Articles | Volume 19, issue 24
https://doi.org/10.5194/acp-19-15415-2019
https://doi.org/10.5194/acp-19-15415-2019
Research article
 | 
17 Dec 2019
Research article |  | 17 Dec 2019

Separating radiative forcing by aerosol–cloud interactions and rapid cloud adjustments in the ECHAM–HAMMOZ aerosol–climate model using the method of partial radiative perturbations

Johannes Mülmenstädt, Edward Gryspeerdt, Marc Salzmann, Po-Lun Ma, Sudhakar Dipu, and Johannes Quaas

Related authors

Prescribing the aerosol effective radiative forcing in the Simple Cloud-Resolving E3SM Atmosphere Model v1
Naser Mahfouz, Hassan Beydoun, Johannes Mülmenstädt, Noel Keen, Adam C. Varble, Luca Bertagna, Peter Bogenschutz, Andrew Bradley, Matthew W. Christensen, T. Conrad Clevenger, Aaron Donahue, Jerome Fast, James Foucar, Jean-Christophe Golaz, Oksana Guba, Walter Hannah, Benjamin Hillman, Robert Jacob, Wuyin Lin, Po-Lun Ma, Yun Qian, Balwinder Singh, Christopher Terai, Hailong Wang, Mingxuan Wu, Kai Zhang, Andrew Gettelman, Mark Taylor, L. Ruby Leung, Peter Caldwell, and Susannah Burrows
EGUsphere, https://doi.org/10.5194/egusphere-2025-1868,https://doi.org/10.5194/egusphere-2025-1868, 2025
Short summary
Can general circulation models (GCMs) represent cloud liquid water path adjustments to aerosol–cloud interactions?
Johannes Mülmenstädt, Andrew S. Ackerman, Ann M. Fridlind, Meng Huang, Po-Lun Ma, Naser Mahfouz, Susanne E. Bauer, Susannah M. Burrows, Matthew W. Christensen, Sudhakar Dipu, Andrew Gettelman, L. Ruby Leung, Florian Tornow, Johannes Quaas, Adam C. Varble, Hailong Wang, Kai Zhang, and Youtong Zheng
Atmos. Chem. Phys., 24, 13633–13652, https://doi.org/10.5194/acp-24-13633-2024,https://doi.org/10.5194/acp-24-13633-2024, 2024
Short summary
General circulation models simulate negative liquid water path–droplet number correlations, but anthropogenic aerosols still increase simulated liquid water path
Johannes Mülmenstädt, Edward Gryspeerdt, Sudhakar Dipu, Johannes Quaas, Andrew S. Ackerman, Ann M. Fridlind, Florian Tornow, Susanne E. Bauer, Andrew Gettelman, Yi Ming, Youtong Zheng, Po-Lun Ma, Hailong Wang, Kai Zhang, Matthew W. Christensen, Adam C. Varble, L. Ruby Leung, Xiaohong Liu, David Neubauer, Daniel G. Partridge, Philip Stier, and Toshihiko Takemura
Atmos. Chem. Phys., 24, 7331–7345, https://doi.org/10.5194/acp-24-7331-2024,https://doi.org/10.5194/acp-24-7331-2024, 2024
Short summary
Present-day correlations are insufficient to predict cloud albedo change by anthropogenic aerosols in E3SM v2
Naser Mahfouz, Johannes Mülmenstädt, and Susannah Burrows
Atmos. Chem. Phys., 24, 7253–7260, https://doi.org/10.5194/acp-24-7253-2024,https://doi.org/10.5194/acp-24-7253-2024, 2024
Short summary
Droplet collection efficiencies inferred from satellite retrievals constrain effective radiative forcing of aerosol–cloud interactions
Charlotte M. Beall, Po-Lun Ma, Matthew W. Christensen, Johannes Mülmenstädt, Adam Varble, Kentaroh Suzuki, and Takuro Michibata
Atmos. Chem. Phys., 24, 5287–5302, https://doi.org/10.5194/acp-24-5287-2024,https://doi.org/10.5194/acp-24-5287-2024, 2024
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Cold pools mediate mesoscale adjustments of trade-cumulus fields to changes in cloud droplet number concentration
Pouriya Alinaghi, Fredrik Jansson, Daniel A. Blázquez, and Franziska Glassmeier
Atmos. Chem. Phys., 25, 6121–6139, https://doi.org/10.5194/acp-25-6121-2025,https://doi.org/10.5194/acp-25-6121-2025, 2025
Short summary
Numerical case study of the aerosol–cloud interactions in warm boundary layer clouds over the eastern North Atlantic with an interactive chemistry module
Hsiang-He Lee, Xue Zheng, Shaoyue Qiu, and Yuan Wang
Atmos. Chem. Phys., 25, 6069–6091, https://doi.org/10.5194/acp-25-6069-2025,https://doi.org/10.5194/acp-25-6069-2025, 2025
Short summary
Influence of temperature and humidity on contrail formation regions in the general circulation model EMAC: a spring case study
Patrick Peter, Sigrun Matthes, Christine Frömming, Patrick Jöckel, Luca Bugliaro, Andreas Giez, Martina Krämer, and Volker Grewe
Atmos. Chem. Phys., 25, 5911–5934, https://doi.org/10.5194/acp-25-5911-2025,https://doi.org/10.5194/acp-25-5911-2025, 2025
Short summary
On the impact of thunder on cloud ice crystals and droplets
Konstantinos Kourtidis, Stavros Stathopoulos, and Vassilis Amiridis
Atmos. Chem. Phys., 25, 5935–5946, https://doi.org/10.5194/acp-25-5935-2025,https://doi.org/10.5194/acp-25-5935-2025, 2025
Short summary
Counteracting influences of gravitational settling modulate aerosol impacts on cloud-base-lowering fog characteristics
Nathan H. Pope and Adele L. Igel
Atmos. Chem. Phys., 25, 5433–5444, https://doi.org/10.5194/acp-25-5433-2025,https://doi.org/10.5194/acp-25-5433-2025, 2025
Short summary

