Supplement of Atmos. Chem. Phys., 18, 6141-6156, 2018 Atm Ospheric
https://doi.org/10.5194/acp-18-6141-2018-supplement .

© Author(s) 2018. This work is distributed under Chemistry
the Creative Commons Attribution 4.0 License. and PhySiCS

Supplement of

Impacts of air pollutants from fire and non-fire emissions on the regional
air quality in Southeast Asia

Hsiang-He Lee et al.

Correspondence to: Hsiang-He Lee (hsiang-he @smart.mit.edu)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.



S1. Uncertainty analysis of modeled LVDs

Since a full-scale forward-integrating uncertainty analysis based on WRF-Chem model
would extremely expensive computationally, we have adopted a method for dichotomous
(yes or no LVDs) cases and then give a contingency table (Table S6) to address model
evaluation and to quantify model performance.

We have estimated accuracy based on the Eq. (S1):

hits+correct negatives

Accuracy = (S1)

hits+misses+false alarms+correct negatives

Accuracy here is also called fraction correct, which is easy to evaluate model prediction.
However, it can be misleading for some cases since it is heavily influenced by the most
common category, usually "no event" in the case of LVD. Hence, we have provided threat
score in this study as well. Based on the equation of threat score (or critical success index),
we can measure the fraction of observed and/or modeled LVDs that were correctly predicted.
Threat score also can be referred as the accuracy when correct negatives have been removed

from consideration, that is, threat score only concerns modeled LVDs that count.

hits
hits+misses+false alarms

Threat Score = (S2)

Figure S8 shows the mean value of accuracy and threat score of modeled LVDs among
50 ASEAN cities in three experiments: FF, BB, and FFBB. Since the category of correct
negatives is heavily counted in the accuracy, the values are also twice as high as the
threat scores. Basically, BB has the lowest threat score while FFBB has the highest

score as expected.



S2. The impact of fire and non-fire aerosols on regional climate

Besides influencing surface and air temperature through scattering and absorbing solar
radiation, aerosols can also alter the spatiotemporal patterns of precipitation via aerosol
direct and indirect effects (Wang, 2015). Over the modeled domain, rainfall (in quantity)
mainly comes from convective clouds. When the model is configured with a relatively
coarse resolution as adopted in our study, however, the convective precipitation process is
calculated through the cumulus parameterization of the model, which follows a mass-flux
approach to diagnose rainfall and does not interact with aerosols. Despite of this drawback,
aerosols can still influence the radiation budget through their direct effect. The
thermodynamic consequences of this effect can further influence the cloud formation. On
the other hand, the model does contain aerosol-cloud microphysical interaction for
stratiform clouds; therefore, aerosols can influence these clouds through the so-called
indirect effects by providing cloud condensation nuclei for cloud droplets to form. Hence,
cumulus rainfall can be still affected indirectly through dynamical and thermodynamic
processes initiated by either aerosol direct effects, indirect effects in stratiform clouds, or
both.

By comparing the precipitation in FF and FFBB, we have examined the impact of the
extra forcing from fire aerosols on precipitation in the modeled Southeast Asia domain
(10°S-20°N in latitude, 90°E—-150°E in longitude). Non-fire aerosols provide a baseline
pattern because of the persistency of fossil fuel emissions, while biomass burning emissions
load additional aerosols in the air to alter total aerosol radiative forcing, which then would
change precipitation. Through aerosol direct and indirect effects, the difference of monthly
regional mean downward shortwave radiation at surface is 8.8 W m™(232.6 W m™ in FF

versus 223.8 W m™” in FEBB; Fig. S9). The data are calculated over land only. Owing to



the reduction of surface incoming solar radiation by fire aerosols, surface skin temperature is
0.2 K lower in FFBB than in FF (Fig. S10). Lower surface temperature brought by fire
aerosols would suppress convection (Berg et al., 2013). As a result, the model produced a
lower monthly regional mean precipitation in FFBB than in FF by 0.2 mm day™ over land
(11.15 mm day" versus 11.35 mm day'; Fig. S11), with the most substantial rainfall
changes occurring in the fire emission regions of Sumatra and Borneo. We also find higher
cloud water mass in FFBB, which has stronger radiative forcing than aerosols.

