
North China. In July, the highest average concentrations are
over 80 ppb in the large areas of NCP and YRD, CYB, and
Guangzhou in the PRD.
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Figure 1. Location map of China and the five cities.

Figure 2. Spatial distributions of monthly average O3-8 h (ppb) in
(a) January and (b) July and monthly average PM2.5 (µg m−3) in
(c) January and (d) July 2013.

Figure 3 shows the spatial distribution of the concentra-
tion changes in O3-8 h in January and July due to changes of
T + 1.0 K, WS − 10 %, AH + 10 %, PBLH − 20 %, CLW
+ 10 %, and PCP + 10 %, respectively. Figures S2–S4 show
the results due to other extent changes in these parameters.
When T increases by 1.0 K (Fig. 3a), O3-8 h increases by 1–
2 ppb in most areas of East and Central China in January and
in NCP and YRD in July, which is consistent with the high
O3 spatial distribution in the base case (shown in Fig. 2). O3-
8 h decreases by up to 4 ppb in January in Northeast China
and by up to 2 ppb in the southwestern border of China and
the East China Sea, which are the areas of low O3 concentra-
tions (generally less than the background O3 concentration of
35 ppb). Therefore, the effect of T on O3 is dependent on the
O3 formation regime. An increase in T promotes O3 forma-
tion chemistry in net O3 formation areas (O3 concentrations
greater than 35 ppb) but accelerates O3 consumption chem-

Figure 3. Changes in monthly average O3-8 h (ppb) in January and
July 2013 due to (a) T +1.0 K, (b) WS− 10 %, (c) AH+ 10 %, (d)
PBLH − 20 %, (e) CLW + 10 %, and (f) PCP + 10 %.

istry in the net O3 loss areas (O3 concentrations less than
35 ppb).

Figure 3b shows the differences of O3-8 h in January and
July when WS is 10 % less than the base case in 2013. The
influence of wind on O3 concentration is complex, but gen-
erally, slower WS decreases O3 in January in most parts of
China, particularly in Sichuan by up to 3 ppb, but increases
O3 in July by a few ppb over most areas in East and Central
China. Therefore, the impact of WS on O3 appears opposite
in winter and summer. Weaker winds slow down the disper-
sion of NOx and VOCs, which is conducive to O3 formation
in summer when the vertical mixing is strong but increases
O3 titration in the surface in winter due to weaker vertical
mixing.

Figure 3c shows that the surface O3 is expected to decrease
generally less than 1 ppb when AH increases by 10 % (rela-
tive change) in both January and July in most land areas of
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China except in the northeastern area. Figure 3d shows that
a 20 % decrease in PBLH leads to O3-8 h decreases by a few
ppb in most areas in January, while in July O3-8 h increases
in the eastern and central regions, especially in YRD, CYB,
and areas in Hubei–Hunan–Jiangxi in Central China. Sensi-
tivity of O3 to CLW and PCP is relatively small. Figure 3e
demonstrates that O3-8 h changes by −0.03 to 0.03 ppb in
January and July for a 10 % increase in CLW. Figure 3f
demonstrates that a 10 % increase in PCP results in −0.1 to
0.2 ppb changes in O3-8 h. O3 changes due to the six meteo-
rological factors with different extents of perturbation. Figs.
S2–S4 show the similar trends and spatial patterns.

3.2 Impacts of meteorological parameters on surface
PM2.5

Figure 2c and d show the spatial distribution of the monthly
average surface PM2.5 concentrations in January and July.
PM2.5 in January reaches over 200 µg m−3 in JJJ, SYB, Cen-
tral China, and urban areas in Northeast China. PM2.5 is
much lower in July, generally lower than 50 µg m−3, but is
high (up to 70 µg m−3) in areas in the JJJ, YRD, and Central
China regions.

Figure 4 shows the spatial distribution of PM2.5 changes
due to the same changes in meteorological factors, as in
Fig. 3. The PM2.5 results of other cases of the sensitivity
study are shown in Figs. S5–S7 of the Supplement. The re-
sults indicate that in January, a 1.0 K increase in T leads to an
up to 5–6 µg m−3 decrease in PM2.5 in JJJ and Central China;
in July, a 1.0 K increase in T causes a PM2.5 increase by
about 1 µg m−3 in South China but a decrease by 1–3 µg m−3

in JJJ and the eastern coastal region. A 10 % decrease in WS
causes a PM2.5 increase to over 40 µg m−3 in January and
up to 5 µg m−3 in July. A 10 % relative increase in AH leads
to a PM2.5 increase of up to 6 µg m−3 in January and up to
2 µg m−3 in JJJ and northeastern regions but a slight decrease
of less than 1 µg m−3 in South China in July. A 20 % decrease
in PBLH causes PM2.5 increases by up to 20 µg m−3 in Jan-
uary and up to 4 µg m−3 in July. The impact of CLW and
PCP on PM2.5 is small, and generally an increase in CLW
increases surface PM2.5 and an increase in PCP decreases
PM2.5.