Cited articles

Ackerman, A., Kirkpatrick, M., Stevens, D., and Toon, O.: The impact of humidity above stratiform clouds on indirect aerosol climate forcing, Nature, 432, 1014–1017, https://doi.org/10.1038/nature03174, 2004. a
Albrecht, B. A.: Aerosols, Cloud Microphysics, and Fractional Cloudiness, Science, 245, 1227–1230, 1989. a
Alterskjær, K., Kristjánsson, J. E., and Seland, Ø.: Sensitivity to deliberate sea salt seeding of marine clouds – observations and model simulations, Atmos. Chem. Phys., 12, 2795–2807, https://doi.org/10.5194/acp-12-2795-2012, 2012. a, b
Andersen, H., Cermak, J., Fuchs, J., Knutti, R., and Lohmann, U.: Understanding the drivers of marine liquid-water cloud occurrence and properties with global observations using neural networks, Atmos. Chem. Phys., 17, 9535–9546, https://doi.org/10.5194/acp-17-9535-2017, 2017. a
Bellouin, N., Quaas, J., Morcrette, J.-J., and Boucher, O.: Estimates of aerosol radiative forcing from the MACC re-analysis, Atmos. Chem. Phys., 13, 2045–2062, https://doi.org/10.5194/acp-13-2045-2013, 2013. a
Download
Short summary
The effect of aerosol–cloud interactions (ACIs) on Earth's energy budget continues to be highly uncertain. We decompose the effective radiative forcing by ACIs (ERFaci) into the instantaneous forcing due to anthropogenic increases in the number of cloud droplets and fast responses of cloud properties to the droplet number perturbation in the ECHAM–HAMMOZ aerosol–climate model. This decomposition maps onto the IPCC's Fifth Assessment Report analysis of ERFaci more directly than previous work.
Share
Altmetrics
Final-revised paper
Preprint