Articles | Volume 18, issue 11
https://doi.org/10.5194/acp-18-8183-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-18-8183-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Ozone response to emission reductions in the southeastern United States
Charles L. Blanchard
CORRESPONDING AUTHOR
Envair, Albany, CA 94706, USA
George M. Hidy
Envair/Aerochem, Placitas, NM 87043, USA
Related authors
Paul A. Solomon, Dena Vallano, Melissa Lunden, Brian LaFranchi, Charles L. Blanchard, and Stephanie L. Shaw
Atmos. Meas. Tech., 13, 3277–3301, https://doi.org/10.5194/amt-13-3277-2020, https://doi.org/10.5194/amt-13-3277-2020, 2020
Short summary
Short summary
Analyzing street-level air pollutants (2016–2017), this assessment indicates that mobile measurement is precise and accurate (5 % to 25 % bias) relative to regulatory sites, with higher spatial resolution. Collocated sensor measurements in California showed differences less than 20 %, suggesting that greater differences represent spatial variability. Mobile data confirm regulatory-site spatial representation and that pollutant levels can also be 6 to 8 times higher just blocks apart.
C. L. Blanchard, G. M. Hidy, S. Shaw, K. Baumann, and E. S. Edgerton
Atmos. Chem. Phys., 16, 215–238, https://doi.org/10.5194/acp-16-215-2016, https://doi.org/10.5194/acp-16-215-2016, 2016
Short summary
Short summary
Fifteen years of gas and particle measurements at eight monitoring sites comprising the Southeastern Aerosol Research and Characterization (SEARCH) network offer insights into the sources of organic aerosol in the southeastern United States. Between 1999 and 2013, mean organic aerosol concentrations declined due to decreasing particle emissions from motor vehicles and to less secondary organic aerosol with declining emissions of sulfur dioxide, nitrogen oxides, and volatile organic compounds.
G. M. Hidy, C. L. Blanchard, K. Baumann, E. Edgerton, S. Tanenbaum, S. Shaw, E. Knipping, I. Tombach, J. Jansen, and J. Walters
Atmos. Chem. Phys., 14, 11893–11914, https://doi.org/10.5194/acp-14-11893-2014, https://doi.org/10.5194/acp-14-11893-2014, 2014
Short summary
Short summary
This paper reviews aerometric measurements from Centreville, Alabama. The measurements show annual trends with air pollution emissions from 1999 to 2013. They provide a context for observations from 1 June to 15 July 2013 supporting the Southern Oxidant and Aerosol Study. An important goal of this experiment was to advance knowledge of aerosols produced in the atmosphere from precursors. The observations were in moist and warm conditions with the lowest gas and particle concentrations recorded.
Paul A. Solomon, Dena Vallano, Melissa Lunden, Brian LaFranchi, Charles L. Blanchard, and Stephanie L. Shaw
Atmos. Meas. Tech., 13, 3277–3301, https://doi.org/10.5194/amt-13-3277-2020, https://doi.org/10.5194/amt-13-3277-2020, 2020
Short summary
Short summary
Analyzing street-level air pollutants (2016–2017), this assessment indicates that mobile measurement is precise and accurate (5 % to 25 % bias) relative to regulatory sites, with higher spatial resolution. Collocated sensor measurements in California showed differences less than 20 %, suggesting that greater differences represent spatial variability. Mobile data confirm regulatory-site spatial representation and that pollutant levels can also be 6 to 8 times higher just blocks apart.
C. L. Blanchard, G. M. Hidy, S. Shaw, K. Baumann, and E. S. Edgerton
Atmos. Chem. Phys., 16, 215–238, https://doi.org/10.5194/acp-16-215-2016, https://doi.org/10.5194/acp-16-215-2016, 2016
Short summary
Short summary
Fifteen years of gas and particle measurements at eight monitoring sites comprising the Southeastern Aerosol Research and Characterization (SEARCH) network offer insights into the sources of organic aerosol in the southeastern United States. Between 1999 and 2013, mean organic aerosol concentrations declined due to decreasing particle emissions from motor vehicles and to less secondary organic aerosol with declining emissions of sulfur dioxide, nitrogen oxides, and volatile organic compounds.
G. M. Hidy, C. L. Blanchard, K. Baumann, E. Edgerton, S. Tanenbaum, S. Shaw, E. Knipping, I. Tombach, J. Jansen, and J. Walters
Atmos. Chem. Phys., 14, 11893–11914, https://doi.org/10.5194/acp-14-11893-2014, https://doi.org/10.5194/acp-14-11893-2014, 2014
Short summary
Short summary
This paper reviews aerometric measurements from Centreville, Alabama. The measurements show annual trends with air pollution emissions from 1999 to 2013. They provide a context for observations from 1 June to 15 July 2013 supporting the Southern Oxidant and Aerosol Study. An important goal of this experiment was to advance knowledge of aerosols produced in the atmosphere from precursors. The observations were in moist and warm conditions with the lowest gas and particle concentrations recorded.
Related subject area
Subject: Gases | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Biomass-burning sources control ambient particulate matter, but traffic and industrial sources control volatile organic compound (VOC) emissions and secondary-pollutant formation during extreme pollution events in Delhi
Multi-year observations of variable incomplete combustion in the New York megacity
Observations of the vertical distributions of summertime atmospheric pollutants in Nam Co: OH production and source analysis
Measurement report: Elevated atmospheric ammonia may promote particle pH and HONO formation – insights from the COVID-19 pandemic
Measurement report: Vertical and temporal variability in the near-surface ozone production rate and sensitivity in an urban area in the Pearl River Delta region, China
Elevated oxidized mercury in the free troposphere: analytical advances and application at a remote continental mountaintop site
Using observed urban NOx sinks to constrain VOC reactivity and the ozone and radical budget in the Seoul Metropolitan Area
Real-world emission characteristics of VOCs from typical cargo ships and their potential contributions to secondary organic aerosol and O3 under low-sulfur fuel policies
NO3 reactivity during a summer period in a temperate forest below and above the canopy
The role of oceanic ventilation and terrestrial outflow in atmospheric non-methane hydrocarbons over the Chinese marginal seas
Concentration and source changes of nitrous acid (HONO) during the COVID-19 lockdown in Beijing
Characteristics and sources of nonmethane volatile organic compounds (NMVOCs) and O3–NOx–NMVOC relationships in Zhengzhou, China
Deciphering anthropogenic and biogenic contributions to selected non-methane volatile organic compound emissions in an urban area
Emission characteristics of reactive organic gases (ROGs) from industrial volatile chemical products (VCPs) in the Pearl River Delta (PRD), China
Measurement report: Enhanced photochemical formation of formic and isocyanic acids in urban regions aloft – insights from tower-based online gradient measurements
Sources of organic gases and aerosol particles and their roles in nighttime particle growth at a rural forested site in southwest Germany
Surface snow bromide and nitrate at Eureka, Canada, in early spring and implications for polar boundary layer chemistry
Opinion: Strengthening research in the Global South – atmospheric science opportunities in South America and Africa
Measurement Report: Urban Ammonia and Amines in Houston, Texas
Consistency evaluation of tropospheric ozone from ozonesonde and IAGOS aircraft observations: vertical distribution, ozonesonde types and station-airport distance
Investigating Carbonyl Compounds above the Amazon Rainforest using PTR-ToF-MS with NO+ Chemical Ionization
Shipping and algae emissions have a major impact on ambient air mixing ratios of non-methane hydrocarbons (NMHCs) and methanethiol on Utö Island in the Baltic Sea
Contribution of cooking emissions to the urban volatile organic compounds in Las Vegas, NV
Reanalysis of NOAA H2 observations: implications for the H2 budget
A large role of missing volatile organic compound reactivity from anthropogenic emissions in ozone pollution regulation
Measurement report: Insights into the chemical composition and origin of molecular clusters and potential precursor molecules present in the free troposphere over the southern Indian Ocean: observations from the Maïdo Observatory (2150 m a.s.l., Réunion)
Ozone deposition measurements over wheat fields in the North China Plain: variability and related factors of deposition flux and velocity
Production of oxygenated volatile organic compounds from the ozonolysis of coastal seawater
Comment on “Transport of substantial stratospheric ozone to the surface by a dying typhoon and shallow convection” by Chen et al. (2022)
Observations of cyanogen bromide (BrCN) in the global troposphere and their relation to polar surface O3 destruction
CO2 and CO temporal variability over Mexico City from ground-based total column and surface measurements
Individual coal mine methane emissions constrained by eddy covariance measurements: low bias and missing sources
Measurement report: In-flight and ground-based measurements of nitrogen oxide emissions from latest generation jet engines and 100% sustainable aviation fuel
Measurement report: Observations of ground-level ozone concentration gradients perpendicular to the Lake Ontario shoreline
Measurement report: The Palau Atmospheric Observatory and its ozonesonde record – continuous monitoring of tropospheric composition and dynamics in the tropical western Pacific
Quantifying SO2 oxidation pathways to atmospheric sulfate using stable sulfur and oxygen isotopes: laboratory simulation and field observation
Influences of downward transport and photochemistry on surface ozone over East Antarctica during austral summer: in situ observations and model simulations
Iodine oxoacids and their roles in sub-3 nm particle growth in polluted urban environments
Intensive photochemical oxidation in the marine atmosphere: evidence from direct radical measurements
Diurnal variations in oxygen and nitrogen isotopes of atmospheric nitrogen dioxide and nitrate: implications for tracing NOx oxidation pathways and emission sources
Measurement report: Method for evaluating CO2 emissions from a cement plant using atmospheric δ(O2 ∕ N2) and CO2 measurements and its implication for future detection of CO2 capture signals
Aircraft-based mass balance estimate of methane emissions from offshore gas facilities in the southern North Sea
Measurement report: Sources, sinks and lifetime of NOX in a sub-urban temperate forest at night
Parameterizations of US wildfire and prescribed fire emission ratios and emission factors based on FIREX-AQ aircraft measurements
Measurement report: Atmospheric nitrate radical chemistry in the South China Sea influenced by the urban outflow of the Pearl River Delta
The interhemispheric gradient of SF6 in the upper troposphere
Weather regimes and the related atmospheric composition at a Pyrenean observatory characterized by hierarchical clustering of a 5-year data set
Tropospheric bromine monoxide vertical profiles retrieved across the Alaskan Arctic in springtime
Source apportionment of methane emissions from the Upper Silesian Coal Basin using isotopic signatures
Measurement report: Exchange fluxes of HONO over agricultural fields in the North China Plain
Arpit Awasthi, Baerbel Sinha, Haseeb Hakkim, Sachin Mishra, Varkrishna Mummidivarapu, Gurmanjot Singh, Sachin D. Ghude, Vijay Kumar Soni, Narendra Nigam, Vinayak Sinha, and Madhavan N. Rajeevan
Atmos. Chem. Phys., 24, 10279–10304, https://doi.org/10.5194/acp-24-10279-2024, https://doi.org/10.5194/acp-24-10279-2024, 2024
Short summary
Short summary
We use 111 volatile organic compounds (VOCs), PM10, and PM2.5 in a positive matrix factorization (PMF) model to resolve 11 pollution sources validated with chemical fingerprints. Crop residue burning and heating account for ~ 50 % of the PM, while traffic and industrial emissions dominate the gas-phase VOC burden and formation potential of secondary organic aerosols (> 60 %). Non-tailpipe emissions from compressed-natural-gas-fuelled commercial vehicles dominate the transport sector's PM burden.
