Articles | Volume 17, issue 1
https://doi.org/10.5194/acp-17-691-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-17-691-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Atmospheric moisture supersaturation in the near-surface atmosphere at Dome C, Antarctic Plateau
Christophe Genthon
CORRESPONDING AUTHOR
Univ. Grenoble Alpes, CNRS, IRD, IGE, 38000, Grenoble, France
Luc Piard
Univ. Grenoble Alpes, CNRS, IRD, IGE, 38000, Grenoble, France
Etienne Vignon
Univ. Grenoble Alpes, CNRS, IRD, IGE, 38000, Grenoble, France
Jean-Baptiste Madeleine
Sorbonne Universités, UPMC Univ. Paris 06, UMR 8539, Laboratoire de
Météorologie Dynamique (IPSL), 75005, Paris, France
CNRS, UMR 8539, Laboratoire de Météorologie Dynamique (IPSL), 75005, Paris, France
Mathieu Casado
LSCE-IPSL, CEA-CNRS-UVSQ-U. Paris-Saclay, Gif-sur-Yvette, France
Hubert Gallée
Univ. Grenoble Alpes, CNRS, IRD, IGE, 38000, Grenoble, France
Related authors
Inès Ollivier, Hans Christian Steen-Larsen, Barbara Stenni, Laurent Arnaud, Mathieu Casado, Alexandre Cauquoin, Giuliano Dreossi, Christophe Genthon, Bénédicte Minster, Ghislain Picard, Martin Werner, and Amaëlle Landais
EGUsphere, https://doi.org/10.5194/egusphere-2024-685, https://doi.org/10.5194/egusphere-2024-685, 2024
Short summary
Short summary
The role of post-depositional processes taking place at the ice sheet's surface on the water stable isotope signal measured in polar ice cores is not fully understood. Using field observations and modelling results, we show that the original precipitation isotopic signal at Dome C, East Antarctica, is modified by post-depositional processes and provide the first quantitative estimation of their mean impact on the isotopic signal observed in the snow.
Valentin Wiener, Marie-Laure Roussel, Christophe Genthon, Étienne Vignon, Jacopo Grazioli, and Alexis Berne
Earth Syst. Sci. Data, 16, 821–836, https://doi.org/10.5194/essd-16-821-2024, https://doi.org/10.5194/essd-16-821-2024, 2024
Short summary
Short summary
This paper presents 7 years of data from a precipitation radar deployed at the Dumont d'Urville station in East Antarctica. The main characteristics of the dataset are outlined in a short statistical study. Interannual and seasonal variability are also investigated. Then, we extensively describe the processing method to retrieve snowfall profiles from the radar data. Lastly, a brief comparison is made with two climate models as an application example of the dataset.
Étienne Vignon, Lea Raillard, Christophe Genthon, Massimo Del Guasta, Andrew J. Heymsfield, Jean-Baptiste Madeleine, and Alexis Berne
Atmos. Chem. Phys., 22, 12857–12872, https://doi.org/10.5194/acp-22-12857-2022, https://doi.org/10.5194/acp-22-12857-2022, 2022
Short summary
Short summary
The near-surface atmosphere over the Antarctic Plateau is cold and pristine and resembles to a certain extent the high troposphere where cirrus clouds form. In this study, we use innovative humidity measurements at Concordia Station to study the formation of ice fogs at temperatures <−40°C. We provide observational evidence that ice fogs can form through the homogeneous freezing of solution aerosols, a common nucleation pathway for cirrus clouds.
Christophe Genthon, Dana E. Veron, Etienne Vignon, Jean-Baptiste Madeleine, and Luc Piard
Earth Syst. Sci. Data, 14, 1571–1580, https://doi.org/10.5194/essd-14-1571-2022, https://doi.org/10.5194/essd-14-1571-2022, 2022
Short summary
Short summary
The surface atmosphere of the high Antarctic Plateau is very cold and clean. Such conditions favor water vapor supersaturation. A 3-year quasi-continuous series of atmospheric moisture in a ~40 m atmospheric layer at Dome C is reported that documents time variability, vertical profiles and occurrences of supersaturation. Supersaturation with respect to ice is frequently observed throughout the column, with relative humidities occasionally reaching values near liquid water saturation.
Christophe Genthon, Dana Veron, Etienne Vignon, Delphine Six, Jean-Louis Dufresne, Jean-Baptiste Madeleine, Emmanuelle Sultan, and François Forget
Earth Syst. Sci. Data, 13, 5731–5746, https://doi.org/10.5194/essd-13-5731-2021, https://doi.org/10.5194/essd-13-5731-2021, 2021
Short summary
Short summary
A 10-year dataset of observation in the atmospheric boundary layer at Dome C on the high Antarctic plateau is presented. This is obtained with sensors at six levels along a tower higher than 40 m. The temperature inversion can reach more than 25 °C along the tower in winter, while full mixing by convection can occur in summer. Different amplitudes of variability for wind and temperature at the different levels reflect different signatures of solar vs. synoptic forcing of the boundary layer.
Marie-Laure Roussel, Florentin Lemonnier, Christophe Genthon, and Gerhard Krinner
The Cryosphere, 14, 2715–2727, https://doi.org/10.5194/tc-14-2715-2020, https://doi.org/10.5194/tc-14-2715-2020, 2020
Short summary
Short summary
The Antarctic precipitation is evaluated against space radar data in the most recent climate model intercomparison CMIP6 and reanalysis ERA5. The seasonal cycle is mostly well reproduced, but relative errors are higher in areas of complex topography, particularly in the higher-resolution models. At continental and regional scales all results are biased high, with no significant progress in the more recent models. Predicting Antarctic contribution to sea level still requires model improvements.
Florentin Lemonnier, Alizée Chemison, Hubert Gallée, Gerhard Krinner, Jean-Baptiste Madeleine, Chantal Claud, and Christophe Genthon
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-167, https://doi.org/10.5194/tc-2020-167, 2020
Manuscript not accepted for further review
Short summary
Short summary
This study presents the first evaluation from snowfall observations in Antarctica of the general circulation model LMDz (global), the atmospheric component of the coupled IPSL Climate Model that is part of CMIP6 (IPCC). We also present an evaluation of the new version of the MAR model (regional), considered as a reference in terms of polar climate modelling. Both models show satisfying results for the modelling of precipitation in Antarctica.
Claudio Durán-Alarcón, Brice Boudevillain, Christophe Genthon, Jacopo Grazioli, Niels Souverijns, Nicole P. M. van Lipzig, Irina V. Gorodetskaya, and Alexis Berne
The Cryosphere, 13, 247–264, https://doi.org/10.5194/tc-13-247-2019, https://doi.org/10.5194/tc-13-247-2019, 2019
Short summary
Short summary
Precipitation is the main input in the surface mass balance of the Antarctic ice sheet, but it is still poorly understood due to a lack of observations in this region. We analyzed the vertical structure of the precipitation using multiyear observation of vertically pointing micro rain radars (MRRs) at two stations located in East Antarctica. The use of MRRs showed the potential to study the effect of climatology and hydrometeor microphysics on the vertical structure of Antarctic precipitation.
Christophe Genthon, Alexis Berne, Jacopo Grazioli, Claudio Durán Alarcón, Christophe Praz, and Brice Boudevillain
Earth Syst. Sci. Data, 10, 1605–1612, https://doi.org/10.5194/essd-10-1605-2018, https://doi.org/10.5194/essd-10-1605-2018, 2018
Short summary
Short summary
Antarctica suffers from a severe shortage of in situ observations of precipitation. The APRES3 program contributes to improving observation from both the surface and from space. A field campaign with various instruments was deployed at the coast of Adélie Land, with an intensive observing period in austral summer 2015–16, then continuous radar monitoring through 2016 and beyond. This paper provides a compact presentation of the APRES3 dataset, which is now made open to the scientific community.
Mathieu Casado, Amaelle Landais, Ghislain Picard, Thomas Münch, Thomas Laepple, Barbara Stenni, Giuliano Dreossi, Alexey Ekaykin, Laurent Arnaud, Christophe Genthon, Alexandra Touzeau, Valerie Masson-Delmotte, and Jean Jouzel
The Cryosphere, 12, 1745–1766, https://doi.org/10.5194/tc-12-1745-2018, https://doi.org/10.5194/tc-12-1745-2018, 2018
Short summary
Short summary
Ice core isotopic records rely on the knowledge of the processes involved in the archival processes of the snow. In the East Antarctic Plateau, post-deposition processes strongly affect the signal found in the surface and buried snow compared to the initial climatic signal. We evaluate the different contributions to the surface snow isotopic composition between the precipitation and the exchanges with the atmosphere and the variability of the isotopic signal found in profiles from snow pits.
Jacopo Grazioli, Christophe Genthon, Brice Boudevillain, Claudio Duran-Alarcon, Massimo Del Guasta, Jean-Baptiste Madeleine, and Alexis Berne
The Cryosphere, 11, 1797–1811, https://doi.org/10.5194/tc-11-1797-2017, https://doi.org/10.5194/tc-11-1797-2017, 2017
Short summary
Short summary
We present medium and long-term measurements of precipitation in a coastal region of Antarctica. These measurements are among the first of their kind on the Antarctic continent and combine remote sensing with in situ observations. The benefits of this synergy are demonstrated and the lessons learned from this measurements, which are still ongoing, are very important for the creation of similar observatories elsewhere on the continent.
Mathieu Casado, Amaelle Landais, Valérie Masson-Delmotte, Christophe Genthon, Erik Kerstel, Samir Kassi, Laurent Arnaud, Ghislain Picard, Frederic Prie, Olivier Cattani, Hans-Christian Steen-Larsen, Etienne Vignon, and Peter Cermak
Atmos. Chem. Phys., 16, 8521–8538, https://doi.org/10.5194/acp-16-8521-2016, https://doi.org/10.5194/acp-16-8521-2016, 2016
Short summary
Short summary
Climatic conditions in Concordia are very cold (−55 °C in average) and very dry, imposing difficult conditions to measure the water vapour isotopic composition. New developments in infrared spectroscopy enable now the measurement of isotopic composition in water vapour traces (down to 20 ppmv). Here we present the results results of a first campaign of measurement of isotopic composition of water vapour in Concordia, the site where the 800 000 years long ice core was drilled.
C. Amory, A. Trouvilliez, H. Gallée, V. Favier, F. Naaim-Bouvet, C. Genthon, C. Agosta, L. Piard, and H. Bellot
The Cryosphere, 9, 1373–1383, https://doi.org/10.5194/tc-9-1373-2015, https://doi.org/10.5194/tc-9-1373-2015, 2015
H. Gallée, S. Preunkert, S. Argentini, M. M. Frey, C. Genthon, B. Jourdain, I. Pietroni, G. Casasanta, H. Barral, E. Vignon, C. Amory, and M. Legrand
Atmos. Chem. Phys., 15, 6225–6236, https://doi.org/10.5194/acp-15-6225-2015, https://doi.org/10.5194/acp-15-6225-2015, 2015
Short summary
Short summary
Regional climate model MAR was run for the region of Dome C located on the East Antarctic plateau, during summer 2011–2012, with a high vertical resolution in the lower troposphere. MAR is generally in very good agreement with the observations and provides sufficiently reliable information about surface turbulent fluxes and vertical profiles of vertical diffusion coefficients when discussing the representativeness of chemical measurements made nearby the ground surface at Dome C.
H. Gallée, H. Barral, E. Vignon, and C. Genthon
Atmos. Chem. Phys., 15, 6237–6246, https://doi.org/10.5194/acp-15-6237-2015, https://doi.org/10.5194/acp-15-6237-2015, 2015
Short summary
Short summary
This is the first time that a low-level jet observed above the East Antarctic Plateau is simulated by a regional climate model. This paper illustrates in a 3-D simulation the respective influences of the large-scale pressure gradient force and turbulence on the onset of the low-level jet. As atmospheric turbulence plays a key role in explaining the behaviour of chemical tracers during the OPALE campaign, this paper also increases our confidence in using the outputs of the model for this purpose.
H. Barral, C. Genthon, A. Trouvilliez, C. Brun, and C. Amory
The Cryosphere, 8, 1905–1919, https://doi.org/10.5194/tc-8-1905-2014, https://doi.org/10.5194/tc-8-1905-2014, 2014
C. Palerme, J. E. Kay, C. Genthon, T. L'Ecuyer, N. B. Wood, and C. Claud
The Cryosphere, 8, 1577–1587, https://doi.org/10.5194/tc-8-1577-2014, https://doi.org/10.5194/tc-8-1577-2014, 2014
Giuliano Dreossi, Mauro Masiol, Barbara Stenni, Daniele Zannoni, Claudio Scarchilli, Virginia Ciardini, Mathieu Casado, Amaëlle Landais, Martin Werner, Alexandre Cauquoin, Giampietro Casasanta, Massimo Del Guasta, Vittoria Posocco, and Carlo Barbante
The Cryosphere, 18, 3911–3931, https://doi.org/10.5194/tc-18-3911-2024, https://doi.org/10.5194/tc-18-3911-2024, 2024
Short summary
Short summary
Oxygen and hydrogen stable isotopes have been extensively used to reconstruct past temperatures, with precipitation representing the input signal of the isotopic records in ice cores. We present a 10-year record of stable isotopes in daily precipitation at Concordia Station: this is the longest record for inland Antarctica and represents a benchmark for quantifying post-depositional processes and improving the paleoclimate interpretation of ice cores.
Thomas Lauwers, Elise Fourré, Olivier Jossoud, Daniele Romanini, Frédéric Prié, Giordano Nitti, Mathieu Casado, Kévin Jaulin, Markus Miltner, Morgane Farradèche, Valérie Masson-Delmotte, and Amaëlle Landais
EGUsphere, https://doi.org/10.5194/egusphere-2024-2149, https://doi.org/10.5194/egusphere-2024-2149, 2024
Short summary
Short summary
Water vapour isotopes are important tools to better understand processes governing the atmospheric hydrological cycle. In polar regions, their measurement helps to improve the interpretation of water isotopic records in ice cores. However, in situ water vapour isotopic monitoring is an important challenge, especially in dry places of East Antarctica. We present here an alternative laser spectroscopy technique adapted for such measurements, with a limit of detection down to 10 ppm humidity.
