Articles | Volume 19, issue 3
Atmos. Chem. Phys., 19, 1985–2000, 2019
https://doi.org/10.5194/acp-19-1985-2019
Atmos. Chem. Phys., 19, 1985–2000, 2019
https://doi.org/10.5194/acp-19-1985-2019

Research article 14 Feb 2019

Research article | 14 Feb 2019

Evaluating solar radiation forecast uncertainty

Minttu Tuononen et al.

Related authors

Aerosol particle depolarization ratio at 1565 nm measured with a Halo Doppler lidar
Ville Vakkari, Holger Baars, Stephanie Bohlmann, Johannes Bühl, Mika Komppula, Rodanthi-Elisavet Mamouri, and Ewan James O'Connor
Atmos. Chem. Phys., 21, 5807–5820, https://doi.org/10.5194/acp-21-5807-2021,https://doi.org/10.5194/acp-21-5807-2021, 2021
Short summary
Validation of the Sentinel-5 Precursor TROPOMI cloud data with Cloudnet, Aura OMI O2–O2, MODIS, and Suomi-NPP VIIRS
Steven Compernolle, Athina Argyrouli, Ronny Lutz, Maarten Sneep, Jean-Christopher Lambert, Ann Mari Fjæraa, Daan Hubert, Arno Keppens, Diego Loyola, Ewan O'Connor, Fabian Romahn, Piet Stammes, Tijl Verhoelst, and Ping Wang
Atmos. Meas. Tech., 14, 2451–2476, https://doi.org/10.5194/amt-14-2451-2021,https://doi.org/10.5194/amt-14-2451-2021, 2021
Short summary
Suitability of fibre-optic distributed temperature sensing for revealing mixing processes and higher-order moments at the forest–air interface
Olli Peltola, Karl Lapo, Ilkka Martinkauppi, Ewan O'Connor, Christoph K. Thomas, and Timo Vesala
Atmos. Meas. Tech., 14, 2409–2427, https://doi.org/10.5194/amt-14-2409-2021,https://doi.org/10.5194/amt-14-2409-2021, 2021
Short summary
Identifying source regions of air masses sampled at the tropical high-altitude site of Chacaltaya using WRF-FLEXPART and cluster analysis
Diego Aliaga, Victoria A. Sinclair, Marcos Andrade, Paulo Artaxo, Samara Carbone, Evgeny Kadantsev, Paolo Laj, Alfred Wiedensohler, Radovan Krejci, and Federico Bianchi
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-126,https://doi.org/10.5194/acp-2021-126, 2021
Preprint under review for ACP
Short summary
Delineation of Dew Formation Zones in Iran Using Long-Term Model Simulations and Cluster Analysis
Nahid Atashi, Dariush Rahimi, Victoria A. Sinclair, Martha A. Zaidan, Anton Rusanen, Henri Vuollekoski, Markku Kulmala, Timo Vesala, and Tareq Hussein
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-54,https://doi.org/10.5194/hess-2021-54, 2021
Preprint under review for HESS
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Observing the timescales of aerosol–cloud interactions in snapshot satellite images
Edward Gryspeerdt, Tom Goren, and Tristan W. P. Smith
Atmos. Chem. Phys., 21, 6093–6109, https://doi.org/10.5194/acp-21-6093-2021,https://doi.org/10.5194/acp-21-6093-2021, 2021
Short summary
Potential impact of aerosols on convective clouds revealed by Himawari-8 observations over different terrain types in eastern China
Tianmeng Chen, Zhanqing Li, Ralph A. Kahn, Chuanfeng Zhao, Daniel Rosenfeld, Jianping Guo, Wenchao Han, and Dandan Chen
Atmos. Chem. Phys., 21, 6199–6220, https://doi.org/10.5194/acp-21-6199-2021,https://doi.org/10.5194/acp-21-6199-2021, 2021
Short summary
How frequent is natural cloud seeding from ice cloud layers ( < −35 °C) over Switzerland?
Ulrike Proske, Verena Bessenbacher, Zane Dedekind, Ulrike Lohmann, and David Neubauer
Atmos. Chem. Phys., 21, 5195–5216, https://doi.org/10.5194/acp-21-5195-2021,https://doi.org/10.5194/acp-21-5195-2021, 2021
Short summary
Processes contributing to cloud dissipation and formation events on the North Slope of Alaska
Joseph Sedlar, Adele Igel, and Hagen Telg
Atmos. Chem. Phys., 21, 4149–4167, https://doi.org/10.5194/acp-21-4149-2021,https://doi.org/10.5194/acp-21-4149-2021, 2021
Characterisation and surface radiative impact of Arctic low clouds from the IAOOS field experiment
Julia Maillard, François Ravetta, Jean-Christophe Raut, Vincent Mariage, and Jacques Pelon
Atmos. Chem. Phys., 21, 4079–4101, https://doi.org/10.5194/acp-21-4079-2021,https://doi.org/10.5194/acp-21-4079-2021, 2021
Short summary

Cited articles

Ahlgrimm, M. and Forbes, R.: The impact of low clouds on surface shortwave radiation in the ECMWF model, Mon. Weather Rev., 140, 3783–3794, https://doi.org/10.1175/MWR-D-11-00316.1, 2012. a, b, c, d
Barrett, A. I., Hogan, R. J., and Forbes, R. M.: Why are mixed-phase altocumulus clouds poorly predicted by large-scale models? Part 1. Physical processes, J. Geophys. Res.-Atmos., 122, 9903–9926, https://doi.org/10.1002/2016JD026321, 2017. a
Boilley, A. and Wald, L.: Comparison between meteorological re-analyses from ERA-Interim and MERRA and measurements of daily solar irradiation at surface, Renew. Energ., 75, 135–143, https://doi.org/10.1016/j.renene.2014.09.042, 2015. a
Bozzo, A., Remy, S., Benedetti, A., Flemming, J., Bechtold, P., Rodwell, M., and Morcrette, J.-J.: Implementation of a CAMS-based aerosol climatology in the IFS, ECMWF, Technical Memorandum, 801, https://doi.org/10.21957/84ya94mls, 2017. a
Forbes, R. M. and Ahlgrimm, M.: On the representation of high-latitude boundary layer mixed-phase cloud in the ECMWF global model, Mon. Weather Rev., 142, 3425–3445, https://doi.org/10.1175/MWR-D-13-00325.1, 2014. a, b
Download
Short summary
Many applications require accurate forecasts of the amount of solar radiation reaching the surface, such as solar energy and UV radiation forecasts. This also means that cloud must be correctly forecast. We investigated the skill of these forecasts over Helsinki, Finland, using cloud and solar radiation observations. We found that there were errors in the model radiation forecast even when the clouds were correctly forecast, which we attribute to incorrect representation of the cloud properties.
Altmetrics
Final-revised paper
Preprint