Luke D. Schiferl, Cong Cao, Bronte Dalton, Andrew Hallward-Driemeier, Ricardo Toledo-Crow, and Róisín Commane
Atmos. Chem. Phys., 24, 10129–10142, https://doi.org/10.5194/acp-24-10129-2024, https://doi.org/10.5194/acp-24-10129-2024, 2024
Short summary
Short summary
Carbon monoxide (CO) is an air pollutant and an important indicator of the incomplete combustion of fossil fuels in cities. Using 4 years of winter and spring observations in New York City, we found that both the magnitude and variability of CO from the metropolitan area are greater than expected. Transportation emissions cannot explain the missing and variable CO, which points to energy from buildings as a likely underappreciated source of urban air pollution and greenhouse gas emissions.
Chengzhi Xing, Cheng Liu, Chunxiang Ye, Jingkai Xue, Hongyu Wu, Xiangguang Ji, Jinping Ou, and Qihou Hu
Atmos. Chem. Phys., 24, 10093–10112, https://doi.org/10.5194/acp-24-10093-2024, https://doi.org/10.5194/acp-24-10093-2024, 2024
Short summary
Short summary
We identified the contributions of ozone (O3) and nitrous acid (HONO) to the production rates of hydroxide (OH) in vertical space on the Tibetan Plateau (TP). A new insight was offered: the contributions of HONO and O3 to the production rates of OH on the TP are even greater than in lower-altitudes areas. This study enriches the understanding of vertical distribution of atmospheric components and explains the strong atmospheric oxidation capacity (AOC) on the TP.
Xinyuan Zhang, Lingling Wang, Nan Wang, Shuangliang Ma, Shenbo Wang, Ruiqin Zhang, Dong Zhang, Mingkai Wang, and Hongyu Zhang
Atmos. Chem. Phys., 24, 9885–9898, https://doi.org/10.5194/acp-24-9885-2024, https://doi.org/10.5194/acp-24-9885-2024, 2024
Short summary
Short summary
This study highlights the importance of the redox reaction of NO2 with SO2 based on actual atmospheric observations. The particle pH in future China is expected to rise steadily. Consequently, this reaction could become a significant source of HONO in China. Therefore, it is crucial to coordinate the control of SO2, NOx, and NH3 emissions to avoid a rapid increase in the particle pH.
Jun Zhou, Chunsheng Zhang, Aiming Liu, Bin Yuan, Yan Wang, Wenjie Wang, Jie-Ping Zhou, Yixin Hao, Xiao-Bing Li, Xianjun He, Xin Song, Yubin Chen, Suxia Yang, Shuchun Yang, Yanfeng Wu, Bin Jiang, Shan Huang, Junwen Liu, Yuwen Peng, Jipeng Qi, Minhui Deng, Bowen Zhong, Yibo Huangfu, and Min Shao
Atmos. Chem. Phys., 24, 9805–9826, https://doi.org/10.5194/acp-24-9805-2024, https://doi.org/10.5194/acp-24-9805-2024, 2024
Short summary
Short summary
In-depth understanding of the near-ground vertical variability in photochemical ozone (O3) formation is crucial for mitigating O3 pollution. Utilizing a self-built vertical observation system, a direct net photochemical O3 production rate detection system, and an observation-based model, we diagnosed the vertical distributions and formation mechanism of net photochemical O3 production rates and sensitivity in the Pearl River Delta region, one of the most O3-polluted areas in China.
Eleanor J. Derry, Tyler R. Elgiar, Taylor Y. Wilmot, Nicholas W. Hoch, Noah S. Hirshorn, Peter Weiss-Penzias, Christopher F. Lee, John C. Lin, A. Gannet Hallar, Rainer Volkamer, Seth N. Lyman, and Lynne E. Gratz
Atmos. Chem. Phys., 24, 9615–9643, https://doi.org/10.5194/acp-24-9615-2024, https://doi.org/10.5194/acp-24-9615-2024, 2024
Short summary
Short summary
Mercury (Hg) is a globally distributed neurotoxic pollutant. Atmospheric deposition is the main source of Hg in ecosystems. However, measurement biases hinder understanding of the origins and abundance of the more bioavailable oxidized form. We used an improved, calibrated measurement system to study air mass composition and transport of atmospheric Hg at a remote mountaintop site in the central US. Oxidized Hg originated upwind in the low to middle free troposphere under clean, dry conditions.
Benjamin A. Nault, Katherine R. Travis, James H. Crawford, Donald R. Blake, Pedro Campuzano-Jost, Ronald C. Cohen, Joshua P. DiGangi, Glenn S. Diskin, Samuel R. Hall, L. Gregory Huey, Jose L. Jimenez, Kyung-Eun Min, Young Ro Lee, Isobel J. Simpson, Kirk Ullmann, and Armin Wisthaler
Atmos. Chem. Phys., 24, 9573–9595, https://doi.org/10.5194/acp-24-9573-2024, https://doi.org/10.5194/acp-24-9573-2024, 2024
Short summary
Short summary
Ozone (O3) is a pollutant formed from the reactions of gases emitted from various sources. In urban areas, the density of human activities can increase the O3 formation rate (P(O3)), thus impacting air quality and health. Observations collected over Seoul, South Korea, are used to constrain P(O3). A high local P(O3) was found; however, local P(O3) was partly reduced due to compounds typically ignored. These observations also provide constraints for unmeasured compounds that will impact P(O3).
Fan Zhang, Binyu Xiao, Zeyu Liu, Yan Zhang, Chongguo Tian, Rui Li, Can Wu, Yali Lei, Si Zhang, Xinyi Wan, Yubao Chen, Yong Han, Min Cui, Cheng Huang, Hongli Wang, Yingjun Chen, and Gehui Wang
Atmos. Chem. Phys., 24, 8999–9017, https://doi.org/10.5194/acp-24-8999-2024, https://doi.org/10.5194/acp-24-8999-2024, 2024
Short summary
Short summary
Mandatory use of low-sulfur fuel due to global sulfur limit regulations means large uncertainties in volatile organic compound (VOC) emissions. On-board tests of VOCs from nine cargo ships in China were carried out. Results showed that switching from heavy-fuel oil to diesel increased emission factor VOCs by 48 % on average, enhancing O3 and the secondary organic aerosol formation potential. Thus, implementing a global ultra-low-sulfur oil policy needs to be optimized in the near future.
Patrick Dewald, Tobias Seubert, Simone T. Andersen, Gunther N. T. E. Türk, Jan Schuladen, Max R. McGillen, Cyrielle Denjean, Jean-Claude Etienne, Olivier Garrouste, Marina Jamar, Sergio Harb, Manuela Cirtog, Vincent Michoud, Mathieu Cazaunau, Antonin Bergé, Christopher Cantrell, Sebastien Dusanter, Bénédicte Picquet-Varrault, Alexandre Kukui, Chaoyang Xue, Abdelwahid Mellouki, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 24, 8983–8997, https://doi.org/10.5194/acp-24-8983-2024, https://doi.org/10.5194/acp-24-8983-2024, 2024
Short summary
Short summary
In the scope of a field campaign in a suburban forest near Paris in the summer of 2022, we measured the reactivity of the nitrate radical NO3 towards biogenic volatile organic compounds (BVOCs; e.g. monoterpenes) mainly below but also above the canopy. NO3 reactivity was the highest during nights with strong temperature inversions and decreased strongly with height. Reactions with BVOCs were the main removal process of NO3 throughout the diel cycle below the canopy.
Jian Wang, Lei Xue, Qianyao Ma, Feng Xu, Gaobin Xu, Shibo Yan, Jiawei Zhang, Jianlong Li, Honghai Zhang, Guiling Zhang, and Zhaohui Chen
Atmos. Chem. Phys., 24, 8721–8736, https://doi.org/10.5194/acp-24-8721-2024, https://doi.org/10.5194/acp-24-8721-2024, 2024
Short summary
Short summary
This study investigated the distribution and sources of non-methane hydrocarbons (NMHCs) in the lower atmosphere over the marginal seas of China. NMHCs, a subset of volatile organic compounds (VOCs), play a crucial role in atmospheric chemistry. Derived from systematic atmospheric sampling in coastal cities and marginal sea regions, this study offers valuable insights into the interaction between land and sea in shaping offshore atmospheric NMHCs.
Yusheng Zhang, Feixue Zheng, Zemin Feng, Chaofan Lian, Weigang Wang, Xiaolong Fan, Wei Ma, Zhuohui Lin, Chang Li, Gen Zhang, Chao Yan, Ying Zhang, Veli-Matti Kerminen, Federico Bianch, Tuukka Petäjä, Juha Kangasluoma, Markku Kulmala, and Yongchun Liu
Atmos. Chem. Phys., 24, 8569–8587, https://doi.org/10.5194/acp-24-8569-2024, https://doi.org/10.5194/acp-24-8569-2024, 2024
Short summary
Short summary
The nitrous acid (HONO) budget was validated during a COVID-19 lockdown event. The main conclusions are (1) HONO concentrations showed a significant decrease from 0.97 to 0.53 ppb during lockdown; (2) vehicle emissions accounted for 53 % of nighttime sources, with the heterogeneous conversion of NO2 on ground surfaces more important than aerosol; and (3) the dominant daytime source shifted from the homogenous reaction between NO and OH (51 %) to nitrate photolysis (53 %) during lockdown.
Dong Zhang, Xiao Li, Minghao Yuan, Yifei Xu, Qixiang Xu, Fangcheng Su, Shenbo Wang, and Ruiqin Zhang
Atmos. Chem. Phys., 24, 8549–8567, https://doi.org/10.5194/acp-24-8549-2024, https://doi.org/10.5194/acp-24-8549-2024, 2024
Short summary
Short summary
The increasing concentration of O3 precursors and unfavorable meteorological conditions are key factors in the formation of O3 pollution in Zhengzhou. Vehicular exhausts (28 %), solvent usage (27 %), and industrial production (22 %) are identified as the main sources of NMVOCs. Moreover, O3 formation in Zhengzhou is found to be in an anthropogenic volatile organic compound (AVOC)-limited regime. Thus, to reduce O3 formation, a minimum AVOCs / NOx reduction ratio ≥ 3 : 1 is recommended.
Arianna Peron, Martin Graus, Marcus Striednig, Christian Lamprecht, Georg Wohlfahrt, and Thomas Karl
Atmos. Chem. Phys., 24, 7063–7083, https://doi.org/10.5194/acp-24-7063-2024, https://doi.org/10.5194/acp-24-7063-2024, 2024
Short summary
Short summary
The anthropogenic fraction of non-methane volatile organic compound (NMVOC) emissions associated with biogenic sources (e.g., terpenes) is investigated based on eddy covariance observations. The anthropogenic fraction of terpene emissions is strongly dependent on season. When analyzing volatile chemical product (VCP) emissions in urban environments, we caution that observations from short-term campaigns might over-/underestimate their significance depending on local and seasonal circumstances.
