Articles | Volume 20, issue 20
https://doi.org/10.5194/acp-20-11717-2020
https://doi.org/10.5194/acp-20-11717-2020
Research article
 | 
16 Oct 2020
Research article |  | 16 Oct 2020

Large-scale ion generation for precipitation of atmospheric aerosols

Shaoxiang Ma, He Cheng, Jiacheng Li, Maoyuan Xu, Dawei Liu, and Kostya Ostrikov

Related subject area

Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Characterization of ultrafine particles and the occurrence of new particle formation events in an urban and coastal site of the Mediterranean area
Adelaide Dinoi, Daniel Gulli, Kay Weinhold, Ivano Ammoscato, Claudia R. Calidonna, Alfred Wiedensohler, and Daniele Contini
Atmos. Chem. Phys., 23, 2167–2181, https://doi.org/10.5194/acp-23-2167-2023,https://doi.org/10.5194/acp-23-2167-2023, 2023
Short summary
Atmospheric nanoparticles hygroscopic growth measurement by a combined surface plasmon resonance microscope and hygroscopic tandem differential mobility analyzer
Zhibo Xie, Jiaoshi Zhang, Huaqiao Gui, Yang Liu, Bo Yang, Haosheng Dai, Hang Xiao, Douguo Zhang, Da-Ren Chen, and Jianguo Liu
Atmos. Chem. Phys., 23, 2079–2088, https://doi.org/10.5194/acp-23-2079-2023,https://doi.org/10.5194/acp-23-2079-2023, 2023
Short summary
A full year of aerosol size distribution data from the central Arctic under an extreme positive Arctic Oscillation: insights from the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition
Matthew Boyer, Diego Aliaga, Jakob Boyd Pernov, Hélène Angot, Lauriane L. J. Quéléver, Lubna Dada, Benjamin Heutte, Manuel Dall'Osto, David C. S. Beddows, Zoé Brasseur, Ivo Beck, Silvia Bucci, Marina Duetsch, Andreas Stohl, Tiia Laurila, Eija Asmi, Andreas Massling, Daniel Charles Thomas, Jakob Klenø Nøjgaard, Tak Chan, Sangeeta Sharma, Peter Tunved, Radovan Krejci, Hans Christen Hansson, Federico Bianchi, Katrianne Lehtipalo, Alfred Wiedensohler, Kay Weinhold, Markku Kulmala, Tuukka Petäjä, Mikko Sipilä, Julia Schmale, and Tuija Jokinen
Atmos. Chem. Phys., 23, 389–415, https://doi.org/10.5194/acp-23-389-2023,https://doi.org/10.5194/acp-23-389-2023, 2023
Short summary
Annual cycle of hygroscopic properties and mixing state of the suburban aerosol in Athens, Greece
Christina Spitieri, Maria Gini, Martin Gysel-Beer, and Konstantinos Eleftheriadis
Atmos. Chem. Phys., 23, 235–249, https://doi.org/10.5194/acp-23-235-2023,https://doi.org/10.5194/acp-23-235-2023, 2023
Short summary
Measurement report: Atmospheric new particle formation at a peri-urban site in Lille, northern France
Suzanne Crumeyrolle, Jenni S. S. Kontkanen, Clémence Rose, Alejandra Velazquez Garcia, Eric Bourrianne, Maxime Catalfamo, Véronique Riffault, Emmanuel Tison, Joel Ferreira de Brito, Nicolas Visez, Nicolas Ferlay, Frédérique Auriol, and Isabelle Chiapello
Atmos. Chem. Phys., 23, 183–201, https://doi.org/10.5194/acp-23-183-2023,https://doi.org/10.5194/acp-23-183-2023, 2023
Short summary

Cited articles

Albani, R. A. S. and Albani, V. V. L.: Tikhonov-type regularization and the finite element method applied to point source estimation in the atmosphere, Atmos. Environ., 211, 69–78, https://doi.org/10.1016/j.atmosenv.2019.04.063, 2019. 
Albani, R. A. S., Duda, F. P.. and Pimentel, L. C. G.: On the modeling of atmospheric pollutant dispersion during a diurnal cycle: A finite element study, Atmos. Environ., 118, 19–27, https://doi.org/10.1016/j.atmosenv.2015.07.036, 2015. 
Anon: Estimation of the agglomeration coefficient of bipolar-charged aerosol particles, J. Electrostat., 48, 93–101, doi:10.1016/S0304-3886(99)00053-4, 2000. 
Antao, D. S., Staack, D. A., Fridman, A., and Farouk, B.: Atmospheric pressure dc corona discharges: operating regimes and potential applications, Plasma Sources Sci. Technol., 18, 035016, https://doi.org/10.1088/0963-0252/18/3/035016, 2009. 
Ashrafi, K., Orkomi, A. A., and Motlagh, M. S.: Direct effect of atmospheric turbulence on plume rise in a neutral atmosphere, Atmos. Pollut. Res., 8, 640–651, https://doi.org/10.1016/j.apr.2017.01.001, 2017. 
Download
Short summary
Our work suggests that a large corona discharge system is an efficient and possibly economically sustainable way to increase the ion density in the open air and control the precipitation of atmospheric aerosols. Once the system is installed on a mountaintop, it will generate lots of charged nuclei, which may trigger water precipitation or fog elimination within a certain region in the downwind directions.
Altmetrics
Final-revised paper
Preprint