Nevertheless, further study using a cloud-resolving simulation is necessary.



Table S1. Equations for the calculation of 24-hr average PM concentration (ug m™) based
on Air Quality Index (AQI) number obtained from the website of Ministry of Natural
Resources and Environment, Department of Environment, Malaysia (Malaysia, 2000).

AQI Equation

0-50 PM10 = AQI
51-100 PM;p = (AQI-50)x2+50
101 —200 PM,p = (AQI-100)x2+150
201 —-300 PM; = (AQI-200)/1.4286+350
301 —400 PM;y = (AQI-300)/1.25+420
401 — 500 PM ;o = (AQI-400)+500




Table S2. Sampling period of Surface PARTiculate mAtter Network (SPARTAN) stations
in Southeast Asia and available compositional features.

Available period Composition
Hanoi May 2015 — present
PM, 5, Ammoniated Sulfate, Ammonium
Singapore July 2015 — present Nitrate, Crustal Material, Residual
Material, Sea Salt, Equivalent Black
Bandung January 2014 — present Carbon, Trace Element Oxides, Particle-
Bound Water (RH=0.35)
Manila February 2014 — present




Table S3. Mean annual emissions and modeled concentration of BC, OC, SO,, CO and NO,
from 2006 REAS and EDGAR emission inventories in the simulated domain.

REAS EDGAR

Emissions Modeled conc. Emissions Modeled conc.

(Tg/year) (ug/m’ or ppmv) (Tg/year) (ug/m’ or ppmv)
ocC 0.12 0.1131 0.15 0.1487
BC 0.036 0.0311 0.065 0.0643
SO, 0.43 1.03x10-* 0.65 2.01x10*
NO, 0.3 4.94x104 0.205 4.83x104
CO 3.53 8.10x102 7.48 8.72x102




Table S4. Comparison of the Air Quality Index (AQI) values with level of pollution index
category and breakpoints for AQI derived from modeled 24-hr PM, 5 (ug m™) and modeled

9-hr O3 (ppb).

Index Category AQI 24-hr PM, 5 (ug/m’) 9-hr O3 (ppb)
Good 0-50 0.0-12.0 0-59
Moderate 51-100 12.1-354 60 —75
Unhealthy 101 — 200 355-1504 76 - 115
Very Unhealthy 201 - 300 150.5-250.4 116 — 374
Hazardous 301 —400 250.5-3504 /
Hazardous 401 - 500 350.5-500.4 /




Table S5. Features are used to train Machine Learning algorithms for Changi, Seletar and

Paya Labar data.

Features for Changi Features for Seletar and Paya Labar
Hotspot count in mainland Southeast Asia (HS_M) Hotspot count in mainland Southeast Asia (HS_M)
Hotspot count in Sumatra (HS_S) Hotspot count in Sumatra (HS_S)
Hotspot count in Borneo (HS_B) Hotspot count in Borneo (HS_B)
Month (Month) Month (Month)
Wind direction (WD) Wind direction (WD)
Weather condition® (SRV) Weather condition® (SRV)
Classified precipitation® (PPT) Classified wind speed® (WS)
Classified wind speed® (WS) Classified relative humidity® (RH)
Classified relative humidity® (RH) 5-day continuous rainfall in mainland Southeast Asia (SPPT_M)
Classified pressure’ (Pres) 5-day continuous rainfall in Sumatra (SPPT_S)
Classified dew point" (Dtemp) 5-day continuous rainfall in Borneo (5PPT_B)
Classified temperature® (Temp) 10-day continuous rainfall in mainland Southeast Asia (10PPT_M)

5-day continuous rainfall in mainland Southeast Asia (SPPT_M) 10-day continuous rainfall in Sumatra (10PPT_S)
5-day continuous rainfall in Sumatra (SPPT_S) 10-day continuous rainfall in Borneo (10PPT_B)
5-day continuous rainfall in Borneo (SPPT_S)

10-day continuous rainfall in mainland Southeast Asia (10PPT_M)

10-day continuous rainfall in Sumatra (10PPT_S)

10-day continuous rainfall in Borneo (10PPT_B)

“Based on Allwine and Whiteman (1994) to classify weather condition to recirculation, ventilation, and
stagnation.

bPlrecipitation has been classified into 3 categories and the breakpoints are 0 and 100 mm day™.