Sihang Wang, Bin Yuan, Xianjun He, Ru Cui, Xin Song, Yubin Chen, Caihong Wu, Chaomin Wang, Yibo Huangfu, Xiao-Bing Li, Boguang Wang, and Min Shao
Atmos. Chem. Phys., 24, 7101–7121, https://doi.org/10.5194/acp-24-7101-2024, https://doi.org/10.5194/acp-24-7101-2024, 2024
Short summary
Short summary
Emissions of reactive organic gases from industrial volatile chemical product sources are measured. There are large differences among these industrial sources. We show that oxygenated species account for significant contributions to reactive organic gas emissions, especially for industrial sources utilizing water-borne chemicals.
Qing Yang, Xiao-Bing Li, Bin Yuan, Xiaoxiao Zhang, Yibo Huangfu, Lei Yang, Xianjun He, Jipeng Qi, and Min Shao
Atmos. Chem. Phys., 24, 6865–6882, https://doi.org/10.5194/acp-24-6865-2024, https://doi.org/10.5194/acp-24-6865-2024, 2024
Short summary
Short summary
Online vertical gradient measurements of formic and isocyanic acids were made based on a 320 m tower in a megacity. Vertical variations and sources of the two acids were analyzed in this study. We find that formic and isocyanic acids exhibited positive vertical gradients and were mainly contributed by photochemical formations. The formation of formic and isocyanic acids was also significantly enhanced in urban regions aloft.
Junwei Song, Harald Saathoff, Feng Jiang, Linyu Gao, Hengheng Zhang, and Thomas Leisner
Atmos. Chem. Phys., 24, 6699–6717, https://doi.org/10.5194/acp-24-6699-2024, https://doi.org/10.5194/acp-24-6699-2024, 2024
Short summary
Short summary
This study presents concurrent online measurements of organic gas and particles (VOCs and OA) at a forested site in summer. Both VOCs and OA were largely contributed by oxygenated organic compounds. Semi-volatile oxygenated OA and organic nitrate formed from monoterpenes and sesquiterpenes contributed significantly to nighttime particle growth. The results help us to understand the causes of nighttime particle growth regularly observed in summer in central European rural forested environments.
Xin Yang, Kimberly Strong, Alison S. Criscitiello, Marta Santos-Garcia, Kristof Bognar, Xiaoyi Zhao, Pierre Fogal, Kaley A. Walker, Sara M. Morris, and Peter Effertz
Atmos. Chem. Phys., 24, 5863–5886, https://doi.org/10.5194/acp-24-5863-2024, https://doi.org/10.5194/acp-24-5863-2024, 2024
Short summary
Short summary
This study uses snow samples collected from a Canadian high Arctic site, Eureka, to demonstrate that surface snow in early spring is a net sink of atmospheric bromine and nitrogen. Surface snow bromide and nitrate are significantly correlated, indicating the oxidation of reactive nitrogen is accelerated by reactive bromine. In addition, we show evidence that snow photochemical release of reactive bromine is very weak, and its emission flux is much smaller than the deposition flux of bromide.
Rebecca M. Garland, Katye E. Altieri, Laura Dawidowski, Laura Gallardo, Aderiana Mbandi, Nestor Y. Rojas, and N'datchoh E. Touré
Atmos. Chem. Phys., 24, 5757–5764, https://doi.org/10.5194/acp-24-5757-2024, https://doi.org/10.5194/acp-24-5757-2024, 2024
Short summary
Short summary
This opinion piece focuses on two geographical areas in the Global South where the authors are based that are underrepresented in atmospheric science. This opinion provides context on common challenges and constraints, with suggestions on how the community can address these. The focus is on the strengths of atmospheric science research in these regions. It is these strengths, we believe, that highlight the critical role of Global South researchers in the future of atmospheric science research.
Lee Tiszenkel, James Flynn, and Shan-Hu Lee
EGUsphere, https://doi.org/10.5194/egusphere-2024-1230, https://doi.org/10.5194/egusphere-2024-1230, 2024
Short summary
Short summary
Ammonia and amines are important ingredients for aerosol formation in urban environments, but the measurements of these compounds are extremely challenging. Our observations show that urban ammonia and amines in Houston are emitted from urban sources and diurnal variations of their concentrations are governed by gas-to-particle conversion processes.
Honglei Wang, David W. Tarasick, Jane Liu, Herman G. J. Smit, Roeland Van Malderen, Lijuan Shen, and Tianliang Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2024-1015, https://doi.org/10.5194/egusphere-2024-1015, 2024
Short summary
Short summary
In this study, we identify 23 suitable pairs of sites in the WOUDC and IAGOS datasets from 1995 to 2021, compare the average vertical distribution of tropospheric O3 shown by ozonesonde and aircraft measurements, and analyze their differences by ozonesonde type and by station-airport distance.
Akima Ringsdorf, Achim Edtbauer, Bruna Holanda, Christopher Poehlker, Marta O. Sá, Alessandro Araújo, Jürgen Kesselmeier, Jos Lelieveld, and Jonathan Williams
EGUsphere, https://doi.org/10.5194/egusphere-2024-1210, https://doi.org/10.5194/egusphere-2024-1210, 2024
Short summary
Short summary
We show the average height distribution of separately observed aldehydes and ketones over a day and discuss their rainforest-specific sources and sinks and their seasonal changes above the Amazon rainforest. Ketones have much longer atmospheric lifetimes than aldehydes, and thus different implications for atmospheric chemistry. However, they are commonly observed together, which we overcome by measuring with a NO+ chemical ionization mass spectrometer for the first time in the Amazon rainforest.
Heidi Hellén, Rostislav Kouznetsov, Kaisa Kraft, Jukka Seppälä, Mika Vestenius, Jukka-Pekka Jalkanen, Lauri Laakso, and Hannele Hakola
Atmos. Chem. Phys., 24, 4717–4731, https://doi.org/10.5194/acp-24-4717-2024, https://doi.org/10.5194/acp-24-4717-2024, 2024
Short summary
Short summary
Mixing ratios of C2-C5 NMHCs and methanethiol were measured on an island in the Baltic Sea using an in situ gas chromatograph. Shipping emissions were found to be an important source of ethene, ethyne, propene, and benzene. High summertime mixing ratios of methanethiol and dependence of mixing ratios on seawater temperature and height indicated the biogenic origin to possibly be phytoplankton or macroalgae. These emissions may have a strong impact on SO2 production and new particle formation.
Matthew M. Coggon, Chelsea E. Stockwell, Lu Xu, Jeff Peischl, Jessica B. Gilman, Aaron Lamplugh, Henry J. Bowman, Kenneth Aikin, Colin Harkins, Qindan Zhu, Rebecca H. Schwantes, Jian He, Meng Li, Karl Seltzer, Brian McDonald, and Carsten Warneke
Atmos. Chem. Phys., 24, 4289–4304, https://doi.org/10.5194/acp-24-4289-2024, https://doi.org/10.5194/acp-24-4289-2024, 2024
Short summary
Short summary
Residential and commercial cooking emits pollutants that degrade air quality. Here, ambient observations show that cooking is an important contributor to anthropogenic volatile organic compounds (VOCs) emitted in Las Vegas, NV. These emissions are not fully presented in air quality models, and more work may be needed to quantify emissions from important sources, such as commercial restaurants.
Fabien Paulot, Gabrielle Pétron, Andrew M. Crotwell, and Matteo B. Bertagni
Atmos. Chem. Phys., 24, 4217–4229, https://doi.org/10.5194/acp-24-4217-2024, https://doi.org/10.5194/acp-24-4217-2024, 2024
Short summary
Short summary
New data from the National Oceanic and Atmospheric Administration show that hydrogen (H2) concentrations increased from 2010 to 2019, which is consistent with the simulated increase in H2 photochemical production (mainly from methane). But this cannot be reconciled with the expected decrease (increase) in H2 anthropogenic emissions (soil deposition) in the same period. This shows gaps in our knowledge of the H2 biogeochemical cycle that must be resolved to quantify the impact of higher H2 usage.
Wenjie Wang, Bin Yuan, Hang Su, Yafang Cheng, Jipeng Qi, Sihang Wang, Wei Song, Xinming Wang, Chaoyang Xue, Chaoqun Ma, Fengxia Bao, Hongli Wang, Shengrong Lou, and Min Shao
Atmos. Chem. Phys., 24, 4017–4027, https://doi.org/10.5194/acp-24-4017-2024, https://doi.org/10.5194/acp-24-4017-2024, 2024
Short summary
Short summary
This study investigates the important role of unmeasured volatile organic compounds (VOCs) in ozone formation. Based on results in a megacity of China, we show that unmeasured VOCs can contribute significantly to ozone fomation and also influence the determination of ozone control strategy. Our results show that these unmeasured VOCs are mainly from human sources.
Romain Salignat, Matti Rissanen, Siddharth Iyer, Jean-Luc Baray, Pierre Tulet, Jean-Marc Metzger, Jérôme Brioude, Karine Sellegri, and Clémence Rose
Atmos. Chem. Phys., 24, 3785–3812, https://doi.org/10.5194/acp-24-3785-2024, https://doi.org/10.5194/acp-24-3785-2024, 2024
Short summary
Short summary
Using mass spectrometry data collected at the Maïdo Observatory (2160 m a.s.l., Réunion), we provide the first detailed analysis of molecular cluster chemical composition specifically in the marine free troposphere. The abundance of the identified species is related both to in situ meteorological parameters and air mass history, which also provide insight into their origin. Our work makes an important contribution to documenting the chemistry and physics of the marine free troposphere.
Xiaoyi Zhang, Wanyun Xu, Weili Lin, Gen Zhang, Jinjian Geng, Li Zhou, Huarong Zhao, Sanxue Ren, Guangsheng Zhou, Jianmin Chen, and Xiaobin Xu
EGUsphere, https://doi.org/10.5194/egusphere-2024-643, https://doi.org/10.5194/egusphere-2024-643, 2024
Short summary
Short summary
Ozone (O3) deposition is a key process removing surface O3, affecting air quality, ecosystem and climate change. This study conducted an O3 deposition measurement over wheat canopy using a newly relaxed eddy accumulation flux system. Large variabilities of O3 deposition were detected mainly determined by crop growth and modulated by various environmental factors. More O3 deposition observations over different surfaces are needed for exploring deposition mechanism, model optimization.
Delaney B. Kilgour, Gordon A. Novak, Megan S. Claflin, Brian M. Lerner, and Timothy H. Bertram
Atmos. Chem. Phys., 24, 3729–3742, https://doi.org/10.5194/acp-24-3729-2024, https://doi.org/10.5194/acp-24-3729-2024, 2024
Short summary
Short summary
Laboratory experiments with seawater mimics suggest ozone deposition to the surface ocean can be a source of reactive carbon to the marine atmosphere. We conduct both field and laboratory measurements to assess abiotic VOC composition and yields from ozonolysis of real surface seawater. We show that C5–C11 aldehydes contribute to the observed VOC emission flux. We estimate that VOCs generated by the ozonolysis of surface seawater are competitive with biological VOC production and emission.