Mathieu Casado, Amaelle Landais, Tim Stoltmann, Justin Chaillot, Mathieu Daëron, Fréderic Prié, Baptiste Bordet, and Samir Kassi
Atmos. Meas. Tech., 17, 4599–4612, https://doi.org/10.5194/amt-17-4599-2024, https://doi.org/10.5194/amt-17-4599-2024, 2024
Short summary
Short summary
Measuring water isotopic composition in Antarctica is difficult because of the extremely cold temperature in winter. Here, we designed a new infrared spectrometer able to measure the vapour isotopic composition during more than 95 % of the year in the coldest locations of Antarctica, whereas current commercial instruments are only able to measure during the warm summer months in the interior.
Juan-Pedro Roldán-Blasco, Adrien Gilbert, Luc Piard, Florent Gimbert, Christian Vincent, Olivier Gagliardini, Anuar Togaibekov, Andrea Walpersdorf, and Nathan Maier
EGUsphere, https://doi.org/10.5194/egusphere-2024-1600, https://doi.org/10.5194/egusphere-2024-1600, 2024
Short summary
Short summary
The flow of glaciers and ice sheets is due to ice deformation and basal sliding driven by gravitational forces. Quantifying the rate at which ice deforms under its own weight is critical to assessing glacier evolution. This study uses borehole instrumentation in an Alpine glacier to quantify ice deformation and constrain its viscosity in a natural setting. Our results show that the viscosity of ice at 0° C is largely influenced by interstitial liquid water which enhances ice deformation.
Amaelle Landais, Cécile Agosta, Françoise Vimeux, Olivier Magand, Cyrielle Solis, Alexandre Cauquoin, Niels Dutrievoz, Camille Risi, Christophe Leroy-Dos Santos, Elise Fourré, Olivier Cattani, Olivier Jossoud, Bénédicte Minster, Frédéric Prié, Mathieu Casado, Aurélien Dommergue, Yann Bertrand, and Martin Werner
Atmos. Chem. Phys., 24, 4611–4634, https://doi.org/10.5194/acp-24-4611-2024, https://doi.org/10.5194/acp-24-4611-2024, 2024
Short summary
Short summary
We have monitored water vapor isotopes since January 2020 on Amsterdam Island in the Indian Ocean. We show 11 periods associated with abrupt negative excursions of water vapor δ18Ο. Six of these events show a decrease in gaseous elemental mercury, suggesting subsidence of air from a higher altitude. Accurately representing the water isotopic signal during these cold fronts is a real challenge for the atmospheric components of Earth system models equipped with water isotopes.
Inès Ollivier, Hans Christian Steen-Larsen, Barbara Stenni, Laurent Arnaud, Mathieu Casado, Alexandre Cauquoin, Giuliano Dreossi, Christophe Genthon, Bénédicte Minster, Ghislain Picard, Martin Werner, and Amaëlle Landais
EGUsphere, https://doi.org/10.5194/egusphere-2024-685, https://doi.org/10.5194/egusphere-2024-685, 2024
Short summary
Short summary
The role of post-depositional processes taking place at the ice sheet's surface on the water stable isotope signal measured in polar ice cores is not fully understood. Using field observations and modelling results, we show that the original precipitation isotopic signal at Dome C, East Antarctica, is modified by post-depositional processes and provide the first quantitative estimation of their mean impact on the isotopic signal observed in the snow.
Sara Bacer, Julien Beaumet, Martin Ménégoz, Hubert Gallée, Enzo Le Bouëdec, and Chantal Staquet
Weather Clim. Dynam., 5, 211–229, https://doi.org/10.5194/wcd-5-211-2024, https://doi.org/10.5194/wcd-5-211-2024, 2024
Short summary
Short summary
A model chain is used to downscale outputs from a climate model to the Grenoble valley atmosphere over the 21st century in order to study the impact of climate change on persistent cold-air pool episodes. We find that the atmosphere in the Grenoble valleys during these episodes tends to be slightly less stable in the future under the SSP5–8.5 scenario, and statistically unchanged under the SSP2–4.5 scenario but that very stable persistent cold-air pool episodes can still form.
Valentin Wiener, Marie-Laure Roussel, Christophe Genthon, Étienne Vignon, Jacopo Grazioli, and Alexis Berne
Earth Syst. Sci. Data, 16, 821–836, https://doi.org/10.5194/essd-16-821-2024, https://doi.org/10.5194/essd-16-821-2024, 2024
Short summary
Short summary
This paper presents 7 years of data from a precipitation radar deployed at the Dumont d'Urville station in East Antarctica. The main characteristics of the dataset are outlined in a short statistical study. Interannual and seasonal variability are also investigated. Then, we extensively describe the processing method to retrieve snowfall profiles from the radar data. Lastly, a brief comparison is made with two climate models as an application example of the dataset.
Andrea Spolaor, Federico Scoto, Catherine Larose, Elena Barbaro, Francois Burgay, Mats P. Bjorkman, David Cappelletti, Federico Dallo, Fabrizio de Blasi, Dmitry Divine, Giuliano Dreossi, Jacopo Gabrieli, Elisabeth Isaksson, Jack Kohler, Tonu Martma, Louise S. Schmidt, Thomas V. Schuler, Barbara Stenni, Clara Turetta, Bartłomiej Luks, Mathieu Casado, and Jean-Charles Gallet
The Cryosphere, 18, 307–320, https://doi.org/10.5194/tc-18-307-2024, https://doi.org/10.5194/tc-18-307-2024, 2024
Short summary
Short summary
We evaluate the impact of the increased snowmelt on the preservation of the oxygen isotope (δ18O) signal in firn records recovered from the top of the Holtedahlfonna ice field located in the Svalbard archipelago. Thanks to a multidisciplinary approach we demonstrate a progressive deterioration of the isotope signal in the firn core. We link the degradation of the δ18O signal to the increased occurrence and intensity of melt events associated with the rapid warming occurring in the archipelago.
Christophe Leroy-Dos Santos, Elise Fourré, Cécile Agosta, Mathieu Casado, Alexandre Cauquoin, Martin Werner, Benedicte Minster, Frédéric Prié, Olivier Jossoud, Leila Petit, and Amaëlle Landais
The Cryosphere, 17, 5241–5254, https://doi.org/10.5194/tc-17-5241-2023, https://doi.org/10.5194/tc-17-5241-2023, 2023
Short summary
Short summary
In the face of global warming, understanding the changing water cycle and temperatures in polar regions is crucial. These factors directly impact the balance of ice sheets in the Arctic and Antarctic. By studying the composition of water vapor, we gain insights into climate variations. Our 2-year study at Dumont d’Urville station, Adélie Land, offers valuable data to refine models. Additionally, we demonstrate how modeling aids in interpreting signals from ice core samples in the region.
Alfonso Ferrone, Étienne Vignon, Andrea Zonato, and Alexis Berne
The Cryosphere, 17, 4937–4956, https://doi.org/10.5194/tc-17-4937-2023, https://doi.org/10.5194/tc-17-4937-2023, 2023
Short summary
Short summary
In austral summer 2019/2020, three K-band Doppler profilers were deployed across the Sør Rondane Mountains, south of the Belgian base Princess Elisabeth Antarctica. Their measurements, along with atmospheric simulations and reanalyses, have been used to study the spatial variability in precipitation over the region, as well as investigate the interaction between the complex terrain and the typical flow associated with precipitating systems.
Inès N. Otosaka, Andrew Shepherd, Erik R. Ivins, Nicole-Jeanne Schlegel, Charles Amory, Michiel R. van den Broeke, Martin Horwath, Ian Joughin, Michalea D. King, Gerhard Krinner, Sophie Nowicki, Anthony J. Payne, Eric Rignot, Ted Scambos, Karen M. Simon, Benjamin E. Smith, Louise S. Sørensen, Isabella Velicogna, Pippa L. Whitehouse, Geruo A, Cécile Agosta, Andreas P. Ahlstrøm, Alejandro Blazquez, William Colgan, Marcus E. Engdahl, Xavier Fettweis, Rene Forsberg, Hubert Gallée, Alex Gardner, Lin Gilbert, Noel Gourmelen, Andreas Groh, Brian C. Gunter, Christopher Harig, Veit Helm, Shfaqat Abbas Khan, Christoph Kittel, Hannes Konrad, Peter L. Langen, Benoit S. Lecavalier, Chia-Chun Liang, Bryant D. Loomis, Malcolm McMillan, Daniele Melini, Sebastian H. Mernild, Ruth Mottram, Jeremie Mouginot, Johan Nilsson, Brice Noël, Mark E. Pattle, William R. Peltier, Nadege Pie, Mònica Roca, Ingo Sasgen, Himanshu V. Save, Ki-Weon Seo, Bernd Scheuchl, Ernst J. O. Schrama, Ludwig Schröder, Sebastian B. Simonsen, Thomas Slater, Giorgio Spada, Tyler C. Sutterley, Bramha Dutt Vishwakarma, Jan Melchior van Wessem, David Wiese, Wouter van der Wal, and Bert Wouters
Earth Syst. Sci. Data, 15, 1597–1616, https://doi.org/10.5194/essd-15-1597-2023, https://doi.org/10.5194/essd-15-1597-2023, 2023
Short summary
Short summary
By measuring changes in the volume, gravitational attraction, and ice flow of Greenland and Antarctica from space, we can monitor their mass gain and loss over time. Here, we present a new record of the Earth’s polar ice sheet mass balance produced by aggregating 50 satellite-based estimates of ice sheet mass change. This new assessment shows that the ice sheets have lost (7.5 x 1012) t of ice between 1992 and 2020, contributing 21 mm to sea level rise.
Thomas Caton Harrison, Stavroula Biri, Thomas J. Bracegirdle, John C. King, Elizabeth C. Kent, Étienne Vignon, and John Turner
Weather Clim. Dynam., 3, 1415–1437, https://doi.org/10.5194/wcd-3-1415-2022, https://doi.org/10.5194/wcd-3-1415-2022, 2022
Short summary
Short summary
Easterly winds encircle Antarctica, impacting sea ice and helping drive ocean currents which shield ice shelves from warmer waters. Reanalysis datasets give us our most complete picture of how these winds behave. In this paper we use satellite data, surface measurements and weather balloons to test how realistic recent reanalysis estimates are. The winds are generally accurate, especially in the most recent of the datasets, but important short-term variations are often misrepresented.
Antoine Grisart, Mathieu Casado, Vasileios Gkinis, Bo Vinther, Philippe Naveau, Mathieu Vrac, Thomas Laepple, Bénédicte Minster, Frederic Prié, Barbara Stenni, Elise Fourré, Hans Christian Steen-Larsen, Jean Jouzel, Martin Werner, Katy Pol, Valérie Masson-Delmotte, Maria Hoerhold, Trevor Popp, and Amaelle Landais
Clim. Past, 18, 2289–2301, https://doi.org/10.5194/cp-18-2289-2022, https://doi.org/10.5194/cp-18-2289-2022, 2022
Short summary
Short summary
This paper presents a compilation of high-resolution (11 cm) water isotopic records, including published and new measurements, for the last 800 000 years from the EPICA Dome C ice core, Antarctica. Using this new combined water isotopes (δ18O and δD) dataset, we study the variability and possible influence of diffusion at the multi-decadal to multi-centennial scale. We observe a stronger variability at the onset of the interglacial interval corresponding to a warm period.
Étienne Vignon, Lea Raillard, Christophe Genthon, Massimo Del Guasta, Andrew J. Heymsfield, Jean-Baptiste Madeleine, and Alexis Berne
Atmos. Chem. Phys., 22, 12857–12872, https://doi.org/10.5194/acp-22-12857-2022, https://doi.org/10.5194/acp-22-12857-2022, 2022
Short summary
Short summary
The near-surface atmosphere over the Antarctic Plateau is cold and pristine and resembles to a certain extent the high troposphere where cirrus clouds form. In this study, we use innovative humidity measurements at Concordia Station to study the formation of ice fogs at temperatures <−40°C. We provide observational evidence that ice fogs can form through the homogeneous freezing of solution aerosols, a common nucleation pathway for cirrus clouds.
Christoph Kittel, Charles Amory, Stefan Hofer, Cécile Agosta, Nicolas C. Jourdain, Ella Gilbert, Louis Le Toumelin, Étienne Vignon, Hubert Gallée, and Xavier Fettweis
The Cryosphere, 16, 2655–2669, https://doi.org/10.5194/tc-16-2655-2022, https://doi.org/10.5194/tc-16-2655-2022, 2022
Short summary
Short summary
Model projections suggest large differences in future Antarctic surface melting even for similar greenhouse gas scenarios and warming rates. We show that clouds containing a larger amount of liquid water lead to stronger melt. As surface melt can trigger the collapse of the ice shelves (the safety band of the Antarctic Ice Sheet), clouds could be a major source of uncertainties in projections of sea level rise.
Patrick Le Moigne, Eric Bazile, Anning Cheng, Emanuel Dutra, John M. Edwards, William Maurel, Irina Sandu, Olivier Traullé, Etienne Vignon, Ayrton Zadra, and Weizhong Zheng
The Cryosphere, 16, 2183–2202, https://doi.org/10.5194/tc-16-2183-2022, https://doi.org/10.5194/tc-16-2183-2022, 2022
Short summary
Short summary
This paper describes an intercomparison of snow models, of varying complexity, used for numerical weather prediction or academic research. The results show that the simplest models are, under certain conditions, able to reproduce the surface temperature just as well as the most complex models. Moreover, the diversity of surface parameters of the models has a strong impact on the temporal variability of the components of the simulated surface energy balance.
Christophe Genthon, Dana E. Veron, Etienne Vignon, Jean-Baptiste Madeleine, and Luc Piard
Earth Syst. Sci. Data, 14, 1571–1580, https://doi.org/10.5194/essd-14-1571-2022, https://doi.org/10.5194/essd-14-1571-2022, 2022
Short summary
Short summary
The surface atmosphere of the high Antarctic Plateau is very cold and clean. Such conditions favor water vapor supersaturation. A 3-year quasi-continuous series of atmospheric moisture in a ~40 m atmospheric layer at Dome C is reported that documents time variability, vertical profiles and occurrences of supersaturation. Supersaturation with respect to ice is frequently observed throughout the column, with relative humidities occasionally reaching values near liquid water saturation.
