Articles | Volume 19, issue 17
https://doi.org/10.5194/acp-19-11267-2019
https://doi.org/10.5194/acp-19-11267-2019
Research article
 | 
06 Sep 2019
Research article |  | 06 Sep 2019

Ozone enhancement due to the photodissociation of nitrous acid in eastern China

Xuexi Tie, Xin Long, Guohui Li, Shuyu Zhao, Junji Cao, and Jianming Xu

Related authors

Fertilization-driven Pulses of Atmospheric Nitrogen Dioxide Complicate Air Pollution in Early Spring over North China
Tian Feng, Guohui Li, Shuyu Zhao, Naifang Bei, Xin Long, Yuepeng Pan, Yu Song, Ruonan Wang, Xuexi Tie, and Luisa Molina
EGUsphere, https://doi.org/10.5194/egusphere-2025-243,https://doi.org/10.5194/egusphere-2025-243, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Source-explicit estimation of brown carbon in the polluted atmosphere over North China Plain: implications for distribution, absorption and direct radiative effect
Jiamao Zhou, Jiarui Wu, Xiaoli Su, Ruonan Wang, Xia Li, Qian Jiang, Ting Zhang, Wenting Dai, Junji Cao, Xuexi Tie, and Guohui Li
EGUsphere, https://doi.org/10.5194/egusphere-2024-3468,https://doi.org/10.5194/egusphere-2024-3468, 2024
Short summary
Insights into particulate matter pollution in the North China Plain during wintertime: local contribution or regional transport?
Jiarui Wu, Naifang Bei, Yuan Wang, Xia Li, Suixin Liu, Lang Liu, Ruonan Wang, Jiaoyang Yu, Tianhao Le, Min Zuo, Zhenxing Shen, Junji Cao, Xuexi Tie, and Guohui Li
Atmos. Chem. Phys., 21, 2229–2249, https://doi.org/10.5194/acp-21-2229-2021,https://doi.org/10.5194/acp-21-2229-2021, 2021
Short summary
The warming Tibetan Plateau improves winter air quality in the Sichuan Basin, China
Shuyu Zhao, Tian Feng, Xuexi Tie, and Zebin Wang
Atmos. Chem. Phys., 20, 14873–14887, https://doi.org/10.5194/acp-20-14873-2020,https://doi.org/10.5194/acp-20-14873-2020, 2020
Short summary
Effects of stabilized Criegee intermediates (sCIs) on sulfate formation: a sensitivity analysis during summertime in Beijing–Tianjin–Hebei (BTH), China
Lang Liu, Naifang Bei, Jiarui Wu, Suixin Liu, Jiamao Zhou, Xia Li, Qingchuan Yang, Tian Feng, Junji Cao, Xuexi Tie, and Guohui Li
Atmos. Chem. Phys., 19, 13341–13354, https://doi.org/10.5194/acp-19-13341-2019,https://doi.org/10.5194/acp-19-13341-2019, 2019

Related subject area

Subject: Gases | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Emissions of intermediate-volatility and semi-volatile organic compounds (I/SVOCs) from different cumulative-mileage diesel vehicles at various ambient temperatures
Shuwen Guo, Xuan Zheng, Xiao He, Lewei Zeng, Liqiang He, Xian Wu, Yifei Dai, Zihao Huang, Ting Chen, Shupei Xiao, Yan You, Sheng Xiang, Shaojun Zhang, Jingkun Jiang, and Ye Wu
Atmos. Chem. Phys., 25, 2695–2705, https://doi.org/10.5194/acp-25-2695-2025,https://doi.org/10.5194/acp-25-2695-2025, 2025
Short summary
Characterization of nitrous acid and its potential effects on secondary pollution in the warm season in Beijing urban areas
Junling Li, Chaofan Lian, Mingyuan Liu, Hao Zhang, Yongxin Yan, Yufei Song, Chun Chen, Jiaqi Wang, Haijie Zhang, Yanqin Ren, Yucong Guo, Weigang Wang, Yisheng Xu, Hong Li, Jian Gao, and Maofa Ge
Atmos. Chem. Phys., 25, 2551–2568, https://doi.org/10.5194/acp-25-2551-2025,https://doi.org/10.5194/acp-25-2551-2025, 2025
Short summary
Vertical changes in volatile organic compounds (VOCs) and impacts on photochemical ozone formation
Xiao-Bing Li, Bin Yuan, Yibo Huangfu, Suxia Yang, Xin Song, Jipeng Qi, Xianjun He, Sihang Wang, Yubin Chen, Qing Yang, Yongxin Song, Yuwen Peng, Guiqian Tang, Jian Gao, Dasa Gu, and Min Shao
Atmos. Chem. Phys., 25, 2459–2472, https://doi.org/10.5194/acp-25-2459-2025,https://doi.org/10.5194/acp-25-2459-2025, 2025
Short summary
Diurnal, seasonal, and interannual variations in δ(18O) of atmospheric O2 and its application to evaluate natural and anthropogenic changes in oxygen, carbon, and water cycles
Shigeyuki Ishidoya, Satoshi Sugawara, and Atsushi Okazaki
Atmos. Chem. Phys., 25, 1965–1987, https://doi.org/10.5194/acp-25-1965-2025,https://doi.org/10.5194/acp-25-1965-2025, 2025
Short summary
Cloud processing of dimethyl sulfide (DMS) oxidation products limits sulfur dioxide (SO2) and carbonyl sulfide (OCS) production in the eastern North Atlantic marine boundary layer
Delaney B. Kilgour, Christopher M. Jernigan, Olga Garmash, Sneha Aggarwal, Shengqian Zhou, Claudia Mohr, Matt E. Salter, Joel A. Thornton, Jian Wang, Paul Zieger, and Timothy H. Bertram
Atmos. Chem. Phys., 25, 1931–1947, https://doi.org/10.5194/acp-25-1931-2025,https://doi.org/10.5194/acp-25-1931-2025, 2025
Short summary

Cited articles

Bian, H., Han, S. Q., Tie, X., Shun, M. L., and Liu, A. X.: Evidence of Impact of Aerosols on Surface Ozone Concentration: A Case Study in Tianjin, China, Atmos. Environ., 41, 4672–4681, 2007. 
Deng, X. J, Tie, X., Wu, D., Zhou, X. J., Tan, H. B., Li, F., and Jiang, C.: Long-term trend of visibility and its characterizations in the Pearl River Delta Region (PRD), China, Atmos. Environ., 42, 1424–1435, 2008. 
Geng, F. H., Zhao, C. S., Tang, X., Lu, G. L., and Tie, X.: Analysis of ozone and VOCs measured in Shanghai: A case study, Atmos. Environ., 41, 989–1001, 2007. 
Geng, F. H., Cai, C. G., Tie, X., Yu, Q., An, J. L., Peng, L., Zhou, G. Q., and Xu, J. M.: Analysis of VOC emissions using PCA/APCS receptor model at city of Shanghai, China, J. Atmos. Chem., 62, 229–247, https://doi.org/10.1007/s10874-010-9150-5, 2010. 
Download
Short summary
This study shows that there were often co-occurrences of high PM2.5 and O3 concentrations, which were related to high HONO, in eastern China. This result suggests that high daytime HONO can be photodissociated to OH radicals, enhancing the chemical production of O3 and suggesting that under high aerosol conditions, the chemical oxidizing process for O3 production can occur in eastern China.
Share
Altmetrics
Final-revised paper
Preprint