The changes in the total PM2.5 mass concentrations are
determined by the changes in the chemical components of
PM2.5. Figure S9 displays the fraction of PM2.5 species,
elemental carbon (EC), primary organic carbon (POC),
secondary organic aerosol (SOA), sulfate (SO2−

4 ), nitrate
(NO−3 ), and ammonium (NH+4 ), in five representative cities.
Secondary inorganic aerosols (SO2−

4 , NO−3 , NH+4 ) are the
major PM components, accounting for over 50 % of PM2.5
in January and about 40 % in July. Figures 5 and 6 show
the changes in the major PM2.5 components due to the same
changes in meteorological factors as in Fig. 4 in January
and in July, respectively. The results show that the effects
of the meteorological parameters on the total PM2.5 (shown

Figure 4. Changes in monthly average PM2.5 concentration
(µg m−3) in January and July 2013 due to (a) T + 1.0 K, (b) WS
− 10 %, (c) AH + 10 %, (d) PBLH − 20 %, (e) CLW + 10 %, and
(f) PCP + 10 %.

in Fig. 4) are mainly due to their effects on SO2−
4 , NO−3 ,

and NH+4 in January and due to the changes in SO2−
4 , NO−3 ,

NH+4 , and SOA in July. In general, PBLH, WS, and PCP
are negatively correlated with SO2−

4 , NO−3 , and NH+4 forma-
tion, but AH and CLW are positively correlated with these
components. SOA concentrations are much higher in July
than in January due to the contribution from biogenic emis-
sions (Hu et al., 2017a). SOA formation is affected by reac-
tion rates (positively affected by T ), availability of oxidants
(such as changes in O3), and hydrogen ion strength (affected
by changes in SO2−

4 , NO−3 , and NH+4 ). SOA concentrations
mainly increase in South China.

It is worthwhile noting the effects of T on SO2−
4 and NO−3

(changes in NH+4 are determined by changes in SO2−
4 and

NO−3 ). In both January and July, an increase in T decreases
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Figure 5. Changes in monthly average PM2.5 component concentration (µg m−3) in January due to (a) T + 1.0 K, (b) WS − 10 %, (c) AH
+ 10 %, (d) PBLH − 20 %, (e) CLW + 10 %, and (f) PCP + 10 %.

SO2−
4 and NO−3 in the major areas of East China. The NO−3

decrease is expected because volatile NH4NO3 favors more
the gas phase at higher temperature, and this result is con-
sistent with studies in other regions (Dawson et al., 2007a;
Horne and Dabdub, 2017). SO2−

4 is found to increase with T

increase in those studies because of faster gas- and aqueous-
phase reactions of SO2−

4 . However, our finding of SO2−
4 in

China is the opposite. The CMAQ-Sulfur Tracking Model
(CMAQ-STM) was further used to track the SO2−

4 formation
from different processes. The results confirm that the SO2−

4
production from the gas and aqueous phases increases with
T increase, but meanwhile SO2−

4 production from heteroge-
neous reactions is reduced more when T is increased. Het-
erogeneous SO2−

4 formation has been proposed as a major
SO2−

4 formation pathway during China haze events (Gen et
al., 2019; Huang et al., 2019; Li et al., 2019a; Wang et al.,
2014b), and in this study it accounts for up to ∼ 75 % of to-
tal SO2−

4 production. The treatment of heterogeneous SO2−
4

formation currently is modeled as a surface-controlled up-
take process in which the formation rate is determined by
the aerosol surface area and the uptake coefficient of SO2 on
the particle surface (Ying et al., 2014). When T is increased,
the particle surface area decreases (as particle mass concen-
tration decreases due to a combined effect of other compo-

nents), resulting in a decrease in the heterogeneous SO2−
4

formation.
An additional simulation was run to illustrate the com-

bined effects of perturbations in all meteorological param-
eters (T + 1.0 K, WS − 10 %, AH + 10 %, PBLH − 20 %,
CLW + 10 %, and PCP + 10 %) on O3 and PM2.5 in Jan-
uary and July. The results are shown in Fig. S8. The aver-
age O3-8 h concentration in this combined-change simula-
tion dropped by ∼ 2 ppb in January, except in the northeast.
In July, O3 in East China and the Sichuan basin rose by 2 ppb.
The changes in PM2.5 resulting from this combined-change
simulation were significantly higher compared to the base-
case concentrations and even increased by up to 50 µg m−3

in January.