Sara Bacer, Fatima Jomaa, Julien Beaumet, Hubert Gallée, Enzo Le Bouëdec, Martin Ménégoz, and Chantal Staquet
Weather Clim. Dynam., 3, 377–389, https://doi.org/10.5194/wcd-3-377-2022, https://doi.org/10.5194/wcd-3-377-2022, 2022
Short summary
Short summary
We study the impact of climate change on wintertime atmospheric blocking over Europe. We focus on the frequency, duration, and size of blocking events. The blocking events are identified via the weather type decomposition methodology. We find that blocking frequency, duration, and size are mostly stationary over the 21st century. Additionally, we compare the blocking size results with the size of the blocking events identified via a different approach using a blocking index.
Paraskevi Georgakaki, Georgia Sotiropoulou, Étienne Vignon, Anne-Claire Billault-Roux, Alexis Berne, and Athanasios Nenes
Atmos. Chem. Phys., 22, 1965–1988, https://doi.org/10.5194/acp-22-1965-2022, https://doi.org/10.5194/acp-22-1965-2022, 2022
Short summary
Short summary
The modelling study focuses on the importance of ice multiplication processes in orographic mixed-phase clouds, which is one of the least understood cloud types in the climate system. We show that the consideration of ice seeding and secondary ice production through ice–ice collisional breakup is essential for correct predictions of precipitation in mountainous terrain, with important implications for radiation processes.
Christophe Genthon, Dana Veron, Etienne Vignon, Delphine Six, Jean-Louis Dufresne, Jean-Baptiste Madeleine, Emmanuelle Sultan, and François Forget
Earth Syst. Sci. Data, 13, 5731–5746, https://doi.org/10.5194/essd-13-5731-2021, https://doi.org/10.5194/essd-13-5731-2021, 2021
Short summary
Short summary
A 10-year dataset of observation in the atmospheric boundary layer at Dome C on the high Antarctic plateau is presented. This is obtained with sensors at six levels along a tower higher than 40 m. The temperature inversion can reach more than 25 °C along the tower in winter, while full mixing by convection can occur in summer. Different amplitudes of variability for wind and temperature at the different levels reflect different signatures of solar vs. synoptic forcing of the boundary layer.
Louis Le Toumelin, Charles Amory, Vincent Favier, Christoph Kittel, Stefan Hofer, Xavier Fettweis, Hubert Gallée, and Vinay Kayetha
The Cryosphere, 15, 3595–3614, https://doi.org/10.5194/tc-15-3595-2021, https://doi.org/10.5194/tc-15-3595-2021, 2021
Short summary
Short summary
Snow is frequently eroded from the surface by the wind in Adelie Land (Antarctica) and suspended in the lower atmosphere. By performing model simulations, we show firstly that suspended snow layers interact with incoming radiation similarly to a near-surface cloud. Secondly, suspended snow modifies the atmosphere's thermodynamic structure and energy exchanges with the surface. Our results suggest snow transport by the wind should be taken into account in future model studies over the region.
Noémie Planat, Josué Gehring, Étienne Vignon, and Alexis Berne
Atmos. Meas. Tech., 14, 4543–4564, https://doi.org/10.5194/amt-14-4543-2021, https://doi.org/10.5194/amt-14-4543-2021, 2021
Short summary
Short summary
We implement a new method to identify microphysical processes during cold precipitation events based on the sign of the vertical gradient of polarimetric radar variables. We analytically asses the meteorological conditions for this vertical analysis to hold, apply it on two study cases and successfully compare it with other methods informing about the microphysics. Finally, we are able to obtain the main vertical structure and characteristics of the different processes during these study cases.
Christophe Leroy-Dos Santos, Mathieu Casado, Frédéric Prié, Olivier Jossoud, Erik Kerstel, Morgane Farradèche, Samir Kassi, Elise Fourré, and Amaëlle Landais
Atmos. Meas. Tech., 14, 2907–2918, https://doi.org/10.5194/amt-14-2907-2021, https://doi.org/10.5194/amt-14-2907-2021, 2021
Short summary
Short summary
We developed an instrument that can generate water vapor at low humidity at a very stable level. This instrument was conceived to calibrate water vapor isotopic records obtained in very dry places such as central Antarctica. Here, we provide details on the instrument as well as results obtained for correcting water isotopic records for diurnal variability during a long field season at the Concordia station in East Antarctica.
Christian Vincent, Diego Cusicanqui, Bruno Jourdain, Olivier Laarman, Delphine Six, Adrien Gilbert, Andrea Walpersdorf, Antoine Rabatel, Luc Piard, Florent Gimbert, Olivier Gagliardini, Vincent Peyaud, Laurent Arnaud, Emmanuel Thibert, Fanny Brun, and Ugo Nanni
The Cryosphere, 15, 1259–1276, https://doi.org/10.5194/tc-15-1259-2021, https://doi.org/10.5194/tc-15-1259-2021, 2021
Short summary
Short summary
In situ glacier point mass balance data are crucial to assess climate change in different regions of the world. Unfortunately, these data are rare because huge efforts are required to conduct in situ measurements on glaciers. Here, we propose a new approach from remote sensing observations. The method has been tested on the Argentière and Mer de Glace glaciers (France). It should be possible to apply this method to high-spatial-resolution satellite images and on numerous glaciers in the world.
Marion Donat-Magnin, Nicolas C. Jourdain, Christoph Kittel, Cécile Agosta, Charles Amory, Hubert Gallée, Gerhard Krinner, and Mondher Chekki
The Cryosphere, 15, 571–593, https://doi.org/10.5194/tc-15-571-2021, https://doi.org/10.5194/tc-15-571-2021, 2021
Short summary
Short summary
We simulate the West Antarctic climate in 2100 under increasing greenhouse gases. Future accumulation over the ice sheet increases, which reduces sea level changing rate. Surface ice-shelf melt rates increase until 2100. Some ice shelves experience a lot of liquid water at their surface, which indicates potential ice-shelf collapse. In contrast, no liquid water is found over other ice shelves due to huge amounts of snowfall that bury liquid water, favouring refreezing and ice-shelf stability.
Georgia Sotiropoulou, Étienne Vignon, Gillian Young, Hugh Morrison, Sebastian J. O'Shea, Thomas Lachlan-Cope, Alexis Berne, and Athanasios Nenes
Atmos. Chem. Phys., 21, 755–771, https://doi.org/10.5194/acp-21-755-2021, https://doi.org/10.5194/acp-21-755-2021, 2021
Short summary
Short summary
Summer clouds have a significant impact on the radiation budget of the Antarctic surface and thus on ice-shelf melting. However, these are poorly represented in climate models due to errors in their microphysical structure, including the number of ice crystals that they contain. We show that breakup from ice particle collisions can substantially magnify the ice crystal number concentration with significant implications for surface radiation. This process is currently missing in climate models.
Martin Ménégoz, Evgenia Valla, Nicolas C. Jourdain, Juliette Blanchet, Julien Beaumet, Bruno Wilhelm, Hubert Gallée, Xavier Fettweis, Samuel Morin, and Sandrine Anquetin
Hydrol. Earth Syst. Sci., 24, 5355–5377, https://doi.org/10.5194/hess-24-5355-2020, https://doi.org/10.5194/hess-24-5355-2020, 2020
Short summary
Short summary
The study investigates precipitation changes in the Alps, using observations and a 7 km resolution climate simulation over 1900–2010. An increase in mean precipitation is found in winter over the Alps, whereas a drying occurred in summer in the surrounding plains. A general increase in the daily annual maximum of precipitation is evidenced (20 to 40 % per century), suggesting an increase in extreme events that is significant only when considering long time series, typically 50 to 80 years.
Marie-Laure Roussel, Florentin Lemonnier, Christophe Genthon, and Gerhard Krinner
The Cryosphere, 14, 2715–2727, https://doi.org/10.5194/tc-14-2715-2020, https://doi.org/10.5194/tc-14-2715-2020, 2020
Short summary
Short summary
The Antarctic precipitation is evaluated against space radar data in the most recent climate model intercomparison CMIP6 and reanalysis ERA5. The seasonal cycle is mostly well reproduced, but relative errors are higher in areas of complex topography, particularly in the higher-resolution models. At continental and regional scales all results are biased high, with no significant progress in the more recent models. Predicting Antarctic contribution to sea level still requires model improvements.
Florentin Lemonnier, Alizée Chemison, Hubert Gallée, Gerhard Krinner, Jean-Baptiste Madeleine, Chantal Claud, and Christophe Genthon
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-167, https://doi.org/10.5194/tc-2020-167, 2020
Manuscript not accepted for further review
Short summary
Short summary
This study presents the first evaluation from snowfall observations in Antarctica of the general circulation model LMDz (global), the atmospheric component of the coupled IPSL Climate Model that is part of CMIP6 (IPCC). We also present an evaluation of the new version of the MAR model (regional), considered as a reference in terms of polar climate modelling. Both models show satisfying results for the modelling of precipitation in Antarctica.
Mathieu Casado, Thomas Münch, and Thomas Laepple
Clim. Past, 16, 1581–1598, https://doi.org/10.5194/cp-16-1581-2020, https://doi.org/10.5194/cp-16-1581-2020, 2020
Short summary
Short summary
The isotopic composition in ice cores from Antarctica is usually interpreted as a temperature proxy. Using a forward model, we show how different the signal in ice cores and the actual climatic signal are. Precipitation intermittency and diffusion do indeed affect the archived signal, leading to the reshuffling of the signal which limits the ability to reconstruct high-resolution climatic variations with ice cores.
Josué Gehring, Annika Oertel, Étienne Vignon, Nicolas Jullien, Nikola Besic, and Alexis Berne
Atmos. Chem. Phys., 20, 7373–7392, https://doi.org/10.5194/acp-20-7373-2020, https://doi.org/10.5194/acp-20-7373-2020, 2020
Short summary
Short summary
In this study, we analyse how large-scale meteorological conditions influenced the local enhancement of snowfall during an intense precipitation event in Korea. We used atmospheric models, weather radars and snowflake images. We found out that a rising airstream in the warm sector of the low pressure system associated to this event influenced the evolution of snowfall. This study highlights the importance of interactions between large and local scales in this intense precipitation event.
Nicolas Jullien, Étienne Vignon, Michael Sprenger, Franziska Aemisegger, and Alexis Berne
The Cryosphere, 14, 1685–1702, https://doi.org/10.5194/tc-14-1685-2020, https://doi.org/10.5194/tc-14-1685-2020, 2020
Short summary
Short summary
Although snowfall is the main input of water to the Antarctic ice sheet, snowflakes are often evaporated by dry and fierce winds near the surface of the continent. The amount of snow that actually reaches the ground is therefore considerably reduced. By analyzing the position of cyclones and fronts as well as by back-tracing the atmospheric moisture pathway towards Antarctica, this study explains in which meteorological conditions snowfall is either completely evaporated or reaches the ground.
Ugo Nanni, Florent Gimbert, Christian Vincent, Dominik Gräff, Fabian Walter, Luc Piard, and Luc Moreau
The Cryosphere, 14, 1475–1496, https://doi.org/10.5194/tc-14-1475-2020, https://doi.org/10.5194/tc-14-1475-2020, 2020
Short summary
Short summary
Our study addresses key questions on the subglacial drainage system physics through a novel observational approach that overcomes traditional limitations. We conducted, over 2 years, measurements of the subglacial water-flow-induced seismic noise and of glacier basal sliding speeds. We then inverted for the subglacial channel's hydraulic pressure gradient and hydraulic radius and investigated the links between the equilibrium state of subglacial channels and glacier basal sliding.
Mathieu Casado, Gwenaëlle Gremion, Paul Rosenbaum, Jilda Alicia Caccavo, Kelsey Aho, Nicolas Champollion, Sarah L. Connors, Adrian Dahood, Alfonso Fernandez, Martine Lizotte, Katja Mintenbeck, Elvira Poloczanska, and Gerlis Fugmann
Geosci. Commun., 3, 89–97, https://doi.org/10.5194/gc-3-89-2020, https://doi.org/10.5194/gc-3-89-2020, 2020
Short summary
Short summary
Early-career scientists (ECSs) are rarely invited to act as peer reviewers. Participating in a group peer review of the IPCC Special Report on Ocean and Cryosphere in a Changing Climate, PhD students spent more time reviewing than more established scientists and provided a similar proportion of substantive comments. By soliciting and including ECSs in peer review, the scientific community would reduce the burden on more established scientists and may improve the quality of that process.
Pascal Bohleber, Mathieu Casado, Kirsti Ashworth, Chelsey A. Baker, Anna Belcher, Jilda Alicia Caccavo, Holly E. Jenkins, Erin Satterthwaite, Andrea Spolaor, and V. Holly L. Winton
Adv. Geosci., 53, 1–14, https://doi.org/10.5194/adgeo-53-1-2020, https://doi.org/10.5194/adgeo-53-1-2020, 2020
Short summary
Short summary
International Early Career Networks (ECN) are global voluntary communities of Early Career Scientists (ECS) aiming to advance the careers of ECS and to improve their inclusion into the international scientific community. We use member surveys alongside with case studies from well-established and long-term networks to elucidate the attributes that make a successful, sustainable ECN, and propose best practices for developing ECN successfully.
Christian Vincent, Adrien Gilbert, Bruno Jourdain, Luc Piard, Patrick Ginot, Vladimir Mikhalenko, Philippe Possenti, Emmanuel Le Meur, Olivier Laarman, and Delphine Six
The Cryosphere, 14, 925–934, https://doi.org/10.5194/tc-14-925-2020, https://doi.org/10.5194/tc-14-925-2020, 2020
Short summary
Short summary
We observed very low glacier thickness changes over the last decades at very-high-elevation glaciated areas on Mont Blanc. Conversely, measurements performed in deep boreholes since 1994 reveal strong changes in englacial temperature reaching 1.5 °C at a depth of 50 m. We conclude that at such very high elevations, current changes in climate do not lead to visible changes in glacier thickness but cause invisible changes within the glacier in terms of englacial temperatures.