‘Wind speed has been classified into 3 categories and the breakpoints are 5 and 10 m sec™.

YRelative humidity has been classified into 4 categories and the breakpoints are 70, 80, and 90%.
‘Pressure has been classified into 3 categories and the breakpoints are 1005 and 1010 mb.

‘Dew point has been classified into 3 categories and the breakpoints are 24 and 26°C.

fTemperature has been classified into 4 categories and the breakpoints are 25, 27.8, and 29°C.



Table S6. Contingency table for dichotomous (yes or no LVDs) cases

Observed LVD

yes no

yes hits false alarms
Modeled
LVD
. correct
no misses .
negaftives
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Figure S1. Pie chart of chemical components of PM; 5 from the Surface PARTiculate mAtter
Network (SPARTAN) filter samples in (a) Hanoi (Vietnam), (b) Singapore (Singapore), (c)
Bandung (Indonesia), and (d) Manila (Philippines).
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Figure S2. Time serious of domain averaged monthly (a) black carbon (BC), (b) organic
carbon (OC), (c) carbon monoxide (CO), (d) sulfur dioxide (SO,) and (e) nitrogen dioxide
(NO,) emission (Tg year') from biomass burning (BB; red lines) and fossil fuel (FF; green
lines) emission inventories during 2002-2008.
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Figure S3. Premature mortality in different years from 2002 to 2008 and cities in
Association of Southeast Asian Nations (ASEAN) due to exposures PMys in FF (95%
confidence intervals). Colors from green to red represent relative number scale.
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Figure S4. Same as Fig. S3 but PM,sin BB.
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visibility as a breakpoint) and one 3-class classifications haze prediction in (a) Changi, (b)
Paya Labar, and (c) Seletar.
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Figure S6. Feature importance by using 2-class classification Random Forest algorithm for
(a) Changi, (b) Paya Labar, and (c) Seletar data. Desired outputs, haze versus non-haze
events, are defined by using visibility 7 km as a breakpoint. Full name of each input feature
are listed in Table S5.
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Figure S7. Feature importance by using 3-class classification Random Forest algorithm for
(a) Changi, (b) Paya Labar, and (c) Seletar data. Desired outputs, severe haze, haze, and
non-haze events, are defined by using visibility 7 and 10 km as breakpoints. Full name of
each input feature are listed in Table S5.
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Figure S8. The mean value of accuracy and Threat score of modeled LVDs among 50
ASEAN cities in three experiment, FF, BB, and FFBB.
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Figure S9. Total monthly mean downward shortwave radiation (W m™) between FFBB and
FF (FFBB-FF) simulations during 2002-2008. Black dots indicate differences that are
statistically significant at a significance level of ag: = 0.05 after controlling for the false
discovery rate (FDR) (Benjamini and Hochberg, 1995; Wilks, 2016). The two-tailed p-
values are generated by Welch’s t-test, using monthly mean data as the input. The
approximate p-value threshold, p_fdr, area mean and standard deviation (over land only) are
recorded in the map above.
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Figure S10. Total monthly mean surface skin temperature (K) between FFBB and FF
(FFBB-FF) simulations during 2002-2008. Black dots indicate differences that are
statistically significant at a significance level of og: = 0.05 after controlling for the false
discovery rate (FDR) (Benjamini and Hochberg, 1995; Wilks, 2016). The two-tailed p-
values are generated by Welch’s t-test, using monthly mean data as the input. The
approximate p-value threshold, p_fdr, area mean and standard deviation (over land only) are
recorded in the map above.
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Rainfall difference (FFBB-FF)
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Figure S11. Total monthly mean precipitation differences (mm day™') between FFBB and FF
simulations during 2002-2008. Black dot indicates differences that are statistically
significant at a significance level of as, = 0.05 after controlling the false discovery rate
(FDR) (Benjamini and Hochberg, 1995; Wilks, 2016). The two-tailed p values are generated
by Welch’s t test, using monthly mean data as the input. The approximate p value threshold,
p_fdr, and area mean and standard deviation (over land only) are written in above the map.
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