Xiangdong Zheng, Wen Yang, Yuting Sun, Chunmei Geng, Yingying Liu, and Xiaobin Xu
Atmos. Chem. Phys., 24, 3759–3768, https://doi.org/10.5194/acp-24-3759-2024, https://doi.org/10.5194/acp-24-3759-2024, 2024
Short summary
Short summary
Chen et al. (2022) attributed the nocturnal ozone enhancement (NOE) during the night of 31 July 2021 in the North China Plain (NCP) to "the direct stratospheric intrusion to reach the surface". We analyzed in situ data from the NCP. Our results do not suggest that there was a significant impact from the stratosphere on surface ozone during the NOE. We argue that the NOE was not caused by stratospheric intrusion but originated from fresh photochemical production in the lower troposphere.
James M. Roberts, Siyuan Wang, Patrick R. Veres, J. Andrew Neuman, Michael A. Robinson, Ilann Bourgeois, Jeff Peischl, Thomas B. Ryerson, Chelsea R. Thompson, Hannah M. Allen, John D. Crounse, Paul O. Wennberg, Samuel R. Hall, Kirk Ullmann, Simone Meinardi, Isobel J. Simpson, and Donald Blake
Atmos. Chem. Phys., 24, 3421–3443, https://doi.org/10.5194/acp-24-3421-2024, https://doi.org/10.5194/acp-24-3421-2024, 2024
Short summary
Short summary
We measured cyanogen bromide (BrCN) in the troposphere for the first time. BrCN is a product of the same active bromine chemistry that destroys ozone and removes mercury in polar surface environments and is a previously unrecognized sink for active Br compounds. BrCN has an apparent lifetime against heterogeneous loss in the range 1–10 d, so it serves as a cumulative marker of Br-radical chemistry. Accounting for BrCN chemistry is an important part of understanding polar Br cycling.
Noémie Taquet, Wolfgang Stremme, María Eugenia Gonzalez del Castillo, Victor Almanza, Alejandro Bezanilla, Olivier Laurent, Carlos Alberti, Frank Hase, Michel Ramonet, Thomas Lauvaux, Ke Che, and Michel Grutter
EGUsphere, https://doi.org/10.5194/egusphere-2024-512, https://doi.org/10.5194/egusphere-2024-512, 2024
Short summary
Short summary
We studied the variability of CO and CO2 and their ratio over Mexico City from long-term time-resolved FTIR solar absorption and surface measurements. Using the average intraday CO growth rate from total columns and TROPOMI measurements, we additionally estimate the interannual variability of CO and CO2 anthropogenic emissions of the City and relate it to the main influencing events of the last decade, such as the COVID-19 lock-down.
Kai Qin, Wei Hu, Qin He, Fan Lu, and Jason Blake Cohen
Atmos. Chem. Phys., 24, 3009–3028, https://doi.org/10.5194/acp-24-3009-2024, https://doi.org/10.5194/acp-24-3009-2024, 2024
Short summary
Short summary
We compute CH4 emissions and uncertainty on a mine-by-mine basis, including underground, overground, and abandoned mines. Mine-by-mine gas and flux data and 30 min observations from a flux tower located next to a mine shaft are integrated. The observed variability and bias correction are propagated over the emissions dataset, demonstrating that daily observations may not cover the range of variability. Comparisons show both an emissions magnitude and spatial mismatch with current inventories.
Theresa Harlass, Rebecca Dischl, Stefan Kaufmann, Raphael Märkl, Daniel Sauer, Monika Scheibe, Paul Stock, Tiziana Bräuer, Andreas Dörnbrack, Anke Roiger, Hans Schlager, Ulrich Schumann, Tobias Schripp, Tobias Grein, Linda Bondorf, Charles Renard, Maxime Gauthier, Mark Johnson, Darren Luff, Paul Madden, Peter Swann, Denise Ahrens, Reetu Sallinen, and Christiane Voigt
EGUsphere, https://doi.org/10.5194/egusphere-2024-454, https://doi.org/10.5194/egusphere-2024-454, 2024
Short summary
Short summary
Emissions from aircraft have a direct impact on our climate. Here, we present airborne and ground based measurement data of nitrogen oxides which were collected in the exhaust of an Airbus aircraft. We study the impact of burning fossil and sustainable aviation fuel on nitrogen oxide emissions at different engine settings related to combustor temperature, pressure and fuel flow. Further, we compare observations with engine emission models.
Yao Yan Huang and D. James Donaldson
Atmos. Chem. Phys., 24, 2387–2398, https://doi.org/10.5194/acp-24-2387-2024, https://doi.org/10.5194/acp-24-2387-2024, 2024
Short summary
Short summary
Ground-level ozone interacts at the lake–land boundary; this is important to our understanding and modelling of atmospheric chemistry and air pollution in the lower atmosphere. We show that a steep ozone gradient occurs year-round moving inland up to 1 km from the lake and that this gradient is influenced by seasonal factors on the local land environment, where more rural areas are more greatly affected seasonally.
Katrin Müller, Jordis S. Tradowsky, Peter von der Gathen, Christoph Ritter, Sharon Patris, Justus Notholt, and Markus Rex
Atmos. Chem. Phys., 24, 2169–2193, https://doi.org/10.5194/acp-24-2169-2024, https://doi.org/10.5194/acp-24-2169-2024, 2024
Short summary
Short summary
The Palau Atmospheric Observatory is introduced as an ideal site to detect changes in atmospheric composition and dynamics above the remote tropical western Pacific. We focus on the ozone sounding program from 2016–2021, including El Niño 2016. The year-round high convective activity is reflected in dominant low tropospheric ozone and high relative humidity. Their seasonal distributions are unique compared to other tropical sites and are modulated by the Intertropical Convergence Zone.
Ziyan Guo, Keding Lu, Pengxiang Qiu, Mingyi Xu, and Zhaobing Guo
Atmos. Chem. Phys., 24, 2195–2205, https://doi.org/10.5194/acp-24-2195-2024, https://doi.org/10.5194/acp-24-2195-2024, 2024
Short summary
Short summary
The formation of secondary sulfate needs to be further explored. In this work, we simultaneously measured sulfur and oxygen isotopic compositions to gain an increased understanding of specific sulfate formation processes. The results indicated that secondary sulfate was mainly ascribed to SO2 homogeneous oxidation by OH radicals and heterogeneous oxidation by H2O2 and Fe3+ / O2. This study is favourable for deeply investigating the sulfur cycle in the atmosphere.
Imran A. Girach, Narendra Ojha, Prabha R. Nair, Kandula V. Subrahmanyam, Neelakantan Koushik, Mohammed M. Nazeer, Nadimpally Kiran Kumar, Surendran Nair Suresh Babu, Jos Lelieveld, and Andrea Pozzer
Atmos. Chem. Phys., 24, 1979–1995, https://doi.org/10.5194/acp-24-1979-2024, https://doi.org/10.5194/acp-24-1979-2024, 2024
Short summary
Short summary
We investigate surface ozone variability in East Antarctica based on measurements and EMAC global model simulations during austral summer. Nearly half of the surface ozone is found to be of stratospheric origin. The east coast of Antarctica acts as a stronger sink of ozone than surrounding regions. Photochemical loss of ozone is counterbalanced by downward transport of ozone. The study highlights the intertwined role of chemistry and dynamics in governing ozone variations over East Antarctica.
Ying Zhang, Duzitian Li, Xu-Cheng He, Wei Nie, Chenjuan Deng, Runlong Cai, Yuliang Liu, Yishuo Guo, Chong Liu, Yiran Li, Liangduo Chen, Yuanyuan Li, Chenjie Hua, Tingyu Liu, Zongcheng Wang, Jiali Xie, Lei Wang, Tuukka Petäjä, Federico Bianchi, Ximeng Qi, Xuguang Chi, Pauli Paasonen, Yongchun Liu, Chao Yan, Jingkun Jiang, Aijun Ding, and Markku Kulmala
Atmos. Chem. Phys., 24, 1873–1893, https://doi.org/10.5194/acp-24-1873-2024, https://doi.org/10.5194/acp-24-1873-2024, 2024
Short summary
Short summary
This study conducts a long-term observation of gaseous iodine oxoacids in two Chinese megacities, revealing their ubiquitous presence with peak concentrations (up to 0.1 pptv) in summer. Our analysis suggests a mix of terrestrial and marine sources for iodine. Additionally, iodic acid is identified as a notable contributor to sub-3 nm particle growth and particle survival probability.
Guoxian Zhang, Renzhi Hu, Pinhua Xie, Changjin Hu, Xiaoyan Liu, Liujun Zhong, Haotian Cai, Bo Zhu, Shiyong Xia, Xiaofeng Huang, Xin Li, and Wenqing Liu
Atmos. Chem. Phys., 24, 1825–1839, https://doi.org/10.5194/acp-24-1825-2024, https://doi.org/10.5194/acp-24-1825-2024, 2024
Short summary
Short summary
Comprehensive observation of HOx radicals was conducted at a coastal site in the Pearl River Delta. Radical chemistry was influenced by different air masses in a time-dependent way. Land mass promotes a more active photochemical process, with daily averages of 7.1 × 106 and 5.2 × 108 cm−3 for OH and HO2 respectively. The rapid oxidation process was accompanied by a higher diurnal HONO concentration, which influences the ozone-sensitive system and eventually magnifies the background ozone.
Sarah Albertin, Joël Savarino, Slimane Bekki, Albane Barbero, Roberto Grilli, Quentin Fournier, Irène Ventrillard, Nicolas Caillon, and Kathy Law
Atmos. Chem. Phys., 24, 1361–1388, https://doi.org/10.5194/acp-24-1361-2024, https://doi.org/10.5194/acp-24-1361-2024, 2024
Short summary
Short summary
This study reports the first simultaneous records of oxygen (Δ17O) and nitrogen (δ15N) isotopes in nitrogen dioxide (NO2) and nitrate (NO3−). These data are combined with atmospheric observations to explore sub-daily N reactive chemistry and quantify N fractionation effects in an Alpine winter city. The results highlight the necessity of using Δ17O and δ15N in both NO2 and NO3− to avoid biased estimations of NOx sources and fates from NO3− isotopic records in urban winter environments.
Shigeyuki Ishidoya, Kazuhiro Tsuboi, Hiroaki Kondo, Kentaro Ishijima, Nobuyuki Aoki, Hidekazu Matsueda, and Kazuyuki Saito
Atmos. Chem. Phys., 24, 1059–1077, https://doi.org/10.5194/acp-24-1059-2024, https://doi.org/10.5194/acp-24-1059-2024, 2024
Short summary
Short summary
A method evaluating techniques for carbon neutrality, such as carbon capture and storage (CCS), is important. This study presents a method to evaluate CO2 emissions from a cement plant based on atmospheric O2 and CO2 measurements. The method will also be useful for evaluating CO2 capture from flue gas at CCS plants, since the plants remove CO2 from the atmosphere without causing any O2 changes, just as cement plants do, differing only in the direction of CO2 exchange with the atmosphere.