Marion Donat-Magnin, Nicolas C. Jourdain, Hubert Gallée, Charles Amory, Christoph Kittel, Xavier Fettweis, Jonathan D. Wille, Vincent Favier, Amine Drira, and Cécile Agosta
The Cryosphere, 14, 229–249, https://doi.org/10.5194/tc-14-229-2020, https://doi.org/10.5194/tc-14-229-2020, 2020
Short summary
Short summary
Modeling the interannual variability of the surface conditions over Antarctic glaciers is important for the identification of climate trends and climate predictions and to assess models. We simulate snow accumulation and surface melting in the Amundsen sector (West Antarctica) over 1979–2017. For all the glaciers, the interannual variability of summer snow accumulation and surface melting is driven by two distinct mechanisms related to variations in the Amundsen Sea Low strength and position.
Étienne Vignon, Olivier Traullé, and Alexis Berne
Atmos. Chem. Phys., 19, 4659–4683, https://doi.org/10.5194/acp-19-4659-2019, https://doi.org/10.5194/acp-19-4659-2019, 2019
Short summary
Short summary
The future sea-level rise will depend on how much the Antarctic ice sheet gain – via precipitation – or loose mass. The simulation of precipitation by numerical models used for projections depends on the representation of the atmospheric circulation over and around Antarctica. Using daily measurements from balloon soundings at nine Antarctic stations, this study characterizes the structure of the atmosphere over the Antarctic coast and its representation in atmospheric simulations.
Florentin Lemonnier, Jean-Baptiste Madeleine, Chantal Claud, Christophe Genthon, Claudio Durán-Alarcón, Cyril Palerme, Alexis Berne, Niels Souverijns, Nicole van Lipzig, Irina V. Gorodetskaya, Tristan L'Ecuyer, and Norman Wood
The Cryosphere, 13, 943–954, https://doi.org/10.5194/tc-13-943-2019, https://doi.org/10.5194/tc-13-943-2019, 2019
Short summary
Short summary
Evaluation of the vertical precipitation rate profiles of CloudSat radar by comparison with two surface-based micro-rain radars (MRR) located at two antarctic stations gives a near-perfect correlation between both datasets, even though climatic and geographic conditions are different for the stations. A better understanding and reassessment of CloudSat uncertainties ranging from −13 % up to +22 % confirms the robustness of the CloudSat retrievals of snowfall over Antarctica.
Cécile Agosta, Charles Amory, Christoph Kittel, Anais Orsi, Vincent Favier, Hubert Gallée, Michiel R. van den Broeke, Jan T. M. Lenaerts, Jan Melchior van Wessem, Willem Jan van de Berg, and Xavier Fettweis
The Cryosphere, 13, 281–296, https://doi.org/10.5194/tc-13-281-2019, https://doi.org/10.5194/tc-13-281-2019, 2019
Short summary
Short summary
Antarctic surface mass balance (ASMB), a component of the sea level budget, is commonly estimated through modelling as observations are scarce. The polar-oriented regional climate model MAR performs well in simulating the observed ASMB. MAR and RACMO2 share common biases we relate to drifting snow transport, with a 3 times larger magnitude than in previous estimates. Sublimation of precipitation in the katabatic layer modelled by MAR is of a magnitude similar to an observation-based estimate.
Claudio Durán-Alarcón, Brice Boudevillain, Christophe Genthon, Jacopo Grazioli, Niels Souverijns, Nicole P. M. van Lipzig, Irina V. Gorodetskaya, and Alexis Berne
The Cryosphere, 13, 247–264, https://doi.org/10.5194/tc-13-247-2019, https://doi.org/10.5194/tc-13-247-2019, 2019
Short summary
Short summary
Precipitation is the main input in the surface mass balance of the Antarctic ice sheet, but it is still poorly understood due to a lack of observations in this region. We analyzed the vertical structure of the precipitation using multiyear observation of vertically pointing micro rain radars (MRRs) at two stations located in East Antarctica. The use of MRRs showed the potential to study the effect of climatology and hydrometeor microphysics on the vertical structure of Antarctic precipitation.
Shaojie Song, Hélène Angot, Noelle E. Selin, Hubert Gallée, Francesca Sprovieri, Nicola Pirrone, Detlev Helmig, Joël Savarino, Olivier Magand, and Aurélien Dommergue
Atmos. Chem. Phys., 18, 15825–15840, https://doi.org/10.5194/acp-18-15825-2018, https://doi.org/10.5194/acp-18-15825-2018, 2018
Short summary
Short summary
Mercury is a trace metal with adverse health effects on human and wildlife. Its unique property makes it undergo long-range transport, and even remote Antarctica receives significant inputs. This paper presents the first model that aims to understand mercury behavior over the Antarctic Plateau. We find that mercury is quickly cycled between snow and air in the sunlit period, likely driven by bromine chemistry, and that several uncertain processes contribute to its behavior in the dark period.
Christophe Genthon, Alexis Berne, Jacopo Grazioli, Claudio Durán Alarcón, Christophe Praz, and Brice Boudevillain
Earth Syst. Sci. Data, 10, 1605–1612, https://doi.org/10.5194/essd-10-1605-2018, https://doi.org/10.5194/essd-10-1605-2018, 2018
Short summary
Short summary
Antarctica suffers from a severe shortage of in situ observations of precipitation. The APRES3 program contributes to improving observation from both the surface and from space. A field campaign with various instruments was deployed at the coast of Adélie Land, with an intensive observing period in austral summer 2015–16, then continuous radar monitoring through 2016 and beyond. This paper provides a compact presentation of the APRES3 dataset, which is now made open to the scientific community.
Mathieu Casado, Amaelle Landais, Ghislain Picard, Thomas Münch, Thomas Laepple, Barbara Stenni, Giuliano Dreossi, Alexey Ekaykin, Laurent Arnaud, Christophe Genthon, Alexandra Touzeau, Valerie Masson-Delmotte, and Jean Jouzel
The Cryosphere, 12, 1745–1766, https://doi.org/10.5194/tc-12-1745-2018, https://doi.org/10.5194/tc-12-1745-2018, 2018
Short summary
Short summary
Ice core isotopic records rely on the knowledge of the processes involved in the archival processes of the snow. In the East Antarctic Plateau, post-deposition processes strongly affect the signal found in the surface and buried snow compared to the initial climatic signal. We evaluate the different contributions to the surface snow isotopic composition between the precipitation and the exchanges with the atmosphere and the variability of the isotopic signal found in profiles from snow pits.
Thomas Laepple, Thomas Münch, Mathieu Casado, Maria Hoerhold, Amaelle Landais, and Sepp Kipfstuhl
The Cryosphere, 12, 169–187, https://doi.org/10.5194/tc-12-169-2018, https://doi.org/10.5194/tc-12-169-2018, 2018
Short summary
Short summary
We explain why snow pits across different sites in East Antarctica show visually similar isotopic variations. We argue that the similarity and the apparent cycles of around 20 cm in the δD and δ18O variations are the result of a seasonal cycle in isotopes, noise, for example from precipitation intermittency, and diffusion. The near constancy of the diffusion length across many ice-coring sites explains why the structure and cycle length is largely independent of the accumulation conditions.
Jacopo Grazioli, Christophe Genthon, Brice Boudevillain, Claudio Duran-Alarcon, Massimo Del Guasta, Jean-Baptiste Madeleine, and Alexis Berne
The Cryosphere, 11, 1797–1811, https://doi.org/10.5194/tc-11-1797-2017, https://doi.org/10.5194/tc-11-1797-2017, 2017
Short summary
Short summary
We present medium and long-term measurements of precipitation in a coastal region of Antarctica. These measurements are among the first of their kind on the Antarctic continent and combine remote sensing with in situ observations. The benefits of this synergy are demonstrated and the lessons learned from this measurements, which are still ongoing, are very important for the creation of similar observatories elsewhere on the continent.
Mathieu Casado, Amaelle Landais, Ghislain Picard, Thomas Münch, Thomas Laepple, Barbara Stenni, Giuliano Dreossi, Alexey Ekaykin, Laurent Arnaud, Christophe Genthon, Alexandra Touzeau, Valérie Masson-Delmotte, and Jean Jouzel
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-263, https://doi.org/10.5194/tc-2016-263, 2016
Revised manuscript not accepted
Short summary
Short summary
Ice core isotopic records rely on the knowledge of the processes involved in the archival of the snow. In the East Antarctic Plateau, post-deposition processes strongly affect the signal found in the surface and buried snow compared to the initial climatic signal. We evaluate the different contributions to the surface snow isotopic composition between the precipitation and the exchanges with the atmosphere and the variability of the isotopic signal found in profiles from snow pits.
Mathieu Casado, Amaelle Landais, Valérie Masson-Delmotte, Christophe Genthon, Erik Kerstel, Samir Kassi, Laurent Arnaud, Ghislain Picard, Frederic Prie, Olivier Cattani, Hans-Christian Steen-Larsen, Etienne Vignon, and Peter Cermak
Atmos. Chem. Phys., 16, 8521–8538, https://doi.org/10.5194/acp-16-8521-2016, https://doi.org/10.5194/acp-16-8521-2016, 2016
Short summary
Short summary
Climatic conditions in Concordia are very cold (−55 °C in average) and very dry, imposing difficult conditions to measure the water vapour isotopic composition. New developments in infrared spectroscopy enable now the measurement of isotopic composition in water vapour traces (down to 20 ppmv). Here we present the results results of a first campaign of measurement of isotopic composition of water vapour in Concordia, the site where the 800 000 years long ice core was drilled.
Alexandra Touzeau, Amaëlle Landais, Barbara Stenni, Ryu Uemura, Kotaro Fukui, Shuji Fujita, Sarah Guilbaud, Alexey Ekaykin, Mathieu Casado, Eugeni Barkan, Boaz Luz, Olivier Magand, Grégory Teste, Emmanuel Le Meur, Mélanie Baroni, Joël Savarino, Ilann Bourgeois, and Camille Risi
The Cryosphere, 10, 837–852, https://doi.org/10.5194/tc-10-837-2016, https://doi.org/10.5194/tc-10-837-2016, 2016
Short summary
Short summary
The relationship between water isotope ratios and temperature is investigated in precipitation snow at Vostok and Dome C, as well as in surface snow along traverses. The temporal slope of the linear regression for the precipitation is smaller than the geographical slope. Thus, using the latter could lead to an underestimation of past temperature changes. The processes active at remote sites (best glacial analogs) are explored through a combination of water isotopes in short snow pits.
C. Amory, A. Trouvilliez, H. Gallée, V. Favier, F. Naaim-Bouvet, C. Genthon, C. Agosta, L. Piard, and H. Bellot
The Cryosphere, 9, 1373–1383, https://doi.org/10.5194/tc-9-1373-2015, https://doi.org/10.5194/tc-9-1373-2015, 2015
H. Gallée, S. Preunkert, S. Argentini, M. M. Frey, C. Genthon, B. Jourdain, I. Pietroni, G. Casasanta, H. Barral, E. Vignon, C. Amory, and M. Legrand
Atmos. Chem. Phys., 15, 6225–6236, https://doi.org/10.5194/acp-15-6225-2015, https://doi.org/10.5194/acp-15-6225-2015, 2015
Short summary
Short summary
Regional climate model MAR was run for the region of Dome C located on the East Antarctic plateau, during summer 2011–2012, with a high vertical resolution in the lower troposphere. MAR is generally in very good agreement with the observations and provides sufficiently reliable information about surface turbulent fluxes and vertical profiles of vertical diffusion coefficients when discussing the representativeness of chemical measurements made nearby the ground surface at Dome C.
H. Gallée, H. Barral, E. Vignon, and C. Genthon
Atmos. Chem. Phys., 15, 6237–6246, https://doi.org/10.5194/acp-15-6237-2015, https://doi.org/10.5194/acp-15-6237-2015, 2015
Short summary
Short summary
This is the first time that a low-level jet observed above the East Antarctic Plateau is simulated by a regional climate model. This paper illustrates in a 3-D simulation the respective influences of the large-scale pressure gradient force and turbulence on the onset of the low-level jet. As atmospheric turbulence plays a key role in explaining the behaviour of chemical tracers during the OPALE campaign, this paper also increases our confidence in using the outputs of the model for this purpose.
H. Barral, C. Genthon, A. Trouvilliez, C. Brun, and C. Amory
The Cryosphere, 8, 1905–1919, https://doi.org/10.5194/tc-8-1905-2014, https://doi.org/10.5194/tc-8-1905-2014, 2014
C. Palerme, J. E. Kay, C. Genthon, T. L'Ecuyer, N. B. Wood, and C. Claud
The Cryosphere, 8, 1577–1587, https://doi.org/10.5194/tc-8-1577-2014, https://doi.org/10.5194/tc-8-1577-2014, 2014
M. Casado, P. Ortega, V. Masson-Delmotte, C. Risi, D. Swingedouw, V. Daux, D. Genty, F. Maignan, O. Solomina, B. Vinther, N. Viovy, and P. Yiou
Clim. Past, 9, 871–886, https://doi.org/10.5194/cp-9-871-2013, https://doi.org/10.5194/cp-9-871-2013, 2013
Related subject area
Subject: Clouds and Precipitation | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Estimating the snow density using collocated Parsivel and Micro-Rain Radar measurements: a preliminary study from ICE-POP 2017/2018
Technical note: On the ice microphysics of isolated thunderstorms and non-thunderstorms in southern China – a radar polarimetric perspective
Distinctive aerosol–cloud–precipitation interactions in marine boundary layer clouds from the ACE-ENA and SOCRATES aircraft field campaigns
Drivers of droplet formation in east Mediterranean orographic clouds
Observability of moisture transport divergence in Arctic atmospheric rivers by dropsondes
Elucidating the boundary layer turbulence dissipation rate using high-resolution measurements from a radar wind profiler network over the Tibetan Plateau
Environmental controls on isolated convection during the Amazonian wet season
Isotopic composition of convective rainfall in the inland tropics of Brazil
Measurement report: Cloud and environmental properties associated with aggregated shallow marine cumulus and cumulus congestus
How does riming influence the observed spatial variability of ice water in mixed-phase clouds?