3.3 Quantitative sensitivity of O3 and PM2.5 to
individual meteorology parameters

The quantitative sensitivity of O3 and PM2.5 concentrations
to individual meteorological parameters is calculated by lin-
ear fitting of the changes in monthly average concentrations
under all of the six perturbed cases of the meteorological pa-
rameter. Figures S10–S12 in the Supplement show the cal-
culation examples of T , WS, and AH on O3 at the five ma-
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Figure 6. Changes in monthly average PM2.5 component concentration (µg m−3) in July due to (a) T + 1.0 K, (b) WS − 10 %, (c) AH +
10 %, (d) PBLH − 20 %, (e) CLW + 10 %, and (f) PCP + 10 %.

jor cities of Beijing, Chongqing, Guangzhou, Shanghai and
Xi’an, and Figs. S13–S15 show the examples for the PM2.5
cases. Figure 7 demonstrates the sensitivities of O3-8 h and
PM2.5 and its components to each meteorological parameter
in the five cities. In January, T has a positive impact on O3
in all cities, and the largest impact is in Chongqing with a
rate of +1.69 ppb K−1. In July, O3 also shows a strong pos-
itive sensitivity to T in Beijing with +1.06 and in Shang-
hai with +0.98 ppb K−1 but has a small negative sensitivity
(−0.15 ppb K−1) in Xi’an and a moderate negative sensitiv-
ity (−0.74 ppb K−1) in Guangzhou. The O3 sensitivity to T

in Guangzhou in July shows a highly nonlinear trend and
is very different from other cities (Fig. S10c). More stud-
ies are needed to investigate the effects of T on O3 pollution
in the YRD region during summertime. WS and PBLH both
have positive effects on O3-8 h in January: the effects vary
significantly among cities, with 0.004 ppb %−1–0.3 ppb %−1

for WS and 0.04 ppb %−1–0.14 ppb %−1 for PBLH. AH
has a negative effect on O3-8 h in January, ranging from
−0.01 ppb %−1 to −0.15 ppb %−1, but in July, the impacts
of WS, AH, and PBLH are negative in most cities, with
ranges of−0.05 ppb %−1 to−0.18 ppb %−1,−0.05 ppb %−1

to −0.13 ppb %−1, and −0.02 ppb %−1 to −0.07 ppb %−1,
respectively. Generally speaking, T , WS, AH, and PBLH led

to rather larger O3 changes. The sensitivity of O3 to CLW
and PCP is even minimal (less than 0.1 ppb %−1) and mostly
negative.

Negative sensitivities are found for surface PM2.5 con-
centrations to T , WS, PBLH, and PCP and positive sen-
sitivities for PM2.5 to AH and CLW. The sensitivity of T

in the five cities ranges from −1.5 to −3.6 µg m−3 K−1

in January and −0.3 to −1.65 µg m−3 K−1 in July. PM2.5
is also very sensitive to WS in January, with a range
of −0.8 µg m−3 %−1 to −2.97 µg m−3 %−1, while the
sensitivity (−0.03 µg m−3 %−1 to −0.19 µg m−3 %−1) be-
comes much smaller in July. The sensitivity to PBLH is
−0.12 µg m−3 %−1 to −0.58 µg m−3 %−1 in January and
−0.003 µg m−3 %−1 to −0.23 µg m−3 %−1 in July. The sen-
sitivity to AH is 0.16 µg m−3 %−1 to 0.30 µg m−3 %−1 in
January and 0.05 µg m−3 %−1 to 0.27 µg m−3 %−1 in July.
Sensitivity to CLW and PCP is small in January and July,
mostly less than 0.01 µg m−3 %−1. The PM2.5 sensitivities
can be explained by the major components of SO2−

4 , NO−3 ,
and NH+4 in January and by SO2−

4 , NO−3 , NH+4 , and SOA in
July.