Magdalena Pühl, Anke Roiger, Alina Fiehn, Alan M. Gorchov Negron, Eric A. Kort, Stefan Schwietzke, Ignacio Pisso, Amy Foulds, James Lee, James L. France, Anna E. Jones, Dave Lowry, Rebecca E. Fisher, Langwen Huang, Jacob Shaw, Prudence Bateson, Stephen Andrews, Stuart Young, Pamela Dominutti, Tom Lachlan-Cope, Alexandra Weiss, and Grant Allen
Atmos. Chem. Phys., 24, 1005–1024, https://doi.org/10.5194/acp-24-1005-2024, https://doi.org/10.5194/acp-24-1005-2024, 2024
Short summary
Short summary
In April–May 2019 we carried out an airborne field campaign in the southern North Sea with the aim of studying methane emissions of offshore gas installations. We determined methane emissions from elevated methane measured downstream of the sampled installations. We compare our measured methane emissions with estimated methane emissions from national and global annual inventories. As a result, we find inconsistencies of inventories and large discrepancies between measurements and inventories.
Simone T. Andersen, Max R. McGillen, Chaoyang Xue, Tobias Seubert, Patrick Dewald, Gunther N. T. E. Türk, Jan Schuladen, Cyrielle Denjean, Jean-Claude Etienne, Olivier Garrouste, Marina Jamar, Sergio Harb, Manuela Cirtog, Vincent Michoud, Mathieu Cazaunau, Antonin Bergé, Christopher Cantrell, Sebastien Dusanter, Bénédicte Picquet-Varrault, Alexandre Kukui, Abdelwahid Mellouki, Lucy J. Carpenter, Jos Lelieveld, and John N. Crowley
EGUsphere, https://doi.org/10.5194/egusphere-2023-2848, https://doi.org/10.5194/egusphere-2023-2848, 2024
Short summary
Short summary
Through measurements of various trace gases in a sub-urban forest near Paris in the summer of 2022 we were able to gain insight into the sources and sinks of NOx (NO+NO2) with a special focus on their nighttime chemical/physical loss processes. NO was observed as a result of nighttime soil emissions when ozone levels were strongly depleted by deposition. NO oxidation products were not observed at night indicating that soil and/or foliar surfaces are an efficient sink of reactive nitrogen.
Georgios I. Gkatzelis, Matthew M. Coggon, Chelsea E. Stockwell, Rebecca S. Hornbrook, Hannah Allen, Eric C. Apel, Megan M. Bela, Donald R. Blake, Ilann Bourgeois, Steven S. Brown, Pedro Campuzano-Jost, Jason M. St. Clair, James H. Crawford, John D. Crounse, Douglas A. Day, Joshua P. DiGangi, Glenn S. Diskin, Alan Fried, Jessica B. Gilman, Hongyu Guo, Johnathan W. Hair, Hannah S. Halliday, Thomas F. Hanisco, Reem Hannun, Alan Hills, L. Gregory Huey, Jose L. Jimenez, Joseph M. Katich, Aaron Lamplugh, Young Ro Lee, Jin Liao, Jakob Lindaas, Stuart A. McKeen, Tomas Mikoviny, Benjamin A. Nault, J. Andrew Neuman, John B. Nowak, Demetrios Pagonis, Jeff Peischl, Anne E. Perring, Felix Piel, Pamela S. Rickly, Michael A. Robinson, Andrew W. Rollins, Thomas B. Ryerson, Melinda K. Schueneman, Rebecca H. Schwantes, Joshua P. Schwarz, Kanako Sekimoto, Vanessa Selimovic, Taylor Shingler, David J. Tanner, Laura Tomsche, Krystal T. Vasquez, Patrick R. Veres, Rebecca Washenfelder, Petter Weibring, Paul O. Wennberg, Armin Wisthaler, Glenn M. Wolfe, Caroline C. Womack, Lu Xu, Katherine Ball, Robert J. Yokelson, and Carsten Warneke
Atmos. Chem. Phys., 24, 929–956, https://doi.org/10.5194/acp-24-929-2024, https://doi.org/10.5194/acp-24-929-2024, 2024
Short summary
Short summary
This study reports emissions of gases and particles from wildfires. These emissions are related to chemical proxies that can be measured by satellite and incorporated into models to improve predictions of wildfire impacts on air quality and climate.
Jie Wang, Haichao Wang, Yee Jun Tham, Lili Ming, Zelong Zheng, Guizhen Fang, Cuizhi Sun, Zhenhao Ling, Jun Zhao, and Shaojia Fan
Atmos. Chem. Phys., 24, 977–992, https://doi.org/10.5194/acp-24-977-2024, https://doi.org/10.5194/acp-24-977-2024, 2024
Short summary
Short summary
Many works report NO3 chemistry in inland regions while less target marine regions. We measured N2O5 and related species on a typical island and found intensive nighttime chemistry and rapid NO3 loss. NO contributed significantly to NO3 loss despite its sub-ppbv level, suggesting nocturnal NO3 reactions would be largely enhanced once free from NO emissions in the open ocean. This highlights the strong influences of urban outflow on downward marine areas in terms of nighttime chemistry.
Tanja J. Schuck, Johannes Degen, Eric Hintsa, Peter Hoor, Markus Jesswein, Timo Keber, Daniel Kunkel, Fred Moore, Florian Obersteiner, Matt Rigby, Thomas Wagenhäuser, Luke M. Western, Andreas Zahn, and Andreas Engel
Atmos. Chem. Phys., 24, 689–705, https://doi.org/10.5194/acp-24-689-2024, https://doi.org/10.5194/acp-24-689-2024, 2024
Short summary
Short summary
We study the interhemispheric gradient of sulfur hexafluoride (SF6), a strong long-lived greenhouse gas. Its emissions are stronger in the Northern Hemisphere; therefore, mixing ratios in the Southern Hemisphere lag behind. Comparing the observations to a box model, the model predicts air in the Southern Hemisphere to be older. For a better agreement, the emissions used as model input need to be increased (and their spatial pattern changed), and we need to modify north–south transport.
Jérémy Gueffier, François Gheusi, Marie Lothon, Véronique Pont, Alban Philibert, Fabienne Lohou, Solène Derrien, Yannick Bezombes, Gilles Athier, Yves Meyerfeld, Antoine Vial, and Emmanuel Leclerc
Atmos. Chem. Phys., 24, 287–316, https://doi.org/10.5194/acp-24-287-2024, https://doi.org/10.5194/acp-24-287-2024, 2024
Short summary
Short summary
This study investigates the link between weather regime and atmospheric composition at a Pyrenean observatory. Five years of meteorological data were synchronized on a daily basis and then, using a clustering method, separated into six groups of observation days, with most showing marked characteristics of different weather regimes (fair and disturbed weather, winter windstorms, foehn). Statistical differences in gas and particle concentrations appeared between the groups and are discussed.
Nathaniel Brockway, Peter K. Peterson, Katja Bigge, Kristian D. Hajny, Paul B. Shepson, Kerri A. Pratt, Jose D. Fuentes, Tim Starn, Robert Kaeser, Brian H. Stirm, and William R. Simpson
Atmos. Chem. Phys., 24, 23–40, https://doi.org/10.5194/acp-24-23-2024, https://doi.org/10.5194/acp-24-23-2024, 2024
Short summary
Short summary
Bromine monoxide (BrO) strongly affects atmospheric chemistry in the springtime Arctic, yet there are still many uncertainties around its sources and recycling, particularly in the context of a rapidly changing Arctic. In this study, we observed BrO as a function of altitude above the Alaskan Arctic. We found that BrO was often most concentrated near the ground, confirming the ability of snow to produce and recycle reactive bromine, and identified four common vertical distributions of BrO.
Alina Fiehn, Maximilian Eckl, Julian Kostinek, Michał Gałkowski, Christoph Gerbig, Michael Rothe, Thomas Röckmann, Malika Menoud, Hossein Maazallahi, Martina Schmidt, Piotr Korbeń, Jarosław Neçki, Mila Stanisavljević, Justyna Swolkień, Andreas Fix, and Anke Roiger
Atmos. Chem. Phys., 23, 15749–15765, https://doi.org/10.5194/acp-23-15749-2023, https://doi.org/10.5194/acp-23-15749-2023, 2023
Short summary
Short summary
During the CoMet mission in the Upper Silesian Coal Basin (USCB) ground-based and airborne air samples were taken and analyzed for the isotopic composition of CH4 to derive the mean signature of the USCB and source signatures of individual coal mines. Using δ2H signatures, the biogenic emissions from the USCB account for 15 %–50 % of total emissions, which is underestimated in common emission inventories. This demonstrates the importance of δ2H-CH4 observations for methane source apportionment.
Yifei Song, Chaoyang Xue, Yuanyuan Zhang, Pengfei Liu, Fengxia Bao, Xuran Li, and Yujing Mu
Atmos. Chem. Phys., 23, 15733–15747, https://doi.org/10.5194/acp-23-15733-2023, https://doi.org/10.5194/acp-23-15733-2023, 2023
Short summary
Short summary
We present measurements of HONO flux and related parameters over an agricultural field during a whole growing season of summer maize. This dataset allows studies on the characteristics and influencing factors of soil HONO emissions, determination of HONO emission factors, estimation of total HONO emissions at a national scale, and the discussion on future environmental policies in terms of mitigating regional air pollution.
Cited articles
ARA (Atmospheric Research and Analysis): available at:
https://www.dropbox.com/sh/o9hxoa4wlo97zpe/AACbm6LetQowrpUgX4vUxnoDa?dl=0
(last access: 9 June 2018), 2017.
Arif, N. L. and Abdullah, A. M.: Ozone pollution and historical trends of
surface background ozone level: a review, World Applied Sciences Journal, 14,
31–38, 2011.
Atkinson, R.: Atmospheric chemistry of VOCs and NOx, Atmos.
Environ., 34, 2063–2101, 2000.
Berkowitz, C. M., Jobson, T., Jiang, G., Spicer, C. W., and Doskey, P. V.:
Chemical and meteorological characteristics associated with rapid increases of O3 in Houston, Texas, J. Geophys. Res., 109, D10307, https://doi.org/10.1029/2003JD004141, 2004.
Berlin, S. R., Langford, A. O., Estes, M., Dong, M., and Parrish, D. D.:
Magnitude, decadal changes and impact of regional background ozone
transported into the greater Houston, Texas area, Environ. Sci. Technol., 47,
13985–13992, https://doi.org/10.1021/es4037644, 2013.
Blanchard, C. L., Tanenbaum, S., Hidy, G., Rasmussen, R., and Watkins, R.:
NMOC, ozone and organic aerosol in the southeastern states, 1999–2007. 1.
Spatial and temporal variations of NMOC mixing ratios and composition in
Atlanta, Georgia, Atmos. Environ., 44, 4827–4839, 2010a.
