Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.414
IF5.414
IF 5-year value: 5.958
IF 5-year
5.958
CiteScore value: 9.7
CiteScore
9.7
SNIP value: 1.517
SNIP1.517
IPP value: 5.61
IPP5.61
SJR value: 2.601
SJR2.601
Scimago H <br class='widget-line-break'>index value: 191
Scimago H
index
191
h5-index value: 89
h5-index89
Download
Short summary
The phase transition of organic particles between glassy and semi-solid states occurs at the glass transition temperature. We developed a method to predict glass transition temperatures and the viscosity of secondary organic aerosols using molecular composition, with consistent results with viscosity measurements. The viscosity of biomass burning particles was also estimated using the chemical composition measured by high-resolution mass spectrometry with two different ionization techniques.
Altmetrics
Final-revised paper
Preprint
ACP | Articles | Volume 18, issue 9
Atmos. Chem. Phys., 18, 6331–6351, 2018
https://doi.org/10.5194/acp-18-6331-2018
Atmos. Chem. Phys., 18, 6331–6351, 2018
https://doi.org/10.5194/acp-18-6331-2018

Research article 04 May 2018

Research article | 04 May 2018

Predicting the glass transition temperature and viscosity of secondary organic material using molecular composition

Wing-Sy Wong DeRieux et al.

Related authors

Liquid–liquid phase separation and viscosity within secondary organic aerosol generated from diesel fuel vapors
Mijung Song, Adrian M. Maclean, Yuanzhou Huang, Natalie R. Smith, Sandra L. Blair, Julia Laskin, Alexander Laskin, Wing-Sy Wong DeRieux, Ying Li, Manabu Shiraiwa, Sergey A. Nizkorodov, and Allan K. Bertram
Atmos. Chem. Phys., 19, 12515–12529, https://doi.org/10.5194/acp-19-12515-2019,https://doi.org/10.5194/acp-19-12515-2019, 2019

Related subject area

Subject: Aerosols | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Photochemical degradation of iron(III) citrate/citric acid aerosol quantified with the combination of three complementary experimental techniques and a kinetic process model
Jing Dou, Peter A. Alpert, Pablo Corral Arroyo, Beiping Luo, Frederic Schneider, Jacinta Xto, Thomas Huthwelker, Camelia N. Borca, Katja D. Henzler, Jörg Raabe, Benjamin Watts, Hartmut Herrmann, Thomas Peter, Markus Ammann, and Ulrich K. Krieger
Atmos. Chem. Phys., 21, 315–338, https://doi.org/10.5194/acp-21-315-2021,https://doi.org/10.5194/acp-21-315-2021, 2021
Short summary
The production and hydrolysis of organic nitrates from OH radical oxidation of β-ocimene
Ana C. Morales, Thilina Jayarathne, Jonathan H. Slade, Alexander Laskin, and Paul B. Shepson
Atmos. Chem. Phys., 21, 129–145, https://doi.org/10.5194/acp-21-129-2021,https://doi.org/10.5194/acp-21-129-2021, 2021
Short summary
Emission factors for PM10 and polycyclic aromatic hydrocarbons (PAHs) from illegal burning of different types of municipal waste in households
András Hoffer, Beatrix Jancsek-Turóczi, Ádám Tóth, Gyula Kiss, Anca Naghiu, Erika Andrea Levei, Luminita Marmureanu, Attila Machon, and András Gelencsér
Atmos. Chem. Phys., 20, 16135–16144, https://doi.org/10.5194/acp-20-16135-2020,https://doi.org/10.5194/acp-20-16135-2020, 2020
Short summary
Kinetic modeling of formation and evaporation of secondary organic aerosol from NO3 oxidation of pure and mixed monoterpenes
Thomas Berkemeier, Masayuki Takeuchi, Gamze Eris, and Nga L. Ng
Atmos. Chem. Phys., 20, 15513–15535, https://doi.org/10.5194/acp-20-15513-2020,https://doi.org/10.5194/acp-20-15513-2020, 2020
Short summary
Direct contribution of ammonia to α-pinene secondary organic aerosol formation
Liqing Hao, Eetu Kari, Ari Leskinen, Douglas R. Worsnop, and Annele Virtanen
Atmos. Chem. Phys., 20, 14393–14405, https://doi.org/10.5194/acp-20-14393-2020,https://doi.org/10.5194/acp-20-14393-2020, 2020
Short summary

Cited articles

Abbatt, J. P. D., Lee, A. K. Y., and Thornton, J. A.: Quantifying trace gas uptake to tropospheric aerosol: recent advances and remaining challenges, Chem. Soc. Rev., 41, 6555–6581, 2012. 
Abramson, E., Imre, D., Beranek, J., Wilson, J. M., and Zelenyuk, A.: Experimental determination of chemical diffusion within secondary organic aerosol particles, Phys. Chem. Chem. Phys., 15, 2983–2991, 2013. 
Angell, C.: Relaxation in liquids, polymers and plastic crystals – strong/fragile patterns and problems, J. Non-Cryst. Solids, 131, 13–31, 1991. 
Angell, C. A.: Formation of glasses from liquids and biopolymers, Science, 267, 1924–1935, 1995. 
Publications Copernicus
Download
Short summary
The phase transition of organic particles between glassy and semi-solid states occurs at the glass transition temperature. We developed a method to predict glass transition temperatures and the viscosity of secondary organic aerosols using molecular composition, with consistent results with viscosity measurements. The viscosity of biomass burning particles was also estimated using the chemical composition measured by high-resolution mass spectrometry with two different ionization techniques.
Citation
Altmetrics
Final-revised paper
Preprint