Lifecycle of updrafts and mass flux in isolated deep convection over the Amazon rainforest: insights from cell tracking
Thermodynamic and cloud evolution in a cold-air outbreak during HALO-(AC)3: quasi-Lagrangian observations compared to the ERA5 and CARRA reanalyses
Clouds and precipitation in the initial phase of marine cold air outbreaks as observed by airborne remote sensing
Powering aircraft with 100 % sustainable aviation fuel reduces ice crystals in contrails
Microphysical view of development and ice production of mid-latitude stratocumulus during an extratropical cyclone
Supercooled liquid water clouds observed over Dome C, Antarctica: temperature sensitivity and cloud radiative forcing
Role of thermodynamic and turbulence processes on the fog life cycle during SOFOG3D experiment
Characterizing the near-global cloud vertical structures over land using high-resolution radiosonde measurements
Investigating the role of typhoon-induced gravity waves and stratospheric hydration in the formation of tropopause cirrus clouds observed during the 2017 Asian monsoon
Differences in microphysical properties of cirrus at high and mid-latitudes
Sub-cloud rain evaporation in the North Atlantic winter trade winds derived by pairing isotopic data with a bin-resolved microphysical model
Overview and statistical analysis of boundary layer clouds and precipitation over the western North Atlantic Ocean
A set of methods to evaluate the below-cloud evaporation effect on local precipitation isotopic composition: a case study for Xi'an, China
Earth-system-model evaluation of cloud and precipitation occurrence for supercooled and warm clouds over the Southern Ocean's Macquarie Island
Pollution slightly enhances atmospheric cooling by low-level clouds in tropical West Africa
Investigating an indirect aviation effect on mid-latitude cirrus clouds – linking lidar-derived optical properties to in situ measurements
Investigating the vertical extent and short-wave radiative effects of the ice phase in Arctic summertime low-level clouds
Microphysical and thermodynamic phase analyses of Arctic low-level clouds measured above the sea ice and the open ocean in spring and summer
Aircraft observations of gravity wave activity and turbulence in the tropical tropopause layer: prevalence, influence on cirrus clouds, and comparison with global storm-resolving models
Influence of air mass origin on microphysical properties of low-level clouds in a subarctic environment
Sensitivity of convectively driven tropical tropopause cirrus properties to ice habits in high-resolution simulations
Upper-tropospheric slightly ice-subsaturated regions: frequency of occurrence and statistical evidence for the appearance of contrail cirrus
Examination of aerosol indirect effects during cirrus cloud evolution
In situ microphysics observations of intense pyroconvection from a large wildfire
Conditions favorable for secondary ice production in Arctic mixed-phase clouds
Interaction between cloud–radiation, atmospheric dynamics and thermodynamics based on observational data from GoAmazon 2014/15 and a cloud-resolving model
Snowfall in Northern Finland derives mostly from ice clouds
Observation of secondary ice production in clouds at low temperatures
In situ and satellite-based estimates of cloud properties and aerosol–cloud interactions over the southeast Atlantic Ocean
Ice fog observed at cirrus temperatures at Dome C, Antarctic Plateau
Life cycle of stratocumulus clouds over 1 year at the coast of the Atacama Desert
Experimental study on the evolution of droplet size distribution during the fog life cycle
Significant continental source of ice-nucleating particles at the tip of Chile's southernmost Patagonia region
Retrieving ice-nucleating particle concentration and ice multiplication factors using active remote sensing validated by in situ observations
Temporal and vertical distributions of the occurrence of cirrus clouds over a coastal station in the Indian monsoon region
Continental thunderstorm ground enhancement observed at an exceptionally low altitude
Ice-nucleating particles from multiple aerosol sources in the urban environment of Beijing under mixed-phase cloud conditions
In situ observation of riming in mixed-phase clouds using the PHIPS probe
Measurement report: Introduction to the HyICE-2018 campaign for measurements of ice-nucleating particles and instrument inter-comparison in the Hyytiälä boreal forest
North Atlantic Ocean SST-gradient-driven variations in aerosol and cloud evolution along Lagrangian cold-air outbreak trajectories
Wei-Yu Chang, Yung-Chuan Yang, Chen-Yu Hung, Kwonil Kim, Gyuwon Lee, and Ali Tokay
Atmos. Chem. Phys., 24, 11955–11979, https://doi.org/10.5194/acp-24-11955-2024, https://doi.org/10.5194/acp-24-11955-2024, 2024
Short summary
Short summary
Snow density is derived by collocated Micro-Rain Radar (MRR) and Parsivel (ICE-POP 2017/2018). We apply the particle size distribution from Parsivel to a T-matrix backscattering simulation and compare with ZHH from MRR. Bulk density and bulk water fractions are derived from comparing simulated and calculated ZHH. Retrieved bulk density is validated by comparing snowfall rate measurements from Pluvio and the Precipitation Imaging Package. Snowfall rate consistency confirms the algorithm.
Chuanhong Zhao, Yijun Zhang, Dong Zheng, Haoran Li, Sai Du, Xueyan Peng, Xiantong Liu, Pengguo Zhao, Jiafeng Zheng, and Juan Shi
Atmos. Chem. Phys., 24, 11637–11651, https://doi.org/10.5194/acp-24-11637-2024, https://doi.org/10.5194/acp-24-11637-2024, 2024
Short summary
Short summary
Understanding lightning activity is important for meteorology and atmospheric chemistry. However, the occurrence of lightning activity in clouds is uncertain. In this study, we quantified the difference between isolated thunderstorms and non-thunderstorms. We showed that lightning activity was more likely to occur with more graupel volume and/or riming. A deeper ZDR column was associated with lightning occurrence. This information can aid in a deeper understanding of lighting physics.
Xiaojian Zheng, Xiquan Dong, Baike Xi, Timothy Logan, and Yuan Wang
Atmos. Chem. Phys., 24, 10323–10347, https://doi.org/10.5194/acp-24-10323-2024, https://doi.org/10.5194/acp-24-10323-2024, 2024
Short summary
Short summary
The marine boundary layer aerosol–cloud interactions (ACIs) are examined using in situ measurements from two aircraft campaigns over the eastern North Atlantic (ACE-ENA) and Southern Ocean (SOCRATES). The SOCRATES clouds have more and smaller cloud droplets. The ACE-ENA clouds exhibit stronger drizzle formation and growth. Results found distinctive aerosol–cloud interactions for two campaigns. The drizzle processes significantly alter sub-cloud aerosol budgets and impact the ACI assessments.
Romanos Foskinis, Ghislain Motos, Maria I. Gini, Olga Zografou, Kunfeng Gao, Stergios Vratolis, Konstantinos Granakis, Ville Vakkari, Kalliopi Violaki, Andreas Aktypis, Christos Kaltsonoudis, Zongbo Shi, Mika Komppula, Spyros N. Pandis, Konstantinos Eleftheriadis, Alexandros Papayannis, and Athanasios Nenes
Atmos. Chem. Phys., 24, 9827–9842, https://doi.org/10.5194/acp-24-9827-2024, https://doi.org/10.5194/acp-24-9827-2024, 2024
Short summary
Short summary
Analysis of modeling, in situ, and remote sensing measurements reveals the microphysical state of orographic clouds and their response to aerosol from the boundary layer and free troposphere. We show that cloud response to aerosol is robust, as predicted supersaturation and cloud droplet number levels agree with those determined from in-cloud measurements. The ability to determine if clouds are velocity- or aerosol-limited allows for novel model constraints and remote sensing products.
Henning Dorff, Heike Konow, Vera Schemann, and Felix Ament
Atmos. Chem. Phys., 24, 8771–8795, https://doi.org/10.5194/acp-24-8771-2024, https://doi.org/10.5194/acp-24-8771-2024, 2024
Short summary
Short summary
Using synthetic dropsondes, we assess how discrete spatial sampling and temporal evolution during flight affect the accuracy of real sonde-based moisture transport divergence in Arctic atmospheric rivers (ARs). Non-instantaneous sampling during temporal AR evolution deteriorates the divergence values more than spatial undersampling. Moisture advection is the dominating factor but most sensitive to the sampling method. We suggest a minimum of seven sondes to resolve the AR divergence components.
Deli Meng, Jianping Guo, Xiaoran Guo, Yinjun Wang, Ning Li, Yuping Sun, Zhen Zhang, Na Tang, Haoran Li, Fan Zhang, Bing Tong, Hui Xu, and Tianmeng Chen
Atmos. Chem. Phys., 24, 8703–8720, https://doi.org/10.5194/acp-24-8703-2024, https://doi.org/10.5194/acp-24-8703-2024, 2024
Short summary
Short summary
The turbulence in the planetary boundary layer (PBL) over the Tibetan Plateau (TP) remains unclear. Here we elucidate the vertical profile of and temporal variation in the turbulence dissipation rate in the PBL over the TP based on a radar wind profiler (RWP) network. To the best of our knowledge, this is the first time that the turbulence profile over the whole TP has been revealed. Furthermore, the possible mechanisms of clouds acting on the PBL turbulence structure are investigated.
Leandro Alex Moreira Viscardi, Giuseppe Torri, David K. Adams, and Henrique de Melo Jorge Barbosa
Atmos. Chem. Phys., 24, 8529–8548, https://doi.org/10.5194/acp-24-8529-2024, https://doi.org/10.5194/acp-24-8529-2024, 2024
Short summary
Short summary
We evaluate the environmental conditions that control how clouds grow from fair weather cumulus into severe thunderstorms during the Amazonian wet season. Days with rain clouds begin with more moisture in the air and have strong convergence in the afternoon, while precipitation intensity increases with large-scale vertical velocity, moisture, and low-level wind. These results contribute to understanding how clouds form over the rainforest.
Vinicius dos Santos, Didier Gastmans, Ana María Durán-Quesada, Ricardo Sánchez-Murillo, Kazimierz Rozanski, Oliver Kracht, and Demilson de Assis Quintão
Atmos. Chem. Phys., 24, 6663–6680, https://doi.org/10.5194/acp-24-6663-2024, https://doi.org/10.5194/acp-24-6663-2024, 2024
Short summary
Short summary
We present novel findings on convective rainfall, summer rain in the late afternoon, by coupling water stable isotopes, micro rain radar, and satellite data. We found the tallest clouds in the afternoon and much smaller clouds at night, resulting in differences in day–night ratios in water stable isotopes. We sampled rain and meteorological variables every 5–10 min, allowing us to evaluate the development of convective rainfall, contributing to knowledge of rainfall related to extreme events.
Ewan Crosbie, Luke D. Ziemba, Michael A. Shook, Taylor Shingler, Johnathan W. Hair, Armin Sorooshian, Richard A. Ferrare, Brian Cairns, Yonghoon Choi, Joshua DiGangi, Glenn S. Diskin, Chris Hostetler, Simon Kirschler, Richard H. Moore, David Painemal, Claire Robinson, Shane T. Seaman, K. Lee Thornhill, Christiane Voigt, and Edward Winstead
Atmos. Chem. Phys., 24, 6123–6152, https://doi.org/10.5194/acp-24-6123-2024, https://doi.org/10.5194/acp-24-6123-2024, 2024
Short summary
Short summary
Marine clouds are found to clump together in regions or lines, readily discernible from satellite images of the ocean. While clustering is also a feature of deep storm clouds, we focus on smaller cloud systems associated with fair weather and brief localized showers. Two aircraft sampled the region around these shallow systems: one incorporated measurements taken within, adjacent to, and below the clouds, while the other provided a survey from above using remote sensing techniques.
Nina Maherndl, Manuel Moser, Imke Schirmacher, Aaron Bansemer, Johannes Lucke, Christiane Voigt, and Maximilian Maahn
EGUsphere, https://doi.org/10.5194/egusphere-2024-1214, https://doi.org/10.5194/egusphere-2024-1214, 2024
Short summary
Short summary
It is not clear, why ice crystals in clouds occur in clusters. Here, airborne measurements of clouds in mid- and high-latitudes are used to study the spatial variability of ice. Further, we investigate the influence of riming, which occurs when liquid droplets freeze onto ice crystals. We find that riming enhances the occurrence of ice clusters. In the Arctic, riming leads to ice clustering at spatial scales of 3–5 km. This is due to updrafts, not necessary higher amounts of liquid water.
Siddhant Gupta, Dié Wang, Scott E. Giangrande, Thiago S. Biscaro, and Michael P. Jensen
Atmos. Chem. Phys., 24, 4487–4510, https://doi.org/10.5194/acp-24-4487-2024, https://doi.org/10.5194/acp-24-4487-2024, 2024
Short summary
Short summary
We examine the lifecycle of isolated deep convective clouds (DCCs) in the Amazon rainforest. Weather radar echoes from the DCCs are tracked to evaluate their lifecycle. The DCC size and intensity increase, reach a peak, and then decrease over the DCC lifetime. Vertical profiles of air motion and mass transport from different seasons are examined to understand the transport of energy and momentum within DCC cores and to address the deficiencies in simulating DCCs using weather and climate models.
Benjamin Kirbus, Imke Schirmacher, Marcus Klingebiel, Michael Schäfer, André Ehrlich, Nils Slättberg, Johannes Lucke, Manuel Moser, Hanno Müller, and Manfred Wendisch
Atmos. Chem. Phys., 24, 3883–3904, https://doi.org/10.5194/acp-24-3883-2024, https://doi.org/10.5194/acp-24-3883-2024, 2024
Short summary
Short summary
A research aircraft is used to track the changes in air temperature, moisture, and cloud properties for air that moves from cold Arctic sea ice onto warmer oceanic waters. The measurements are compared to two reanalysis models named ERA5 and CARRA. The biggest differences are found for air temperature over the sea ice and moisture over the ocean. CARRA data are more accurate than ERA5 because they better simulate the sea ice, the transition from sea ice to open ocean, and the forming clouds.