Blanchard, C. L., Hidy, G. M., and Tanenbaum, S.: NMOC, ozone, and organic
aerosol in the southeastern states, 1999–2007: 2. Ozone trends and
sensitivity to NMOC emissions in Atlanta, Georgia, Atmos. Environ., 44,
4840–4849, https://doi.org/10.1016/j.atmosenv.2010.07.030, 2010b.
Blanchard, C. L., Hidy, G. M., Tanenbaum, S., Edgerton, E. S., and Hartsell,
B. E.: The Southeastern Aerosol Research and Characterization (SEARCH) study:
Spatial variations and chemical climatology, 1999–2010, J. Air Waste
Manage., 63, 260–275, https://doi.org/10.1080/10962247.2012.749816, 2013.
Blanchard, C. L., Tanenbaum, S., and Hidy, G.: Ozone in the southeastern
United States: an observation-based model using measurements from the SEARCH
network, Atmos. Environ., 48, 192–200, 2014.
Chameides, W. and Cowling, E.: The State of the Southern Oxidants Study:
Policy Relevant Findings in Ozone Pollution Research, 1988–1994, Southern
Oxidant Study, College of Forest Resources, North Carolina State University,
Raleigh, NC, 1995.
Chameides, W., Lindsay, R., Richardson, J., and Kiang, C.: The role of
biogenic hydrocarbons in urban photochemical smog: Atlanta as a case study,
Science, 24, 1473–1475, 1988.
Chan, E.: Regional ground-level ozone trends in the context of meteorological
influences across Canada and the eastern United States from 1997 to 2006, J.
Geophys. Res.-Atmos., 114, D05301, https://doi.org/10.1029/2008JD010090, 2009.
Chan, E. and Vet, R. J.: Baseline levels and trends of ground level ozone in
Canada and the United States, Atmos. Chem. Phys., 10, 8629–8647,
https://doi.org/10.5194/acp-10-8629-2010, 2010.
Cooper, O., Gao, R.-S., Tarasick, D., Leblanc, T., and Sweeney, C.: Long-term
ozone trends at rural ozone monitoring sites across the United States,
1990–2010, J. Geophys. Res.-Atmos., 117, D22307, https://doi.org/10.1029/2012JD018261,
2012.
Cooper, O., Parrish, D., Ziemke, J., Balashov, N., Cupeiro, M., Galbally, I.,
Gilge, S., Horowitz, I., Jensen, N., Larmarque, J., Naik, N., Oltmans, S.,
Schwab, J., Shindell, D., Thompson, A., Thouret, V., Wang, Y., and Zhinden,
R.: Global distribution and trends of tropospheric ozone: an
observation-based review, Elementa, 2, 1–28,
https://doi.org/10.12952/journal.elementa.000029, 2014.
Cristofanelli, P. and Bonasoni, P.: Background ozone in the southern Europe
and Mediterranean area: influence of the transport processes, Environ.
Pollut., 157, 1399–1406, https://doi.org/10.1016/j.envpol.2008.09.017, 2009.
de Gouw, J. A., Parrish, D. D., Frost,G. J., and Trainer, M.: Reduced
emissions of CO2, NOx, and SO2 from U.S.
power plants owing to switch from coal to natural gas with combined cycle
technology, Earths Future, 2, 75–82, https://doi.org/10.1002/2013EF000196, 2014.
Dolwick, P., Akhtar, F., Baker, K. R., Possiel, N., and Simon, H.: Comparison
of background ozone estimates over the western United States based on two
separate model methodologies, Atmos. Environ, 109, 282–296,
https://doi.org/10.1016/j.atmosenv.2015.01.005, 2015.
Edgerton, E. S., Saylor, R. D., Hartsell, B. E., Jansen, J. J., and Hansen,
D. A.: Ammonia and ammonium measurements from the southeastern United States,
Atmos. Environ., 41, 3339–3351, 2007.
EPA: Pre-Generated Data Files, available at:
https://aqs.epa.gov/aqsweb/airdata/download_files.html, last access: 9
June 2018a.
EPA: Clean Air Status and Trends Network (CASTNET), available at:
https://www.epa.gov/castnet, last access: 9 June 2018b.
Fiore, A., Oberman, J. T., Lin, M. Y., Zhang, L., Clifton, O. E., Jacob, D.
J., Naik, V., Horowitz, L. W., Pinto, J. P., and Milly, G.: Estimating North
American background ozone in U.S. surface air with two independent global
models: variability, uncertainties, and recommendations, Atmos. Environ., 96,
284–300, 2014.
Frost, G. J., Trainer, M., Allwine, G., Buhr, M. P., Calvert, J. G.,
Cantrell, C. A., Fehsenfeld, F. C., Goldan, P. D., Herwehe, J., Hubler, G.,
Kuster, W. C., Martin, R., McMillen, R. T., Montzka, S. A., Norton, R. B.,
Parrish, D. D., Ridley, B. A., Shetter, R. E., Walega, J. G., Watkins, B. A.,
Westberg, H. H., and Williams, E. J.: Photochemical ozone production in the
rural southeastern United States during the 1990 Rural Oxidants in the
Southern Environment (ROSE) program, J. Geophys. Res.-Atmos., 103,
22491–22508, 1998.
Fujita, E., Stockwell, W., Campbell, D., Keisslar, R., and Lawson, D.:
Evolution of the magnitude and spatial extent of the weekend ozone effect in
California's South Coast Air Basin, 1981–2000, J. Air Waste Manage., 53,
802–815, 2003.
Fujita, E., Campbell, D. E., Stockwell, W., Saunders, E., Fitzgerald, R., and
Perea, R.: Projected ozone trends and changes in the ozone-precursor
relationship in the South Coast Air Basin in response to varying reductions
of precursor emissions, J. Air Waste Manage., 66, 201–214, 2015.
Godowitch, J. M., Gilliam, R. C., and Rao, S. T.: Diagnostic evaluation of
ozone production and horizontal transport in a regional photochemical air
quality modeling system, Atmos. Environ., 45, 3977–3987, 2011.
Griffin, R. J., Johnson, C. A., Talbot, R. W., Mao, H., Russo, R. S., Zhou,
Y., and Sive, B. C.: Quantification of ozone formation metrics at Thompson
Farm during the New England Air Quality Study (NEAQS) 2002, J. Geophys.
Res.-Atmos., 109, D24302, https://doi.org/10.1029/2004JD005344, 2004.
Hansen, D. A., Edgerton, E. S., Hartsell, B. E., Jansen, J. J., Hidy, G. M.,
Kandasamy, K., and Blanchard, C. L.: The Southeastern Aerosol Research and
Characterization Study (SEARCH): 1. Overview, J. Air Waste Manage., 53,
1460–1471, 2003.
Hansen, D. A., Edgerton, E., Hartsell, B., Jansen, J., Burge, H., Koutrakis,
P., Rogers, C., Suh, H., Chow, J., Zielinska, B., McMurry, P., Mulholland,
J., Russell, A., and Rasmussen, R.: Air quality measurements for the aerosol
research and inhalation epidemiology study, J. Air Waste Manage., 56,
1445–1458, 2006.
He, H., Hembeck, L., Hosley, K. M., Canty, T. P., Salawitch, R. J., and
Dickerson, R. R.: High ozone concentrations on hot days: The role of electric
power demand and NOx emissions, Geophys. Res. Lett., 40,
5291–5294, https://doi.org/10.1002/grl.50967, 2013.
Hidy, G. M. and Blanchard, C. L.: Precursor reductions and ground-level ozone
in the continental U.S., J. Air Waste Manage., 65, 1261–1282,
https://doi.org/10.1080/10962247.2015.1079564, 2015.
Hidy, G. M., Blanchard, C. L., Baumann, K., Edgerton, E., Tanenbaum, S.,
Shaw, S., Knipping, E., Tombach, I., Jansen, J., and Walters, J.: Chemical
climatology of the southeastern United States, 1999–2013, Atmos. Chem.
Phys., 14, 11893–11914, https://doi.org/10.5194/acp-14-11893-2014, 2014.
Hirsch, A. I., Munger, J. W., Jacob, D. J., Horowitz, L. W., and Goldstein,
A. H.: Seasonal variation of the ozone production efficiency per unit
NOx at Harvard Forest, Massachusetts, J. Geophys.
Res.-Atmos., 101, 12659–12666, https://doi.org/10.1029/96JD00557, 1996.
Hudman, R. C., Jacob, D. J., Turquety, S., Leibensperger, E. M., Murray, L.
T., Wu, S., Gilliland, A. B., Avery, M., Bertram, T. H., Brune, W., Cohen, R.
C., Dibb, Flocke, F. M., Fried, A., Holloway, J., Neuman, J. A., Orville, R.,
Perring, A., Ren, X., Sachse, G. W., Singh, H. B., Swanson, A., and
Wooldridge, P. J.: Surface and lightning sources of nitrogen oxides over the
United States: Magnitudes, chemical evolution, and outflow, J. Geophys.
Res.-Atmos., 112, D12S05, https://doi.org/10.1029/2006JD007912, 2007.
Jacob, D. J., Horowitz, L. W., Munger, J. W., Heikes, B. G., Dickerson, R.
R., Artz, R. S., and Keene, W. C.: Seasonal transition from
NOx- to hydrocarbon-limited conditions for ozone production
over the Eastern United States in September, J. Geophys. Res.-Atmos., 100,
9315–9324, 1995.
Johnson, M., Kuang, S., Wang, L., and Newchurch, M.: Evaluating summer-time
ozone enhancement events in the southeast United States, Atmosphere, 7, 108,
https://doi.org/10.3390/atmos7080108, 2016.
Kasibhatla, P., Chameides, W. L., Saylor, R. D., and Olerud, D.:
Relationships between regional ozone pollution and emissions of nitrogen
oxides in the eastern United States, J. Geophys. Res.-Atmos., 103,
22663–22669, https://doi.org/10.1029/98JD01639, 1998.
Kim, H. S., Kim, Y. H., Han, K. M., Kim,J., and Song, C. H.: Ozone production
efficiency of a ship-plume: ITCT 2K2 case study, Chemosphere, 143, 17–23,
2016.
Kleinman, L., Lee, Y.-N., Springston, S. R., Nunnermacker, L., Zhou, X.,
Brown, R., Hallock, K., Klotz, P., Leahy, D., Lee, J. H., and Newman, L.:
Ozone formation at a rural site in the southeastern United States, J.
Geophys. Res.-Atmos., 99, 3469–3482, https://doi.org/10.1029/93JD02991, 1994.
Kleinman, L. I., Daum, P. H., Lee, Y. N., Senum, G. I., Springston, S. R.,
Wany, J., Berkowitz, C., Hubbe, J., Zaveri, R. A., Brechtel, F. J., Jayne,
J., Onasch, T. B., and Worsnop, D.: Aircraft observations of aerosol
composition and ageing in New England and mid-Atlantic states during the
summer 2002 New England Air Quality Study field campaign, J. Geophys.
Res.-Atmos., 112, D09310, https://doi.org/10.1029/2006JD007786, 2007.
