Articles | Volume 18, issue 16
Atmos. Chem. Phys., 18, 11813–11829, 2018
https://doi.org/10.5194/acp-18-11813-2018
Atmos. Chem. Phys., 18, 11813–11829, 2018
https://doi.org/10.5194/acp-18-11813-2018

Research article 20 Aug 2018

Research article | 20 Aug 2018

Implementing microscopic charcoal particles into a global aerosol–climate model

Anina Gilgen et al.

Related authors

Effects of land use and anthropogenic aerosol emissions in the Roman Empire
Anina Gilgen, Stiig Wilkenskjeld, Jed O. Kaplan, Thomas Kühn, and Ulrike Lohmann
Clim. Past, 15, 1885–1911, https://doi.org/10.5194/cp-15-1885-2019,https://doi.org/10.5194/cp-15-1885-2019, 2019
Short summary
How important are future marine and shipping aerosol emissions in a warming Arctic summer and autumn?
Anina Gilgen, Wan Ting Katty Huang, Luisa Ickes, David Neubauer, and Ulrike Lohmann
Atmos. Chem. Phys., 18, 10521–10555, https://doi.org/10.5194/acp-18-10521-2018,https://doi.org/10.5194/acp-18-10521-2018, 2018
Short summary

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Seasonal variation in atmospheric pollutants transport in central Chile: dynamics and consequences
Rémy Lapere, Laurent Menut, Sylvain Mailler, and Nicolás Huneeus
Atmos. Chem. Phys., 21, 6431–6454, https://doi.org/10.5194/acp-21-6431-2021,https://doi.org/10.5194/acp-21-6431-2021, 2021
Short summary
Non-equilibrium interplay between gas–particle partitioning and multiphase chemical reactions of semi-volatile compounds: mechanistic insights and practical implications for atmospheric modeling of polycyclic aromatic hydrocarbons
Jake Wilson, Ulrich Pöschl, Manabu Shiraiwa, and Thomas Berkemeier
Atmos. Chem. Phys., 21, 6175–6198, https://doi.org/10.5194/acp-21-6175-2021,https://doi.org/10.5194/acp-21-6175-2021, 2021
Short summary
Aerosol acidity and liquid water content regulate the dry deposition of inorganic reactive nitrogen
Athanasios Nenes, Spyros N. Pandis, Maria Kanakidou, Armistead G. Russell, Shaojie Song, Petros Vasilakos, and Rodney J. Weber
Atmos. Chem. Phys., 21, 6023–6033, https://doi.org/10.5194/acp-21-6023-2021,https://doi.org/10.5194/acp-21-6023-2021, 2021
Short summary
Enhanced light absorption and reduced snow albedo due to internally mixed mineral dust in grains of snow
Tenglong Shi, Jiecan Cui, Yang Chen, Yue Zhou, Wei Pu, Xuanye Xu, Quanliang Chen, Xuelei Zhang, and Xin Wang
Atmos. Chem. Phys., 21, 6035–6051, https://doi.org/10.5194/acp-21-6035-2021,https://doi.org/10.5194/acp-21-6035-2021, 2021
Short summary
Coral-reef-derived dimethyl sulfide and the climatic impact of the loss of coral reefs
Sonya L. Fiddes, Matthew T. Woodhouse, Todd P. Lane, and Robyn Schofield
Atmos. Chem. Phys., 21, 5883–5903, https://doi.org/10.5194/acp-21-5883-2021,https://doi.org/10.5194/acp-21-5883-2021, 2021
Short summary

Cited articles

Abdul-Razzak, H. and Ghan, S. J.: A parameterization of aerosol activation: 2. Multiple aerosol types, J. Geophys. Res.-Atmos., 105, 6837–6844, https://doi.org/10.1029/1999JD901161, 2000. a
Adolf, C., Wunderle, S., Colombaroli, D., Weber, H., Gobet, E., Heiri, O., van Leeuwen, J. F. N., Bigler, C., Connor, S. E., Gałka, M., La Mantia, T., Makhortykh, S., Svitavská-Svobodová, H., Vannière, B., and Tinner, W.: The sedimentary and remote-sensing reflection of biomass burning in Europe, Global Ecol. Biogeogr., 27, 199–212, https://doi.org/10.1111/geb.12682, 2018. a, b, c, d
Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S., Karl, T., Crounse, J. D., and Wennberg, P. O.: Emission factors for open and domestic biomass burning for use in atmospheric models, Atmos. Chem. Phys., 11, 4039–4072, https://doi.org/10.5194/acp-11-4039-2011, 2011. a, b
Andreae, M. O. and Merlet, P.: Emission of trace gases and aerosols from biomass burning, Global Biogeochem. Cy., 15, 955–966, https://doi.org/10.1029/2000GB001382, 2001. a
Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., DeAngelo, B. J., Flanner, M. G., Ghan, S., Kärcher, B., Koch, D., Kinne, S., Kondo, Y., Quinn, P. K., Sarofim, M. C., Schultz, M. G., Schulz, M., Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S. K., Hopke, P. K., Jacobson, M. Z., Kaiser, J. W., Klimont, Z., Lohmann, U., Schwarz, J. P., Shindell, D., Storelvmo, T., Warren, S. G., and Zender, C. S.: Bounding the role of black carbon in the climate system: A scientific assessment, J. Geophys. Res.-Atmos., 118, 5380–5552, https://doi.org/10.1002/jgrd.50171, 2013. a
Download
Short summary
Microscopic charcoal particles are fire-specific tracers, which are presently the primary source for reconstructing past fire activity. In this study, we implement microscopic charcoal particles into a global aerosol–climate model to better understand the transport of charcoal on a large scale. We find that the model captures a significant portion of the spatial variability but fails to reproduce the extreme variability observed in the charcoal data.
Altmetrics
Final-revised paper
Preprint