Imke Schirmacher, Sabrina Schnitt, Marcus Klingebiel, Nina Maherndl, Benjamin Kirbus, André Ehrlich, Mario Mech, and Susanne Crewell
EGUsphere, https://doi.org/10.5194/egusphere-2024-850, https://doi.org/10.5194/egusphere-2024-850, 2024
Short summary
Short summary
During Arctic marine cold air outbreaks, cold air flows from sea ice over open water. Roll circulations evolve forming cloud streets. We investigate the initial circulation and cloud development using high-resolution airborne measurements. We compute the distance an air mass travelled over water (fetch) from back trajectories. Cloud streets form at 15 km fetch, cloud cover strongly increases at around 20 km, and precipitation forms at around 30 km.
Raphael Satoru Märkl, Christiane Voigt, Daniel Sauer, Rebecca Katharina Dischl, Stefan Kaufmann, Theresa Harlaß, Valerian Hahn, Anke Roiger, Cornelius Weiß-Rehm, Ulrike Burkhardt, Ulrich Schumann, Andreas Marsing, Monika Scheibe, Andreas Dörnbrack, Charles Renard, Maxime Gauthier, Peter Swann, Paul Madden, Darren Luff, Reetu Sallinen, Tobias Schripp, and Patrick Le Clercq
Atmos. Chem. Phys., 24, 3813–3837, https://doi.org/10.5194/acp-24-3813-2024, https://doi.org/10.5194/acp-24-3813-2024, 2024
Short summary
Short summary
In situ measurements of contrails from a large passenger aircraft burning 100 % sustainable aviation fuel (SAF) show a 56 % reduction in contrail ice crystal numbers compared to conventional Jet A-1. Results from a climate model initialized with the observations suggest a significant decrease in radiative forcing from contrails. Our study confirms that future increased use of low aromatic SAF can reduce the climate impact from aviation.
Yuanmou Du, Dantong Liu, Delong Zhao, Mengyu Huang, Ping Tian, Dian Wen, Wei Xiao, Wei Zhou, Baiwan Pan, Dongfei Zuo, Xiange Liu, Yingying Jing, Rong Zhang, Jiujiang Sheng, Fei Wang, Yu Huang, Yunbo Chen, and Deping Ding
EGUsphere, https://doi.org/10.5194/egusphere-2024-314, https://doi.org/10.5194/egusphere-2024-314, 2024
Short summary
Short summary
By conducting in-situ measurements of the microphysical properties, we investigated the ice production and phase transformation of stratocumulus during an extratropical cyclone over the North China Plain. We find the key factors in controlling secondary ice production, and the microphysical properties of clouds with convective cells under different stages are elucidated, which will improve the understanding of the key processes in controlling the cloud glaciation and precipitation process.
Philippe Ricaud, Massimo Del Guasta, Angelo Lupi, Romain Roehrig, Eric Bazile, Pierre Durand, Jean-Luc Attié, Alessia Nicosia, and Paolo Grigioni
Atmos. Chem. Phys., 24, 613–630, https://doi.org/10.5194/acp-24-613-2024, https://doi.org/10.5194/acp-24-613-2024, 2024
Short summary
Short summary
Clouds affect the Earth's climate in ways that depend on the type of cloud (solid/liquid water). From observations at Concordia (Antarctica), we show that in supercooled liquid water (liquid water for temperatures below 0°C) clouds (SLWCs), temperature and SLWC radiative forcing increase with liquid water (up to 70 W m−2). We extrapolated that the maximum SLWC radiative forcing can reach 40 W m−2 over the Antarctic Peninsula, highlighting the importance of SLWCs for global climate prediction.
Cheikh Dione, Martial Haeffelin, Frédéric Burnet, Christine Lac, Guylaine Canut, Julien Delanoë, Jean-Charles Dupont, Susana Jorquera, Pauline Martinet, Jean-François Ribaud, and Felipe Toledo
Atmos. Chem. Phys., 23, 15711–15731, https://doi.org/10.5194/acp-23-15711-2023, https://doi.org/10.5194/acp-23-15711-2023, 2023
Short summary
Short summary
This paper documents the role of thermodynamics and turbulence in the fog life cycle over southwestern France. It is based on a unique dataset collected during the SOFOG3D field campaign in autumn and winter 2019–2020. The paper gives a threshold for turbulence driving the different phases of the fog life cycle and the role of advection in the night-time dissipation of fog. The results can be operationalised to nowcast fog and improve short-range forecasts in numerical weather prediction models.
Hui Xu, Jianping Guo, Bing Tong, Jinqiang Zhang, Tianmeng Chen, Xiaoran Guo, Jian Zhang, and Wenqing Chen
Atmos. Chem. Phys., 23, 15011–15038, https://doi.org/10.5194/acp-23-15011-2023, https://doi.org/10.5194/acp-23-15011-2023, 2023
Short summary
Short summary
The radiative effect of cloud remains one of the largest uncertain factors in climate change, largely due to the lack of cloud vertical structure (CVS) observations. The study presents the first near-global CVS climatology using high-vertical-resolution soundings. Single-layer cloud mainly occurs over arid regions. As the number of cloud layers increases, clouds tend to have lower bases and thinner layer thicknesses. The occurrence frequency of cloud exhibits a pronounced seasonal diurnal cycle.
Amit Kumar Pandit, Jean-Paul Vernier, Thomas Duncan Fairlie, Kristopher M. Bedka, Melody A. Avery, Harish Gadhavi, Madineni Venkat Ratnam, Sanjeev Dwivedi, Kasimahanthi Amar Jyothi, Frank G. Wienhold, Holger Vömel, Hongyu Liu, Bo Zhang, Buduru Suneel Kumar, Tra Dinh, and Achuthan Jayaraman
EGUsphere, https://doi.org/10.5194/egusphere-2023-2236, https://doi.org/10.5194/egusphere-2023-2236, 2023
Short summary
Short summary
This study investigates the formation mechanism of a tropopause cirrus cloud layer observed at extremely cold temperatures over Hyderabad in India during the 2017 Asian summer monsoon using balloon-borne sensors. Ice crystals smaller than 50 microns were found in this optically thin cirrus cloud layer. Combined analysis of back-trajectories, satellite, and model data revealed that the formation of this layer was influenced by gravity waves and stratospheric hydration induced by typhoon Hato.
Elena De La Torre Castro, Tina Jurkat-Witschas, Armin Afchine, Volker Grewe, Valerian Hahn, Simon Kirschler, Martina Krämer, Johannes Lucke, Nicole Spelten, Heini Wernli, Martin Zöger, and Christiane Voigt
Atmos. Chem. Phys., 23, 13167–13189, https://doi.org/10.5194/acp-23-13167-2023, https://doi.org/10.5194/acp-23-13167-2023, 2023
Short summary
Short summary
In this study, we show the differences in the microphysical properties between high-latitude (HL) cirrus and mid-latitude (ML) cirrus over the Arctic, North Atlantic, and central Europe during summer. The in situ measurements are combined with backward trajectories to investigate the influence of the region on cloud formation. We show that HL cirrus are characterized by a lower concentration of larger ice crystals when compared to ML cirrus.
Mampi Sarkar, Adriana Bailey, Peter Blossey, Simon P. de Szoeke, David Noone, Estefanía Quiñones Meléndez, Mason D. Leandro, and Patrick Y. Chuang
Atmos. Chem. Phys., 23, 12671–12690, https://doi.org/10.5194/acp-23-12671-2023, https://doi.org/10.5194/acp-23-12671-2023, 2023
Short summary
Short summary
We study rain evaporation characteristics below shallow cumulus clouds over the North Atlantic Ocean by pairing isotope observations with a microphysical model. The modeled fraction of rain mass that evaporates below the cloud strongly depends on the raindrop size and distribution width. Moreover, the higher the rain mass fraction evaporated, the greater the change in deuterium excess. In this way, rain evaporation could be studied independently using only isotope and microphysical observations.
Simon Kirschler, Christiane Voigt, Bruce E. Anderson, Gao Chen, Ewan C. Crosbie, Richard A. Ferrare, Valerian Hahn, Johnathan W. Hair, Stefan Kaufmann, Richard H. Moore, David Painemal, Claire E. Robinson, Kevin J. Sanchez, Amy J. Scarino, Taylor J. Shingler, Michael A. Shook, Kenneth L. Thornhill, Edward L. Winstead, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 23, 10731–10750, https://doi.org/10.5194/acp-23-10731-2023, https://doi.org/10.5194/acp-23-10731-2023, 2023
Short summary
Short summary
In this study we present an overview of liquid and mixed-phase clouds and precipitation in the marine boundary layer over the western North Atlantic Ocean. We compare microphysical properties of pure liquid clouds to mixed-phase clouds and show that the initiation of the ice phase in mixed-phase clouds promotes precipitation. The observational data presented in this study are well suited for investigating the processes that give rise to liquid and mixed-phase clouds, ice, and precipitation.
Meng Xing, Weiguo Liu, Jing Hu, and Zheng Wang
Atmos. Chem. Phys., 23, 9123–9136, https://doi.org/10.5194/acp-23-9123-2023, https://doi.org/10.5194/acp-23-9123-2023, 2023
Short summary
Short summary
The below-cloud evaporation effect (BCE) on precipitation largely impacts the final isotopic composition. However, determining the BCE effect remains poorly constrained. Our work used a ΔdΔδ diagram to differentiate the below-cloud processes. Moreover, by comparing two different computing methods, we considered that both methods are suitable for evaluation the BCE, except for snowfall events. Overall, our work compiled a set of effective methods to evaluate the BCE effect.
McKenna W. Stanford, Ann M. Fridlind, Israel Silber, Andrew S. Ackerman, Greg Cesana, Johannes Mülmenstädt, Alain Protat, Simon Alexander, and Adrian McDonald
Atmos. Chem. Phys., 23, 9037–9069, https://doi.org/10.5194/acp-23-9037-2023, https://doi.org/10.5194/acp-23-9037-2023, 2023
Short summary
Short summary
Clouds play an important role in the Earth’s climate system as they modulate the amount of radiation that either reaches the surface or is reflected back to space. This study demonstrates an approach to robustly evaluate surface-based observations against a large-scale model. We find that the large-scale model precipitates too infrequently relative to observations, contrary to literature documentation suggesting otherwise based on satellite measurements.
Valerian Hahn, Ralf Meerkötter, Christiane Voigt, Sonja Gisinger, Daniel Sauer, Valéry Catoire, Volker Dreiling, Hugh Coe, Cyrille Flamant, Stefan Kaufmann, Jonas Kleine, Peter Knippertz, Manuel Moser, Philip Rosenberg, Hans Schlager, Alfons Schwarzenboeck, and Jonathan Taylor
Atmos. Chem. Phys., 23, 8515–8530, https://doi.org/10.5194/acp-23-8515-2023, https://doi.org/10.5194/acp-23-8515-2023, 2023
Short summary
Short summary
During the DACCIWA campaign in West Africa, we found a 35 % increase in the cloud droplet concentration that formed in a polluted compared with a less polluted environment and a decrease of 17 % in effective droplet diameter. Radiative transfer simulations, based on the measured cloud properties, reveal that these low-level polluted clouds radiate only 2.6 % more energy back to space, compared with a less polluted cloud. The corresponding additional decrease in temperature is rather small.
Silke Groß, Tina Jurkat-Witschas, Qiang Li, Martin Wirth, Benedikt Urbanek, Martina Krämer, Ralf Weigel, and Christiane Voigt
Atmos. Chem. Phys., 23, 8369–8381, https://doi.org/10.5194/acp-23-8369-2023, https://doi.org/10.5194/acp-23-8369-2023, 2023
Short summary
Short summary
Aviation-emitted aerosol can have an impact on cirrus clouds. We present optical and microphysical properties of mid-latitude cirrus clouds which were formed under the influence of aviation-emitted aerosol or which were formed under rather pristine conditions. We find that cirrus clouds affected by aviation-emitted aerosol show larger values of the particle linear depolarization ratio, larger mean effective ice particle diameters and decreased ice particle number concentrations.
Emma Järvinen, Franziska Nehlert, Guanglang Xu, Fritz Waitz, Guillaume Mioche, Regis Dupuy, Olivier Jourdan, and Martin Schnaiter
Atmos. Chem. Phys., 23, 7611–7633, https://doi.org/10.5194/acp-23-7611-2023, https://doi.org/10.5194/acp-23-7611-2023, 2023
Short summary
Short summary
The Arctic is warming faster than other regions. Arctic low-level mixed-phase clouds, where ice crystals and liquid droplets co-exist, are thought to have an important role in Arctic warming. Here we show airborne measurements of vertical distribution of liquid and ice particles and their relative abundance. Ice particles are found in relative warm clouds, which can be explained by multiplication of existing ice crystals. However, the role of ice particles in redistributing sun light is minimal.
Manuel Moser, Christiane Voigt, Tina Jurkat-Witschas, Valerian Hahn, Guillaume Mioche, Olivier Jourdan, Régis Dupuy, Christophe Gourbeyre, Alfons Schwarzenboeck, Johannes Lucke, Yvonne Boose, Mario Mech, Stephan Borrmann, André Ehrlich, Andreas Herber, Christof Lüpkes, and Manfred Wendisch
Atmos. Chem. Phys., 23, 7257–7280, https://doi.org/10.5194/acp-23-7257-2023, https://doi.org/10.5194/acp-23-7257-2023, 2023
Short summary
Short summary
This study provides a comprehensive microphysical and thermodynamic phase analysis of low-level clouds in the northern Fram Strait, above the sea ice and the open ocean, during spring and summer. Using airborne in situ cloud data, we show that the properties of Arctic low-level clouds vary significantly with seasonal meteorological situations and surface conditions. The observations presented in this study can help one to assess the role of clouds in the Arctic climate system.
Rachel Atlas and Christopher S. Bretherton
Atmos. Chem. Phys., 23, 4009–4030, https://doi.org/10.5194/acp-23-4009-2023, https://doi.org/10.5194/acp-23-4009-2023, 2023
Short summary
Short summary
The tropical tropopause layer exists between the troposphere and the stratosphere in the tropics. Very thin cirrus clouds cool Earth's surface by scrubbing water vapor (a greenhouse gas) out of air parcels as they ascend through the tropical tropopause layer on their way to the stratosphere. We show observational evidence from aircraft that small-scale (< 100 km) gravity waves and turbulence increase the amount of ice in these clouds and may allow them to remove more water vapor from the air.