Langford, A. O., Senff, C. J., Alvarez II, R. J., Brioude, J., Cooper, O. R.,
Holloway, J. S., Lin, M. Y., Marchbanks, R. D., Pierce, R. B., Sandberg, S.
P., Weickmann, A. M., and Williams, E. J.: An overview of the 2013 Las Vegas
Ozone Study (LVOS): Impact of stratospheric intrusions and long-range
transport on surface air quality, Atmos. Environ., 109, 305–322, 2015.
Lefohn, A., Shadwick, D., and Oltmans, S.: Characterizing changes in surface
ozone levels in metropolitan and rural areas in the United States for
1980–2008 and 1994–2008, Atmos. Environ., 44, 5199–5210, 2010.
Lefohn, A., Emery, C., Shadwick, D., Wernli, H., Jung, J., and Oltmans, S.:
Estimates of background surface ozone mixing ratios in the United States
based on model-derived source apportionment, Atmos. Environ., 84, 275–288,
https://doi.org/10.1016/j.atmosenv.2013.11.033, 2014.
Lin, M., Fiore, A. M., Cooper, O. R., Horowitz, L. W., Langford, A. O., Levy,
H., Johnson, B. J., Naik, V., Oltmans, S. J., and Senff, C. J.: Springtime
high surface ozone events over the western United States: Quantifying the
role of stratospheric intrusions, J. Geophys. Res.-Atmos., 117, D00V22,
https://doi.org/10.1029/2012JD018151, 2012.
Lin, M., Horowitz, L. W., Payton, R., Fiore, A. M., and Tonnesen, G.: US
surface ozone trends and extremes from 1980 to 2014: quantifying the roles of
rising Asian emissions, domestic controls, wildfires, and climate, Atmos.
Chem. Phys., 17, 2943–2970, https://doi.org/10.5194/acp-17-2943-2017, 2017.
Lin, X., Trainer, M., and Liu, S. C.: On the nonlinearity of the tropospheric
ozone production, J. Geophys. Res.-Atmos., 93, 15879–15888, 1988.
Liu, S. C., Trainer, M., Fehsenfeld, F. C., Parrish, D. D., Williams, E. J.,
Fahey, D. W., Hubler, G., and Murphy, P. C.: Ozone production in the rural
troposphere and the implications for regional and global ozone distributions,
J. Geophys. Res., 92, 4191–4207, 1987.
Logan, J.: Tropospheric ozone: seasonal behavior, trends, and anthropogenic
influence., J. Geophys. Res., 90, 10463–10482, 1985.
McDuffie, E. E., Edwards, P. M., Gilman, J. B., Lerner, B. M., Dubé, W.
P., Trainer, M., Wolfe, D. E., Angevine, W. M., deGouw, J., Williams, E. J.,
Tevlin, A. G., Murphy, J. G., Fischer, E. V., McKeen, S., Ryerson, T. B.,
Peischl, J., Holloway, J. S., Aikin, K., Langford, A. O., Senff, C. J.,
Alvarez II, R. J., Hall, S. R., Lantz, K. O., and Brown, S. S.: Influence of
oil and gas emissions on summertime ozone in the Colorado Northern Front
Range, J. Geophys. Res.-Atmos., 121, 8712–8729, https://doi.org/10.1002/2016JD025265,
2016.
Meagher, J., Cowling, E., Fehsenfeld, F., and Parkhurst, W.: Ozone formation
and transport in southeasterm United States: overview of the SOS
Nashville/Middle Tennessee Study, J. Geophys. Res., 103, 22213–22223, 1998.
Naja, M., Akimoto, H., and Staehelin, J.: Ozone in background and
photochemically aged air over central Europe: Analysis of long-term
ozonesonde data from Hohenpeissenberg and Payerne, J. Geophys. Res., 108,
4063, https://doi.org/10.1029/2002JD002477, 2003.
NARSTO: An Assessment of Tropospheric Ozone Pollution, Report 1000040,
NARSTO, Pasco, WA (also available from EPRI, Palo Alto, CA), 2000.
Neuman, J. A., Nowak, J. B., Zheng, W., Flocke, F., Ryerson, T. B., Trainer,
M., Holloway, J. S., Parrish, D. D., Frost, G. J., Peischl, J., Atlas, E. L.,
Bahreini, R., Wollny, A. G., and Fehsenfeld, F. C.: Relationship between
photochemical ozone production and NOx oxidation in Houston,
Texas, J. Geophys. Res.-Atmos., 114, D00F08, https://doi.org/10.1029/2008JD011688, 2009.
Neuman, J. A., Trainer, M., Brown, S. S., Min, K.-E., Nowak, J. B.,
Parrish, D. D., Peischl, J., Pollack, I. B., Roberts, J. M., Ryerson, T. B., and
Veres, P. R.: HONO emission and production determined from airborne measurements
over the Southeast U.S., J. Geophys. Res.-Atmos., 121, 9237–9250,
https://doi.org/10.1002/2016JD025197, 2016.
Newchurch, M., Ayoub, M., Oltmans, S., Johnson, B., and Schmidlin, F.: Vertical
distributions of ozone at four sites in the United States, J. Geophys. Res.,
208, 4031, https://doi.org/10.1029/2002JD002059, 2003.
NOAA (National Oceanic and Atmospheric Administration): ESRL/GMD FTP Data
Finder, available at: ftp://aftp.cmdl.noaa.gov/data/ozwv/Ozonesonde/
(last access: 9 June 2018), 2017.
NRC (National Research Council): Rethinking the Ozone Problem in Urban and Regional
Air Pollution, National Academy Press, Washington, D.C., 489 pp., 1991.
Nunnermacker, L. J., Imre, D., Daum, P. H., Kleinman, L., Lee, Y.-N., Lee, J. H.,
Springston, S. R., Newman, L., Weinstein-Lloyd, J., Luke, W. T., Banta, R.,
Alvarez, R., Senff, C., Sillman, S., Holdren, M., Keigley, G. W., and Zhou, X.:
Characterization of the Nashville urban plume on July 3 and July 18, 1995, J.
Geophys. Res.-Atmos., 103, 28129–28148, https://doi.org/10.1029/98JD01961, 1998.
Oltmans, S., Lefohn, A., Harris, J., and Shadwick, D.: Background ozone levels
of air entering the west coast of the US and assessment of longer-term
changes, Atmos. Environ., 42, 6020–6038, 2008.
Oltmans, S., Lefohn, A., Shadwick, D., Harris, J., Scheel, H., Galbally, I.,
Tarasick, D., Johnson, B., Brunke, E., Claude, H., Zeng, G., Nichol, S., Schmidlin, F.,
Davies, J., Cuevas, E., Redondas, A., Naoe, H., Kakano, T., and Kawasato, T.:
Recent tropospheric ozone changes – a pattern dominated by slow or no
growth, Atmos. Environ., 67, 331–351, 2013.
Ordóñez, C., Brunner, D., Staehelin, J., Hadjinicolaou, P., Pyle, J. A.,
Jonas, M., Wernli, H., and Prévôt, A. S. H.: Strong influence of lowermost
stratospheric ozone on lower tropospheric background ozone changes over
Europe, Geophys. Res. Lett., 34, L07805, https://doi.org/10.1029/2006GL029113, 2007.
Paoletti, E., De Marco, A., Beddows, D. C. S., Harrison, R. M., and
Manning, W. J.: Ozone levels in European and USA cities are increasing more than at
rural sites, while peak values are decreasing, Environ. Pollut., 192,
295–299, 2014.
Parrish, D. D., Young, L. M., Newman, M. H., Aikin, K. C., and Ryerson, T. B.:
Ozone design values in Southern California's air basins: Temporal evolution
and U.S. background contribution, J. Geophys. Res., 122, 11166–11182,
https://doi.org/10.1002/2016JD026329, 2017a.
Parrish, D. D., Petropavlovskikh, I., and Oltmans, S. J.: Reversal of long-term
trend in baseline ozone concentrations at the North American West Coast,
Geophys. Res. Lett., 44, 10675–10681, https://doi.org/10.1002/2017GL074960, 2017b.
Pollack, I., Ryerson, T., Trainer, M., Neuman, J., Roberts, J., and Parrish, D.:
Trends in ozone its precursors and related secondary oxidation products in
Los Angeles, California: a synthesis of measurements from 1960–2010, J.
Geophys. Res.-Atmos., 118, 5891–5911, 2013.
Reynolds, S., Blanchard, C. L., and Ziman, S.: Understanding the effectiveness
of precursor reductions in lowering 8-hour ozone mixing ratios, J. Air
Waste Manage., 53, 195–205, 2003.
Reynolds, S., Blanchard, C. L., and Ziman, S.: Understanding the effectiveness
of precursor reductions in lowering the 8-hr. O3 concentration: part
II-eastern United States, J. Air Waste Manage., 54, 1452–1470,
2004.
Ryerson, T. B., Andrews, A. E., Angevine, W. M., Bates, T. S., Brock, C. A.,
Cairns, B., Cohen, R. C., Cooper, O. R., de Gouw, J. A., Fehsenfeld, F. C.,
Ferrare, R. A., Fischer, M. L., Flagan, R. C., Goldstein, A. H., Hair, J. W.,
Hardesty, R. M., Hostetler, C. A., Jimenez, J. L., Langford, A. O., McCauley, E.,
McKeen, S. A., Molina, L. T., Nenes, A., Oltmans, S. J., Parrish, D. D., Pederson, J. R.,
Pierce, R. B., Prather, K., Quinn, P. K., Seinfeld, J. H., Senff, C. J.,
Sorooshian, A., Stutz, J., Surratt, J. D., Trainer, M., Volkamer, R., Williams, E. J.,
and Wofsy, S. C.: The 2010 California Research at the Nexus of Air Quality and
Climate Change (CalNex) field study, J. Geophys. Res.-Atmos., 118,
5830–5866, https://doi.org/10.1002/jgrd.50331, 2013.
Saylor, R. D., Edgerton, E. S., Hartsell, B. E., Baumann, K., and Hansen, D. A.:
Continuous gaseous and total ammonia measurements from the southeastern
aerosol research and characterization (SEARCH) study, Atmos. Environ., 44,
4994–5004, 2010.
Schere, K. and Hidy, G. M.: Foreword: NARSTO critical reviews, Atmos.
Environ., 34, 1853–1860, 2000.
Schnell, R. C., Oltmans, S. J., Neely, R. R., Endres, M. S., Molenar, J. V., and
White, A. B.: Rapid photochemical production of ozone at high concentrations
in a rural site during winter, Nat. Geosci., 2, 120–122,
https://doi.org/10.1038/ngeo415, 2009.
Seigneur, C. and Dennis, R.: Atmospheric modeling, in:
Technical Challenges of Multipollutant Air Quality Management, edited by: Hidy, G. M.,
Brook, J. R., Demerjian, K. L., Molina, L. T., Pennell, W. T., and Scheffe, R. D.,
Springer, New York, 2011.
Seinfeld, J. H.: Atmospheric Chemistry and Physics of Air Pollution, John
Wiley and Sons, New York, 1986.
