Articles | Volume 18, issue 22
Atmos. Chem. Phys., 18, 16213–16237, 2018
https://doi.org/10.5194/acp-18-16213-2018

Special issue: Advanced Global Navigation Satellite Systems tropospheric...

Atmos. Chem. Phys., 18, 16213–16237, 2018
https://doi.org/10.5194/acp-18-16213-2018
Research article
15 Nov 2018
Research article | 15 Nov 2018

Global IWV trends and variability in atmospheric reanalyses and GPS observations

Ana C. Parracho et al.

Related authors

Consistency and representativeness of integrated water vapour from ground-based GPS observations and ERA-Interim reanalysis
Olivier Bock and Ana C. Parracho
Atmos. Chem. Phys., 19, 9453–9468, https://doi.org/10.5194/acp-19-9453-2019,https://doi.org/10.5194/acp-19-9453-2019, 2019
Short summary
Skin temperature from the Thermal Infrared Sounder IASI
Sarah Safieddine, Ana Claudia Parracho, Maya George, Filipe Aires, Victor Pellet, Lieven Clarisse, Simon Whitburn, Olivier Lezeaux, Jean-Noel Thepaut, Hans Hersbach, Gabor Radnoti, Frank Goettsche, Maria Martin, Marie Doutriaux Boucher, Dorothee Coppens, Thomas August, and Cathy Clerbaux
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2019-185,https://doi.org/10.5194/amt-2019-185, 2019
Preprint withdrawn
Short summary
Impact of humidity biases on light precipitation occurrence: observations versus simulations
Sophie Bastin, Philippe Drobinski, Marjolaine Chiriaco, Olivier Bock, Romain Roehrig, Clemente Gallardo, Dario Conte, Marta Domínguez Alonso, Laurent Li, Piero Lionello, and Ana C. Parracho
Atmos. Chem. Phys., 19, 1471–1490, https://doi.org/10.5194/acp-19-1471-2019,https://doi.org/10.5194/acp-19-1471-2019, 2019
Short summary
Where do the air masses between double tropopauses come from?
A. C. Parracho, C. A. F. Marques, and J. M. Castanheira
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-14-1349-2014,https://doi.org/10.5194/acpd-14-1349-2014, 2014
Revised manuscript not accepted

Related subject area

Subject: Gases | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
NH3 spatiotemporal variability over Paris, Mexico City, and Toronto, and its link to PM2.5 during pollution events
Camille Viatte, Rimal Abeed, Shoma Yamanouchi, William C. Porter, Sarah Safieddine, Martin Van Damme, Lieven Clarisse, Beatriz Herrera, Michel Grutter, Pierre-Francois Coheur, Kimberly Strong, and Cathy Clerbaux
Atmos. Chem. Phys., 22, 12907–12922, https://doi.org/10.5194/acp-22-12907-2022,https://doi.org/10.5194/acp-22-12907-2022, 2022
Short summary
Multi-axis differential optical absorption spectroscopy (MAX-DOAS) observations of formaldehyde and nitrogen dioxide at three sites in Asia and comparison with the global chemistry transport model CHASER
Hossain Mohammed Syedul Hoque, Kengo Sudo, Hitoshi Irie, Alessandro Damiani, Manish Naja, and Al Mashroor Fatmi
Atmos. Chem. Phys., 22, 12559–12589, https://doi.org/10.5194/acp-22-12559-2022,https://doi.org/10.5194/acp-22-12559-2022, 2022
Short summary
Quantifying CH4 emissions in hard coal mines from TROPOMI and IASI observations using the wind-assigned anomaly method
Qiansi Tu, Matthias Schneider, Frank Hase, Farahnaz Khosrawi, Benjamin Ertl, Jaroslaw Necki, Darko Dubravica, Christopher J. Diekmann, Thomas Blumenstock, and Dianjun Fang
Atmos. Chem. Phys., 22, 9747–9765, https://doi.org/10.5194/acp-22-9747-2022,https://doi.org/10.5194/acp-22-9747-2022, 2022
Short summary
Estimation of surface ammonia concentrations and emissions in China from the polar-orbiting Infrared Atmospheric Sounding Interferometer and the FY-4A Geostationary Interferometric Infrared Sounder
Pu Liu, Jia Ding, Lei Liu, Wen Xu, and Xuejun Liu
Atmos. Chem. Phys., 22, 9099–9110, https://doi.org/10.5194/acp-22-9099-2022,https://doi.org/10.5194/acp-22-9099-2022, 2022
Short summary
Interannual variability in the Australian carbon cycle over 2015–2019, based on assimilation of Orbiting Carbon Observatory-2 (OCO-2) satellite data
Yohanna Villalobos, Peter J. Rayner, Jeremy D. Silver, Steven Thomas, Vanessa Haverd, Jürgen Knauer, Zoë M. Loh, Nicholas M. Deutscher, David W. T. Griffith, and David F. Pollard
Atmos. Chem. Phys., 22, 8897–8934, https://doi.org/10.5194/acp-22-8897-2022,https://doi.org/10.5194/acp-22-8897-2022, 2022
Short summary

Cited articles

Bauer, P.: 4D-Var assimilation of MERIS total column water-vapour retrievals over land, Q. J. Roy. Meteor. Soc., 135, 1852–1862, https://doi.org/10.1002/qj.509, 2009. 
Bock, O.: GPS data: Daily and monthly reprocessed IWV data from 120 global GPS stations, version 1.2, https://doi.org/10.14768/06337394-73a9-407c-9997-0e380dac5591, 2016. 
Bock, O., Keil, C., Richard, E., Flamant, C., and Bouin, M. N.: Validation of precipitable water from ECMWF model analyses with GPS and radiosonde data during the MAP SOP, Q. J. Roy. Meteor. Soc., 131, 3013–3036, 2005. 
Bock, O., Bouin, M. N., Walpersdorf, A., Lafore, J. P., Janicot, S., and Guichard, F.: Comparison of GPS precipitable water vapour to independent observations and Numerical Weather Prediction model reanalyses over Africa, Q. J. Roy. Meteor. Soc., 133, 2011–2027, https://doi.org/10.1002/qj.185, 2007. 
Bock, O., Willis, P., Wang, J., and Mears, C.: A high-quality, homogenized, global, long-term (1993–2008) DORIS precipitable water data set for climate monitoring and model verification, J. Geophys. Res.-Atmos., 119, 7209–7230, https://doi.org/10.1002/2013JD021124, 2014. 
Download
Short summary
Integrated water vapour from GPS observations and two modern atmospheric reanalyses were compared for 1995–2010. Means, variability and trend signs were in general good agreement. Regions and GPS stations with poor agreement were investigated further. Representativeness issues, uncertainties in reanalyses, and inhomogeneities in GPS were evidenced. Reanalyses were compared for an extended period, and a focus on north Africa and Australia highlighted the impact of dynamics on water vapour trends.
Altmetrics
Final-revised paper
Preprint