Konstantinos Matthaios Doulgeris, Ville Vakkari, Ewan J. O'Connor, Veli-Matti Kerminen, Heikki Lihavainen, and David Brus
Atmos. Chem. Phys., 23, 2483–2498, https://doi.org/10.5194/acp-23-2483-2023, https://doi.org/10.5194/acp-23-2483-2023, 2023
Short summary
Short summary
We investigated how different long-range-transported air masses can affect the microphysical properties of low-level clouds in a clean subarctic environment. A connection was revealed. Higher values of cloud droplet number concentrations were related to continental air masses, whereas the lowest values of number concentrations were related to marine air masses. These were characterized by larger cloud droplets. Clouds in all regions were sensitive to increases in cloud number concentration.
Fayçal Lamraoui, Martina Krämer, Armin Afchine, Adam B. Sokol, Sergey Khaykin, Apoorva Pandey, and Zhiming Kuang
Atmos. Chem. Phys., 23, 2393–2419, https://doi.org/10.5194/acp-23-2393-2023, https://doi.org/10.5194/acp-23-2393-2023, 2023
Short summary
Short summary
Cirrus in the tropical tropopause layer (TTL) can play a key role in vertical transport. We investigate the role of different cloud regimes and the associated ice habits in regulating the properties of the TTL. We use high-resolution numerical experiments at the scales of large-eddy simulations (LESs) and aircraft measurements. We found that LES-scale parameterizations that predict ice shape are crucial for an accurate representation of TTL cirrus and thus the associated (de)hydration process.
Yun Li, Christoph Mahnke, Susanne Rohs, Ulrich Bundke, Nicole Spelten, Georgios Dekoutsidis, Silke Groß, Christiane Voigt, Ulrich Schumann, Andreas Petzold, and Martina Krämer
Atmos. Chem. Phys., 23, 2251–2271, https://doi.org/10.5194/acp-23-2251-2023, https://doi.org/10.5194/acp-23-2251-2023, 2023
Short summary
Short summary
The radiative effect of aviation-induced cirrus is closely related to ambient conditions and its microphysical properties. Our study investigated the occurrence of contrail and natural cirrus measured above central Europe in spring 2014. It finds that contrail cirrus appears frequently in the pressure range 200 to 245 hPa and occurs more often in slightly ice-subsaturated environments than expected. Avoiding slightly ice-subsaturated regions by aviation might help mitigate contrail cirrus.
Flor Vanessa Maciel, Minghui Diao, and Ryan Patnaude
Atmos. Chem. Phys., 23, 1103–1129, https://doi.org/10.5194/acp-23-1103-2023, https://doi.org/10.5194/acp-23-1103-2023, 2023
Short summary
Short summary
Aerosol indirect effects on cirrus clouds are investigated during cirrus evolution, using global-scale in situ observations and climate model simulations. As cirrus evolves, the mechanisms to form ice crystals also change with time. Both small and large aerosols are found to affect cirrus properties. Southern Hemisphere cirrus appears to be more sensitive to additional aerosols. The climate model underestimates ice crystal mass, likely due to biases of relative humidity and vertical velocity.
David E. Kingsmill, Jeffrey R. French, and Neil P. Lareau
Atmos. Chem. Phys., 23, 1–21, https://doi.org/10.5194/acp-23-1-2023, https://doi.org/10.5194/acp-23-1-2023, 2023
Short summary
Short summary
This study uses in situ aircraft measurements to characterize the size and shape distributions of 10 µm to 6 mm diameter particles observed during six penetrations of wildfire-induced pyroconvection. Particles sampled in one penetration of a smoke plume are most likely pyrometeors composed of ash. The other penetrations are through pyrocumulus clouds where particle composition is most likely a combination of hydrometeors (ice particles) and pyrometeors (ash).
Julie Thérèse Pasquier, Jan Henneberger, Fabiola Ramelli, Annika Lauber, Robert Oscar David, Jörg Wieder, Tim Carlsen, Rosa Gierens, Marion Maturilli, and Ulrike Lohmann
Atmos. Chem. Phys., 22, 15579–15601, https://doi.org/10.5194/acp-22-15579-2022, https://doi.org/10.5194/acp-22-15579-2022, 2022
Short summary
Short summary
It is important to understand how ice crystals and cloud droplets form in clouds, as their concentrations and sizes determine the exact radiative properties of the clouds. Normally, ice crystals form from aerosols, but we found evidence for the formation of additional ice crystals from the original ones over a large temperature range within Arctic clouds. In particular, additional ice crystals were formed during collisions of several ice crystals or during the freezing of large cloud droplets.
Layrson J. M. Gonçalves, Simone M. S. C. Coelho, Paulo Y. Kubota, and Dayana C. Souza
Atmos. Chem. Phys., 22, 15509–15526, https://doi.org/10.5194/acp-22-15509-2022, https://doi.org/10.5194/acp-22-15509-2022, 2022
Short summary
Short summary
This research aims to study the environmental conditions that are favorable and not favorable to cloud formation, in this case specifically for the Amazon region. The results found in this research will be used to improve the representation of clouds in numerical models that are used in weather and climate prediction. In general, it is expected that with better knowledge regarding the cloud–radiation interaction, it is possible to make a better forecast of weather and climate.
Claudia Mignani, Lukas Zimmermann, Rigel Kivi, Alexis Berne, and Franz Conen
Atmos. Chem. Phys., 22, 13551–13568, https://doi.org/10.5194/acp-22-13551-2022, https://doi.org/10.5194/acp-22-13551-2022, 2022
Short summary
Short summary
We determined over the course of 8 winter months the phase of clouds associated with snowfall in Northern Finland using radiosondes and observations of ice particle habits at ground level. We found that precipitating clouds were extending from near ground to at least 2.7 km altitude and approximately three-quarters of them were likely glaciated. Possible moisture sources and ice formation processes are discussed.
Alexei Korolev, Paul J. DeMott, Ivan Heckman, Mengistu Wolde, Earle Williams, David J. Smalley, and Michael F. Donovan
Atmos. Chem. Phys., 22, 13103–13113, https://doi.org/10.5194/acp-22-13103-2022, https://doi.org/10.5194/acp-22-13103-2022, 2022
Short summary
Short summary
The present study provides the first explicit in situ observation of secondary ice production at temperatures as low as −27 °C, which is well outside the range of the Hallett–Mossop process (−3 to −8 °C). This observation expands our knowledge of the temperature range of initiation of secondary ice in clouds. The obtained results are intended to stimulate laboratory and theoretical studies to develop physically based parameterizations for weather prediction and climate models.
Siddhant Gupta, Greg M. McFarquhar, Joseph R. O'Brien, Michael R. Poellot, David J. Delene, Ian Chang, Lan Gao, Feng Xu, and Jens Redemann
Atmos. Chem. Phys., 22, 12923–12943, https://doi.org/10.5194/acp-22-12923-2022, https://doi.org/10.5194/acp-22-12923-2022, 2022
Short summary
Short summary
The ability of NASA’s Terra and Aqua satellites to retrieve cloud properties and estimate the changes in cloud properties due to aerosol–cloud interactions (ACI) was examined. There was good agreement between satellite retrievals and in situ measurements over the southeast Atlantic Ocean. This suggests that, combined with information on aerosol properties, satellite retrievals of cloud properties can be used to study ACI over larger domains and longer timescales in the absence of in situ data.
Étienne Vignon, Lea Raillard, Christophe Genthon, Massimo Del Guasta, Andrew J. Heymsfield, Jean-Baptiste Madeleine, and Alexis Berne
Atmos. Chem. Phys., 22, 12857–12872, https://doi.org/10.5194/acp-22-12857-2022, https://doi.org/10.5194/acp-22-12857-2022, 2022
Short summary
Short summary
The near-surface atmosphere over the Antarctic Plateau is cold and pristine and resembles to a certain extent the high troposphere where cirrus clouds form. In this study, we use innovative humidity measurements at Concordia Station to study the formation of ice fogs at temperatures <−40°C. We provide observational evidence that ice fogs can form through the homogeneous freezing of solution aerosols, a common nucleation pathway for cirrus clouds.
Jan H. Schween, Camilo del Rio, Juan-Luis García, Pablo Osses, Sarah Westbrook, and Ulrich Löhnert
Atmos. Chem. Phys., 22, 12241–12267, https://doi.org/10.5194/acp-22-12241-2022, https://doi.org/10.5194/acp-22-12241-2022, 2022
Short summary
Short summary
Marine stratocumulus clouds of the eastern Pacific play an essential role in the Earth's climate. These clouds form the major source of water to parts of the extreme dry Atacama Desert at the northern coast of Chile. For the first time these clouds are observed over a whole year with three remote sensing instruments. It is shown how these clouds are influenced by the land–sea wind system and the distribution of ocean temperatures.
Marie Mazoyer, Frédéric Burnet, and Cyrielle Denjean
Atmos. Chem. Phys., 22, 11305–11321, https://doi.org/10.5194/acp-22-11305-2022, https://doi.org/10.5194/acp-22-11305-2022, 2022
Short summary
Short summary
The evolution of the droplet size distribution during the fog life cycle remains poorly understood and progress is required to reduce the uncertainty of fog forecasts. To gain insights into the physical processes driving the microphysics, intensive field campaigns were conducted during three winters at the SIRTA site in the south of Paris. This study analyzed the variations in fog microphysical properties and their potential interactions at the different evolutionary stages of the fog events.
Xianda Gong, Martin Radenz, Heike Wex, Patric Seifert, Farnoush Ataei, Silvia Henning, Holger Baars, Boris Barja, Albert Ansmann, and Frank Stratmann
Atmos. Chem. Phys., 22, 10505–10525, https://doi.org/10.5194/acp-22-10505-2022, https://doi.org/10.5194/acp-22-10505-2022, 2022
Short summary
Short summary
The sources of ice-nucleating particles (INPs) are poorly understood in the Southern Hemisphere (SH). We studied INPs in the boundary layer in the southern Patagonia region. No seasonal cycle of INP concentrations was observed. The majority of INPs are biogenic particles, likely from local continental sources. The INP concentrations are higher when strong precipitation occurs. While previous studies focused on marine INP sources in SH, we point out the importance of continental sources of INPs.
Jörg Wieder, Nikola Ihn, Claudia Mignani, Moritz Haarig, Johannes Bühl, Patric Seifert, Ronny Engelmann, Fabiola Ramelli, Zamin A. Kanji, Ulrike Lohmann, and Jan Henneberger
Atmos. Chem. Phys., 22, 9767–9797, https://doi.org/10.5194/acp-22-9767-2022, https://doi.org/10.5194/acp-22-9767-2022, 2022
Short summary
Short summary
Ice formation and its evolution in mixed-phase clouds are still uncertain. We evaluate the lidar retrieval of ice-nucleating particle concentration in dust-dominated and continental air masses over the Swiss Alps with in situ observations. A calibration factor to improve the retrieval from continental air masses is proposed. Ice multiplication factors are obtained with a new method utilizing remote sensing. Our results indicate that secondary ice production occurs at temperatures down to −30 °C.
Saleem Ali, Sanjay Kumar Mehta, Aravindhavel Ananthavel, and Tondapu Venkata Ramesh Reddy
Atmos. Chem. Phys., 22, 8321–8342, https://doi.org/10.5194/acp-22-8321-2022, https://doi.org/10.5194/acp-22-8321-2022, 2022
Short summary
Short summary
Multiple cirrus clouds frequently occur over regions of deep convection in the tropics. Tropical convection has a strong diurnal pattern, with peaks in the afternoon to early evening, over the continents. Continuous micropulse lidar observations over a coastal station in the Indian monsoon region enable us, for the first time, to demonstrate a robust diurnal pattern of single and multiple cirrus occurrences, with peaks during the late afternoon and early morning hours, respectively.
Ivana Kolmašová, Ondřej Santolík, Jakub Šlegl, Jana Popová, Zbyněk Sokol, Petr Zacharov, Ondřej Ploc, Gerhard Diendorfer, Ronald Langer, Radek Lán, and Igor Strhárský
Atmos. Chem. Phys., 22, 7959–7973, https://doi.org/10.5194/acp-22-7959-2022, https://doi.org/10.5194/acp-22-7959-2022, 2022
Short summary
Short summary
Gamma ray radiation related to thunderstorms was previously observed at the high-altitude mountain observatories or on the western coast of Japan, usually being terminated by lightning discharges. We show unusual observations of gamma rays at an altitude below 1000 m, coinciding with peculiar rapid variations in the vertical electric field, which are linked to inverted intracloud lightning discharges. This indicates that a strong, lower positive-charge region was present inside the thundercloud.
Cuiqi Zhang, Zhijun Wu, Jingchuan Chen, Jie Chen, Lizi Tang, Wenfei Zhu, Xiangyu Pei, Shiyi Chen, Ping Tian, Song Guo, Limin Zeng, Min Hu, and Zamin A. Kanji
Atmos. Chem. Phys., 22, 7539–7556, https://doi.org/10.5194/acp-22-7539-2022, https://doi.org/10.5194/acp-22-7539-2022, 2022
Short summary
Short summary
The immersion ice nucleation effectiveness of aerosols from multiple sources in the urban environment remains elusive. In this study, we demonstrate that the immersion ice-nucleating particle (INP) concentration increased dramatically during a dust event in an urban atmosphere. Pollutant aerosols, including inorganic salts formed through secondary transformation (SIA) and black carbon (BC), might not act as effective INPs under mixed-phase cloud conditions.
Fritz Waitz, Martin Schnaiter, Thomas Leisner, and Emma Järvinen
Atmos. Chem. Phys., 22, 7087–7103, https://doi.org/10.5194/acp-22-7087-2022, https://doi.org/10.5194/acp-22-7087-2022, 2022
Short summary
Short summary
Riming, i.e., the accretion of small droplets on the surface of ice particles via collision, is one of the major uncertainties in model prediction of mixed-phase clouds. We discuss the occurrence (up to 50% of particles) and aging of rimed ice particles and show correlations of the occurrence and the degree of riming with ambient meteorological parameters using data gathered by the Particle Habit Imaging and Polar Scattering (PHIPS) probe during three airborne in situ field campaigns.