Sillman, S., He, D., Pippin, M., Daum, P. H., Imre, D. G., Kleinman, L. I.,
and Lee, J. H.: Model correlations for ozone, reactive nitrogen, and
peroxides for Nashville in comparison with measurements: Implications for
O3-NOx-hydrocarbon chemistry, J. Geophys.
Res.-Atmos., 103, 22629–22644, 1998.
Simon, H., Reff, A., Wells, B., Xing, J., and Frank, N.: Ozone trends across
the United States over a period of decreasing NOx and VOC
emissions, Environ. Sci. Technol., 49, 186–195, https://doi.org/10.1021/es504514z, 2015.
Singh, H.: Reactive nitrogen in the troposphere: chemistry and transport of
NOx and PAN, Environ. Sci. Technol., 21, 320–327, 1987.
Singh, H. B. and Hanst, P. L.: Peroxyacetyl nitrate (PAN) in the unpolluted
atmosphere: an important reservoir for nitrogen oxides, Geophys. Res. Lett.,
8, 941–944, 1981.
Solberg, S., Derwent, R. G., Hov, Ø., Langner, J., and Lindskog, A.: European
abatement of surface ozone in a global perspective, Ambio, 34, 47–53,
https://doi.org/10.1579/0044-7447-34.1.47, 2005.
Solomon, P., Cowling, E., Hidy, G., and Furness, C.: Comparison of scientific
findings from major ozone field studies in North America and Europe, Atmos.
Environ., 34, 1885–1920, 2000.
St. John, J. C., Chameides, W. L., and Saylor, R.: Role of anthropogenic
NOx and VOC as ozone precursors: A case study from the SOS
Nashville/Middle Tennessee Ozone Study, J. Geophys. Res.-Atmos., 103,
22415–22423, 1998.
Starn, T. K., Shepson, P. B., Bertman, S. B., White, J. S., Splawn, B. G.,
Riemer, D. D., Zika, R. G., and Olszyna, K.: Observations of isoprene chemistry and its
role in ozone production at a semirural site during the 1995 Southern
Oxidants Study, J. Geophys. Res., 103, 22425–22435, https://doi.org/10.1029/98JD01279,
1998.
Trainer, M., Parrish, D. D., Buhr, M. P., Norton, R., Fehsenfeld, F., Anlauf,
K., Bottenheim, J., Tang, Y., Weibe, H., Roberts, J., Tanner, R., Newman, L.,
Bowersox, V., Meagher, J., Olszyna, K., Rodgers, M., Wang, T., Berresheim,
H., Demerjian, K., and Roychowdhury, U.: Correlation of ozone with
NOy in photochemically aged air, J. Geophys. Res.-Atmos.,
98, 2917–2925, 1993.
Trainer, M., Ridley, B. A., Buhr, M. P., Kok, G., Walega, J., Hübler, G.,
Parrish, D. D., and Fehsenfeld, F. C.: Regional ozone and urban plumes in the
southeastern United States: Birmingham, A case study, J. Geophys. Res.-Atmos., 100, 18823–18834, https://doi.org/10.1029/95JD01641, 1995.
Trainer, M., Parrish, D., Goldan, P., Roberts, P. J., and Fehsenfeld, F.: Review
of observation-based analysis of regional factors influencing ozone
concentration, Atmos. Environ., 34, 2045–2062, 2000.
Travis, K. R., Jacob, D. J., Fisher, J. A., Kim, P. S., Marais, E. A., Zhu,
L., Yu, K., Miller, C. C., Yantosca, R. M., Sulprizio, M. P., Thompson, A.
M., Wennberg, P. O., Crounse, J. D., St. Clair, J. M., Cohen, R. C.,
Laughner, J. L., Dibb, J. E., Hall, S. R., Ullmann, K., Wolfe, G. M.,
Pollack, I. B., Peischl, J., Neuman, J. A., and Zhou, X.: Why do models
overestimate surface ozone in the Southeast United States?, Atmos. Chem.
Phys., 16, 13561–13577, https://doi.org/10.5194/acp-16-13561-2016, 2016.
University of Alabama Huntsville (UAH): Huntsville ozonesonde station,
available at: http://www.nsstc.uah.edu/atmchem/about_ozonesonde.html
(last access: 2 October 2017), 2017.
U.S. EPA: Regional and Seasonal Analysis of North American Background Ozone
Estimated from Two Studies, available at:
https://www3.epa.gov/ttn/naaqs/standards/ozone/data/20120814BackgroundOzone.pdf
(last access: 9 June 2018), 2012.
U.S. EPA: Health Risk and Exposure Assessment for Ozone Final Report,
EPA-452/R-14-004a, available at:
http://www.epa.gov/ttn/naaqs/standards/ozone/data/20140829healthrea.pdf,
(last access: 19 August 2015), 2014.
U.S. EPA: Ozone (O3) Standards – Documents from Current Review –
Risk and Exposure Assessments, available at:
https://www.epa.gov/naaqs/ozone-o3-standards-risk-and-exposure-assessments-current-review
(last access: 9 June 2018), 2015a.
U.S. EPA: Ozone (O3) Standards – Table of Historical Ozone NAAQS,
available at:
http://www.epa.gov/ttn/naaqs/standards/ozone/s_o3_history.html (last
access: 19 August 2015), 2015b.
U.S. EPA: Environmental Protection Agency 40 CFR Parts 50, 51, 52, 53 and 58
[EPA-HQ-OAR-2008-0699; FRL-9918-43-OAR] RIN 2060-AP38, National Ambient Air
Quality Standards for Ozone, available at:
http://www.epa.gov/airquality/ozonepollution/pdfs/20141125proposal.pdf
(last access: 19 August 2015), 2015c.
U.S. EPA: National Trends in Ozone Levels, available at:
http://www.epa.gov/airtrends/ozone.html (last access: 19 August 2015),
2015d.
U.S. EPA: Air Quality Trends, available at:
http://www.epa.gov/airtrends/aqtrends.html#comparison (last access:
19 August 2015), 2015e.
U.S. EPA: AirData: Download Data Files, available at:
http://aqsdr1.epa.gov/aqsweb/aqstmp/airdata/download_files.html (last
access: 15 March 2017), 2016a.
U.S. EPA: Clean Air Status and Trends Network (CASTNET), available at:
https://www.epa.gov/castnet (last access: 24 March 2016), 2016b.
U.S. EPA: Air Markets Program Data, available at:
http://ampd.epa.gov/ampd/ (last access: 12 September 2016), 2016c.
U.S. EPA: Air Pollutant Emission Trends Data, available at:
https://www.epa.gov/air-emissions-inventories/air-pollutant-emissions-trends-data
(last access: 25 September 2016), 2016d.
Warneke, C., Trainer, M., de Gouw, J. A., Parrish, D. D., Fahey, D. W.,
Ravishankara, A. R., Middlebrook, A. M., Brock, C. A., Roberts, J. M., Brown,
S. S., Neuman, J. A., Lerner, B. M., Lack, D., Law, D., Hübler, G.,
Pollack, I., Sjostedt, S., Ryerson, T. B., Gilman, J. B., Liao, J., Holloway,
J., Peischl, J., Nowak, J. B., Aikin, K. C., Min, K.-E., Washenfelder, R. A.,
Graus, M. G., Richardson, M., Markovic, M. Z., Wagner, N. L., Welti, A.,
Veres, P. R., Edwards, P., Schwarz, J. P., Gordon, T., Dube, W. P., McKeen,
S. A., Brioude, J., Ahmadov, R., Bougiatioti, A., Lin, J. J., Nenes, A.,
Wolfe, G. M., Hanisco, T. F., Lee, B. H., Lopez-Hilfiker, F. D., Thornton, J.
A., Keutsch, F. N., Kaiser, J., Mao, J., and Hatch, C. D.: Instrumentation
and measurement strategy for the NOAA SENEX aircraft campaign as part of the
Southeast Atmosphere Study 2013, Atmos. Meas. Tech., 9, 3063–3093,
https://doi.org/10.5194/amt-9-3063-2016, 2016.
Wiedinmyer, C., Tie, X., Guenther, A., Neilson, R., and Granier, C.: Future
changes in biogenic isoprene emissions: how might they affect regional and
global atmospheric chemistry?, Earth Interact., 10, 1–19,
https://doi.org/10.1175/EI174.1, 2006.
Williams, E. J., Baumann, K., Roberts, J. M., Bertman, S. B., Norton, R. B.,
Fehsenfeld, F. C., Springston, S. R., Nunnermacker, L. J., Newman, L.,
Olszyna, K., Meagher, J., Hartsell, B., Edgerton, E., Pearson, J. R., and
Rodgers, M. O.: Intercomparison of ground-based NOy
measurement techniques, J. Geophys. Res., 103, 22261–22280, 1998.
Wilson, R. C., Fleming, Z. L., Monks, P. S., Clain, G., Henne, S., Konovalov,
I. B., Szopa, S., and Menut, L.: Have primary emission reduction measures
reduced ozone across Europe? An analysis of European rural background ozone
trends 1996–2005, Atmos. Chem. Phys., 12, 437–454,
https://doi.org/10.5194/acp-12-437-2012, 2012.
Xing, J., Pleim, J., Mathur, R., Pouliot, G., Hogrefe, C., Gan, C.-M., and
Wei, C.: Historical gaseous and primary aerosol emissions in the United
States from 1990 to 2010, Atmos. Chem. Phys., 13, 7531–7549,
https://doi.org/10.5194/acp-13-7531-2013, 2013.
Zaveri, R. A., Berkowitz, C. M., Kleinman, L. I., Springston, S. R., Doskey,
P. V., Lonneman, W. A., and Spicer, C. W.: Ozone production efficiency and
NOx depletion in an urban plume: Interpretation of field
observations and implications for evaluating
O3-NOx-VOC sensitivity, J. Geophys. Res.-Atmos.,
108, 4436, https://doi.org/10.1029/2002JD003144, 2003.
Zhang, L., Jacob, D. J., Downey, N. V., Wood, D. A., Blewitt, D., Carouge, C.
C., van Donkelaar, A., Jones, D. B. A., Murray, L. T., and Wang, Y.: Improved
estimate of the policy-relevant background ozone in the United States using
the GEOS-Chem global model with 1/2∘ × 2/3∘
horizontal resolution over North America, Atmos. Environ., 45, 6769–6776,
https://doi.org/10.1016/j.atmosenv.2011.07.054, 2011.
Short summary
Ozone (O3) formation in the southeastern US was studied in relation to nitrogen oxide (NOx) emissions using long-term (1990s–2015) measurements of the SEARCH network and U.S. EPA data. NOx emissions decreased by ~ 60 %. Annual fourth-highest daily peak 8 h O3 mixing ratios declined toward ~ 45–50 ppbv at ~1 ppbv yr−1 and O3 exhibited increasing sensitivity to NOx. This study illustrates the value of consistent, long-term measurements of O3 and reactive nitrogen made at both urban and rural sites.
Ozone (O3) formation in the southeastern US was studied in relation to nitrogen oxide (NOx)...
Altmetrics
Final-revised paper
Preprint