Figure 8 shows the spatial variations of the sensitivity
of O3-8 h and PM2.5 to the meteorological parameters. The
sensitivity of O3-8 h to temperature is more significant in
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Figure 7. Sensitivity of O3-8 h, PM2.5, and its components to the meteorological parameter of (a) T , (b) WS, (c) AH, (d) PBLH, (e) CLW,
and (f) PCP in five cities in China. The unit of sensitivity is ppb K−1 for O3-8 h to T and is ppb %−1 for O3-8 h to other meteorolog-
ical parameters; the unit is µg m−3 K−1 for PM2.5 and its components to T and is µg m−3 %−1 for PM2.5 and its components to other
meteorological parameters.
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Figure 8. Sensitivity of the O3-8 h mean to meteorological pertur-
bations (a) T , (b) WS, (c) AH, (d) PBLH, (e) CLW, and (f) PCP
in China. The value in T is measured in ppb K−1 and others in
ppb %−1.

Sichuan and southern provinces of China in January, and, in
the NCP and YRD in July, up to +2 ppb K−1 in both Jan-
uary and July. O3-8 h sensitivity to WS is diverse in space
and is generally positive in Sichuan and southern provinces
in January, and it is negative in East China but positive in
West China. O3-8 h sensitivity to AH is generally negative in
both months in most regions of China, except the northeast in
January and southwest in July. O3-8 h sensitivity to PBLH is
mostly positive in January but becomes negative in the YRD,
CYB, and NCP and Central China in July. O3-8 h sensitivity
to CLW and PCP is negligible.

Figure 9 displays the spatial variations of the sensitivity of
surface PM2.5 to the meteorological parameters. PM2.5 sen-
sitivities to the meteorological parameters are more consis-
tent in January and July than the cases of O3, i.e., negative
sensitivity to T , WS, PBLH, and PCP and positive to AH

Figure 9. Sensitivity of the PM2.5 mean to meteorological pertur-
bations (a) T , (b) WS, (c) AH, (d) PBLH, (e) CLW, and (f) PCP
in China. The value in T is measured in µg m−3 K−1 and others in
µg m−3 %−1.

and CLW in most regions of China in both months. On the
other hand, PM2.5 sensitivities are more profound in January
than in July. PM2.5 sensitivity to T is up to −5 µg m−3 K−1

in January and up to −2 µg m−3 K−1 in July. PM2.5 sensi-
tivity to WS is up to −3 µg m−3 %−1 in January and up to
−0.4 µg m−3 %−1 in July. PM2.5 sensitivity to PBLH is up
to −1 µg m−3 %−1 in January and up to −0.14 µg m−3 %−1

in July. PM2.5 sensitivity to AH is up to +0.6 µg m−3 %−1 in
January and up to 0.3 µg m−3 %−1 in July. The sensitivities to
CLW and PCP are small compared to the other four meteoro-
logical parameters. PM2.5 sensitivity to T is negative in most
land areas of China in January and in the NCP and YRD in
July because of the negative effects of T on SO2−

4 , NO−3 , and
NH+4 , as discussed in previous sections. PM2.5 sensitivity to
T is positive in South China in July due to more SOA with
higher T .
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4 Conclusions

Meteorological conditions can have a great influence on sur-
face O3 and PM2.5 concentrations. In this study, the sensitiv-
ities of O3-8 h and PM2.5 to T , WS, AH, PBLH, PCP, and
CLW are quantitatively estimated in January and July, re-
spectively, in China. The response of O3-8 h to T is important
and the sensitivity can be up to +2 ppb K−1 in both January
and July, and the sensitivity is dependent on the O3 chemistry
formation or loss regime, i.e., positive in the net O3 formation
areas and negative in the O3 consumption areas. In general,
PM2.5 sensitivities are negative to T , WS, PBLH, and PCP
and positive to AH and CLW in most regions of China in
both January and July. The sensitivities in January are much
larger than in July. PM2.5 sensitivities to T , WS, AH, and
PBLH are important. The PM2.5 sensitivities to these me-
teorological parameters are through major effects on SO2−

4 ,
NO−3 , NH+4 , and SOA. The sensitivities of O3 and PM2.5 to
CLW and PCP are negligible. The results show that O3 and
PM2.5 concentrations in China are greatly affected by meteo-
rological conditions; therefore, changes in these meteorolog-
ical parameters due to climate change or inter-annual meteo-
rological variations could potentially alter O3 and PM2.5 con-
centrations significantly, and it should consider these effects
when developing emission control strategies. The results also
show that the O3 and PM2.5 sensitivities to meteorological
parameters have substantial spatial variations. Future stud-
ies can further investigate how the changes in meteorological
conditions affect the effectiveness of emission control plans
in reaching the designed air quality objectives in the different
regions of China.
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