Zoé Brasseur, Dimitri Castarède, Erik S. Thomson, Michael P. Adams, Saskia Drossaart van Dusseldorp, Paavo Heikkilä, Kimmo Korhonen, Janne Lampilahti, Mikhail Paramonov, Julia Schneider, Franziska Vogel, Yusheng Wu, Jonathan P. D. Abbatt, Nina S. Atanasova, Dennis H. Bamford, Barbara Bertozzi, Matthew Boyer, David Brus, Martin I. Daily, Romy Fösig, Ellen Gute, Alexander D. Harrison, Paula Hietala, Kristina Höhler, Zamin A. Kanji, Jorma Keskinen, Larissa Lacher, Markus Lampimäki, Janne Levula, Antti Manninen, Jens Nadolny, Maija Peltola, Grace C. E. Porter, Pyry Poutanen, Ulrike Proske, Tobias Schorr, Nsikanabasi Silas Umo, János Stenszky, Annele Virtanen, Dmitri Moisseev, Markku Kulmala, Benjamin J. Murray, Tuukka Petäjä, Ottmar Möhler, and Jonathan Duplissy
Atmos. Chem. Phys., 22, 5117–5145, https://doi.org/10.5194/acp-22-5117-2022, https://doi.org/10.5194/acp-22-5117-2022, 2022
Short summary
Short summary
The present measurement report introduces the ice nucleation campaign organized in Hyytiälä, Finland, in 2018 (HyICE-2018). We provide an overview of the campaign settings, and we describe the measurement infrastructure and operating procedures used. In addition, we use results from ice nucleation instrument inter-comparison to show that the suite of these instruments deployed during the campaign reports consistent results.
Kevin J. Sanchez, Bo Zhang, Hongyu Liu, Matthew D. Brown, Ewan C. Crosbie, Francesca Gallo, Johnathan W. Hair, Chris A. Hostetler, Carolyn E. Jordan, Claire E. Robinson, Amy Jo Scarino, Taylor J. Shingler, Michael A. Shook, Kenneth L. Thornhill, Elizabeth B. Wiggins, Edward L. Winstead, Luke D. Ziemba, Georges Saliba, Savannah L. Lewis, Lynn M. Russell, Patricia K. Quinn, Timothy S. Bates, Jack Porter, Thomas G. Bell, Peter Gaube, Eric S. Saltzman, Michael J. Behrenfeld, and Richard H. Moore
Atmos. Chem. Phys., 22, 2795–2815, https://doi.org/10.5194/acp-22-2795-2022, https://doi.org/10.5194/acp-22-2795-2022, 2022
Short summary
Short summary
Atmospheric particle concentrations impact clouds, which strongly impact the amount of sunlight reflected back into space and the overall climate. Measurements of particles over the ocean are rare and expensive to collect, so models are necessary to fill in the gaps by simulating both particle and clouds. However, some measurements are needed to test the accuracy of the models. Here, we measure changes in particles in different weather conditions, which are ideal for comparison with models.
Cited articles
Anderson, P. S.: Evidence for an Antarctic winter coastal polynya, Antarct. Sci., 5, 221–226, 1993.
Anderson, P. S.: Mechanism for the behaviour of hydroactive materials in humidity sensors, J. Atmos. Ocean. Tech., 12, 662–667, 1994.
Andreas, E. L.: A theory for scalar roughness and the scalar transfer coefficients over snow and sea ice, Bound.-Lay. Meteorol., 38, 159–184, 1987.
Arthern, R. J., Winebrenner, D. P., and Vaughan, D. G.: Antarctic snow accumulation mapped using polarization of 4.3-cm wavelength microwave emission, J. Geophys. Res., 111, D06107, https://doi.org/10.1029/2004JD005667, 2006.
Barral, H., Genthon, C., Trouvilliez, A., Brun, C., and Amory, C.: Blowing snow in coastal Adélie Land, Antarctica: three atmospheric moisture issues, The Cryosphere, 8, 1905–1919, https://doi.org/10.5194/tc-8-1905-2014, 2014.
Brun, E., Six, D., Picard, G., Vionnet, V., Arnaud, L., Bazile, E., Boone, A., Bouchard, O., Genthon, C., Guidard, V., Le Moigne, P., Rabier, F., and Seity, Y.: Snow-atmosphere coupled simulation at Dome C, Antarctica, J. Glaciol. 57, 721–736, 2011.
Casado, M., Landais, A., Picard, G., Münch, T., Laepple, T., Stenni, B., Dreossi, G., Ekaykin, A., Arnaud, L., Genthon, C., Touzeau, A., Masson-Delmotte, V., and Jouzel, J.: Archival of the water stable isotope signal in East Antarctic ice cores, The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-263, in review, 2016.
DeMott, P. J., Prenni, A. J., Liu, X., Kreidenweis, S. M., Petters, M. D., Twohy, C. H., Richardson, M. S., Eidhammer, T., and Rogers, D. C.: Predicting global atmospheric ice nuclei distributions and their impact on climate, P. Natl. Acad. Sci. USA, 107, 11217–11222, 2010.
Dutra, E., Balsamo, G., Viterbo, P., Miranda, P., Beljaars, P., Sclar, A., and Elder, K.: An improved snow scheme for the ECMWF land surface model: Description and validation, J. Hydrometeorol., 11, 7499–7506, 2010.
Duynkerke, P. G.: Application of the K-ε turbulence closure model for the turbulent structure of the stratocumulus-topped atmospheric boundary layer, J. Atmos. Sci., 45, 865–880, 1998.
Duynkerken P. G. and Driedonsk, A. G. M.: A model for the turbulent structure of the stratocumulus-topped atmospheric boundary layer, J. Atmos. Sci., 44, 43–64, 1987.
Forbes, R. M., Tompkins, A. M., and Untch, A.: A new prognostic bulk microphysics scheme for the IFS, ECMWG Tech. Memo No. 649, 2011.
Frezzotti, M., Pourchet, M., Flora O., Gandolfi, S., Gay, M., Urbini, S., Vincent, C., Becagli, S., Gragnani, R., Proposito, M., Severei, M., Traversi, R., Udisti, R., and Fily, M.: New estimation of precipitation and surface sublimation in East Antarctica from snow accumulation measurements, Clim. Dynam., 23, 803–813, 2004.
Gallée, H.: Simulation of the mesocyclonic activity in the Ross Sea, Antarctica, Mon. Weather Rev., 123, 2051–2069, 1995.
Gallée, H. and Gorodetskaya, I. V.: Validation of a limited area model over Dome C, Antarctic Plateau, during winter, Clim. Dynam., 34, 61–72, 2010.
Gallée, H. and Schayes, G.: Development of a three-dimensional meso-gamma primitive equation model, katabatic winds in the area of Terra Nova Bay, Antarctica, Mon. Weather Rev. 122, 671–685, 1994.
Genthon, C., Town, M. S., Six, D., Favier, V., Argentini, S., and Pellegrini, A.: Meteorological atmospheric boundary layer measurements and ECMWF analyses during summer at Dome C, Antarctica, J. Geophys. Res. 115, D05104, https://doi.org/10.1029/2009JD012741, 2010.
Genthon, C., Six, D., Favier, V., Lazzara, M., and Keller, L.: Atmospheric temperature measurement biases on the Antarctic plateau, J. Atmos. Ocean. Technol., 28, 1598–1605, https://doi.org/10.1175/JTECH-D-11-00095.1, 2011.
Genthon, C., Six, D., Gallée, H., Grigioni, P., and Pellegrini, A.: Two years of atmospheric boundary layer observations on a 45-m tower at Dome C on the Antarctic plateau, J. Geophys. Res.-Atmos., 118, 3218–3232, https://doi.org/10.1002/jgrd.50128, 2013.
Genthon, C., Six, D., Scarchilli, C., Giardini, V., and Frezzotti, M.: Meteorological and snow accumulation gradients across dome C, east Antarctic plateau, Int. J. Clim., 36, 455–466, https://doi.org/10.1002/joc.4362, 2015.
Goff, J. A. and Gratch, S.: Thermodynamics properties of moist air, T. Am. Soc. Heat. Vent. Eng., 51, 125–157, 1945.
Jouzel, J. and Merlivat, L.: Deuterium and oxygen 18 in precipitation: Modeling of the isotopic effects during snow formation, J. Geophys. Res., 89, 11749–11757, 1984.
Jouzel, J., Lorius, C., Petit, J. R., Genthon, C., Barkov, N. I., Korotkevitch, Y. S., and Kotlyakov, V. M.: Vostok ice core: A continuous isotope temperature record over the last climatic cycle (160 000 years), Nature, 329, 403–408, 1987.
Kämpfer, N. (Ed.): Monitoring Atmospheric Water Vapor, Ground-based Remote Sensing and In-situ Methods, ISSI Scientific Report Series, 10, Springer, New York, 2013.
Karcher, B. and Lohmann, U.: A parameterization of cirrus cloud formation: Homogeneous freezing of supercooled aerosols, J. Geophys. Res., 107, https://doi.org/10.1029/2002JD003220, 2002.
Kessler, E.: On the distribution and continuity of water substance in atmospheric circulations, Met. Monograph 10, No. 32, American Meteorological Society, Boston, USA, 84 pp., 1969.
King, J. C. and Anderson, P. S.: A humidity climatology for Halley, Antarctica, based on frost-point hygrometer measurements, Antarct. Sci., 11, 100–104, 1999.
King, J. C., Anderson, P. S., and Mann, G. W.: The seasonal cycle of sublimation at Halley, Antarctica, J. Glaciol., 147, 1–8, 2001.
King, J. C., Argentini, S. A., and Anderson, P. S.: Contrast between the summertime surface energy balance and boundary layer structure at Dome C and Halley stations, Antarctica, J. Geophys. Res., 111, D02105, https://doi.org/10.1029/2005JD006130, 2006.
Kohler, M., Ahlgrimm, M., and Beljaars, A.: Unified treatment of dry convective and stratocumulus-toped boundary leyers in the ECMWF model, Q. J. Roy. Meteor. Soc., 137, 43–57, https://doi.org/10.1002/qj.713, 2011.
Levkov, L., Rockel, B., Kapitza, H., and Raschke, E.: Mesoscale numerical studies of cirrus and stratus clouds by their time and space evolution, Contrib. Atmos. Phys., 65, 35–58, 1992.
Libois, Q., Picard, G., Arnaud, L., Morin, S., and Brun, E.: Modeling the impact of snow drift on the decameter-scale variability of snow properties on the Antarctic Plateau, J. Geophys. Res., 119, 11662–11681, https://doi.org/10.1002/2014JD022361, 2014.
Lin, Y., Farley, J. R. D., and Orville, H. D.: Bulk parameterization of the snow-field in a cloud model, J. Climate Appl. Meteor., 22, 1065–1092, 1983.
Meyers, M. P., Demott, P. J., and Cotton, W. R.: New primary ice nucleation parameterizations in an explicit cloud model, J. Appl. Meteorol., 31, 708–721, 1992.
Prenni, A., DeMott, P., Kreidenwais, S., Harrington, J., Avramov, A., Verlinde, J., Tjernström, M., Long, C., and Olsson, P.: Can ice nucleating aerosols affect Arctic seasonal climate?, B. Am. Meteor. Soc., 88, 541–550, 2007.
Rädel, G. and Shine, K. P.: Validating ECMWF forecasts for occurrences of ice supersaturation using visual observations of persistent contrails and radiosonde measurements over England, Q. J. Roy. Meteor. Soc., 136, 1723–1732, 2010.
Schwerdtfeger, W.: The climate of the Antarctic, edited by: Orvig, S., in: World survey of climatology, edited by: Landsberg, H. E., Elsevier, 14, 253–355, 1970.
Spichtinger, P., Gierens, K., and Read, W.: The global distribution of ice-supersaturated regions as seen by the microwave limb sounder, Q. J. Roy. Meteor. Soc., 129, 3391–3410, https://doi.org/10.1256/qj.02.141, 2003.
Stearns, C. R. and Weidner, G. A.: Sensible and Latent heat flux estimates in Antarctica. Antarct. Res. Ser., 61, 109–138, 1993.
Stull, R. B.: An introduction to boundary layer meteorology, Kluwer, Dordrecht, 666 pp., 1990.
Sukoriansky, S., Galperin, P., and Veniamin, P.: Application of a new spectral theory on stably stratified turbulence to the atmospheric boundary layer over ice, Bound. Lay. Meteorol., 117, 231–257, 2005, 2005.
Town, M. S., Walden, V. P., and Warren, S. G.: Cloud Cover over the South Pole from Visual Observations, Satellite Retrievals, and Surface-Based Infrared Radiation Measurements, J. Clim., 20, 544–559, 2007.
Van As, D., van den Broeke, M., Reijmer, C., and van de Wal, M.: The summer surface energy balance of the high antarctic plateau, Bound.-Lay. Metorol., 115, 289–317, 2005.
van Wessem, J. M., Reijmer, C. H., Lenaerts, J. T. M., van de Berg, W. J., van den Broeke, M. R., and van Meijgaard, E.: Updated cloud physics in a regional atmospheric climate model improves the modelled surface energy balance of Antarctica, The Cryosphere, 8, 125–135, https://doi.org/10.5194/tc-8-125-2014, 2014.
Vignon, E., Genthon C., Barral, H., Amory, C., Picard, G., Gallée, H., Casasanta, G., and Argentini, S.: Momentum and heat flux parametrization at Dome C, Antarctica: a sensitivity study, Bound.-Lay. Meteorol., https://doi.org/10.1007/s10546-016-0192-3, 2016.
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(2104 KB) - Full-text XML
Short summary
Natural atmospheric supersaturation is a norm rather than an exception at the surface of Dome C on the Antarctic Plateau. This is reported by hygrometers adapted to perform in extreme cold environments and avoid release of excess moisture before it is measured. One year of observation shows that atmospheric models with cold microphysics parameterizations designed for high altitude cirrus reproduce frequently but fail with the detailed statistics of supersaturation at the surface of Dome C.
Natural atmospheric supersaturation is a norm rather than an exception at the surface of Dome C...
Altmetrics
Final-revised paper
Preprint