Articles | Volume 18, issue 9
Atmos. Chem. Phys., 18, 6141–6156, 2018
https://doi.org/10.5194/acp-18-6141-2018
Atmos. Chem. Phys., 18, 6141–6156, 2018
https://doi.org/10.5194/acp-18-6141-2018

Research article 03 May 2018

Research article | 03 May 2018

Impacts of air pollutants from fire and non-fire emissions on the regional air quality in Southeast Asia

Hsiang-He Lee et al.

Related authors

The impacts of biomass burning activities on convective systems over the Maritime Continent
Hsiang-He Lee and Chien Wang
Atmos. Chem. Phys., 20, 2533–2548, https://doi.org/10.5194/acp-20-2533-2020,https://doi.org/10.5194/acp-20-2533-2020, 2020
Short summary
Effective radiative forcing in the aerosol–climate model CAM5.3-MARC-ARG
Benjamin S. Grandey, Daniel Rothenberg, Alexander Avramov, Qinjian Jin, Hsiang-He Lee, Xiaohong Liu, Zheng Lu, Samuel Albani, and Chien Wang
Atmos. Chem. Phys., 18, 15783–15810, https://doi.org/10.5194/acp-18-15783-2018,https://doi.org/10.5194/acp-18-15783-2018, 2018
Short summary
Biomass burning aerosols and the low-visibility events in Southeast Asia
Hsiang-He Lee, Rotem Z. Bar-Or, and Chien Wang
Atmos. Chem. Phys., 17, 965–980, https://doi.org/10.5194/acp-17-965-2017,https://doi.org/10.5194/acp-17-965-2017, 2017
Short summary
Radiative effects of interannually varying vs. interannually invariant aerosol emissions from fires
Benjamin S. Grandey, Hsiang-He Lee, and Chien Wang
Atmos. Chem. Phys., 16, 14495–14513, https://doi.org/10.5194/acp-16-14495-2016,https://doi.org/10.5194/acp-16-14495-2016, 2016
Short summary
Implementation of warm-cloud processes in a source-oriented WRF/Chem model to study the effect of aerosol mixing state on fog formation in the Central Valley of California
Hsiang-He Lee, Shu-Hua Chen, Michael J. Kleeman, Hongliang Zhang, Steven P. DeNero, and David K. Joe
Atmos. Chem. Phys., 16, 8353–8374, https://doi.org/10.5194/acp-16-8353-2016,https://doi.org/10.5194/acp-16-8353-2016, 2016
Short summary

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Aerosol dynamics and dispersion of radioactive particles
Pontus von Schoenberg, Peter Tunved, Håkan Grahn, Alfred Wiedensohler, Radovan Krejci, and Niklas Brännström
Atmos. Chem. Phys., 21, 5173–5193, https://doi.org/10.5194/acp-21-5173-2021,https://doi.org/10.5194/acp-21-5173-2021, 2021
Short summary
Development and intercity transferability of land-use regression models for predicting ambient PM10, PM2.5, NO2 and O3 concentrations in northern Taiwan
Zhiyuan Li, Kin-Fai Ho, Hsiao-Chi Chuang, and Steve Hung Lam Yim
Atmos. Chem. Phys., 21, 5063–5078, https://doi.org/10.5194/acp-21-5063-2021,https://doi.org/10.5194/acp-21-5063-2021, 2021
Short summary
Constraints on global aerosol number concentration, SO2 and condensation sink in UKESM1 using ATom measurements
Ananth Ranjithkumar, Hamish Gordon, Christina Williamson, Andrew Rollins, Kirsty Pringle, Agnieszka Kupc, Nathan Luke Abraham, Charles Brock, and Ken Carslaw
Atmos. Chem. Phys., 21, 4979–5014, https://doi.org/10.5194/acp-21-4979-2021,https://doi.org/10.5194/acp-21-4979-2021, 2021
Short summary
Turbulence-permitting air pollution simulation for the Stuttgart metropolitan area
Thomas Schwitalla, Hans-Stefan Bauer, Kirsten Warrach-Sagi, Thomas Bönisch, and Volker Wulfmeyer
Atmos. Chem. Phys., 21, 4575–4597, https://doi.org/10.5194/acp-21-4575-2021,https://doi.org/10.5194/acp-21-4575-2021, 2021
Short summary
Temporally resolved sectoral and regional contributions to air pollution in Beijing: informing short-term emission controls
Tabish Umar Ansari, Oliver Wild, Edmund Ryan, Ying Chen, Jie Li, and Zifa Wang
Atmos. Chem. Phys., 21, 4471–4485, https://doi.org/10.5194/acp-21-4471-2021,https://doi.org/10.5194/acp-21-4471-2021, 2021
Short summary

Cited articles

Ackermann, I. J., Hass, H., Memmesheimer, M., Ebel, A., Binkowski, F. S., and Shankar, U.: Modal aerosol dynamics model for Europe: development and first applications, Atmos. Environ., 32, 2981–2999, https://doi.org/10.1016/S1352-2310(98)00006-5, 1998.
BPS: Statistik Indonesia-Statistical Yearbook of Indonesia, Badan Pusat Statistik, 2009.
Breiman, L.: Random Forests, Machine Learning, 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001.
Burnett, R. T., Pope III, C. A., Ezzati, M., Olives, C., Lim, S. S., Mehta, S., Shin, H. H., Singh, G., Hubbell, B., and Brauer, M.: An integrated risk function for estimating the global burden of disease attributable to ambient fine particulate matter exposure, Environ. Health Pers., 122, 397, doi:10.1289/ehp.1307049, 2014.
Chen, T.-M., Kuschner, W. G., Gokhale, J., and Shofer, S.: Outdoor air pollution: ozone health effects, Am. J. Med. Sci., 333, 244–248, 2007.
Download
Short summary
Our study shows that across ASEAN 50 cities, these model results reveal that 39 % of observed low-visibility days can be explained by either fossil fuel burning or biomass burning emissions alone, a further 20 % by fossil fuel burning alone, a further 8 % by biomass burning alone, and a further 5 % by a combination of fossil fuel burning and biomass burning. The remaining 28 % of observed low-visibility days remains unexplained, likely due to emissions sources that have not been accounted for.
Altmetrics
Final-revised paper
Preprint