Articles | Volume 17, issue 6
Atmos. Chem. Phys., 17, 3845–3859, 2017
https://doi.org/10.5194/acp-17-3845-2017
Atmos. Chem. Phys., 17, 3845–3859, 2017
https://doi.org/10.5194/acp-17-3845-2017

Research article 21 Mar 2017

Research article | 21 Mar 2017

Upper tropospheric cloud systems derived from IR sounders: properties of cirrus anvils in the tropics

Sofia E. Protopapadaki et al.

Related authors

Cloud climatologies from the infrared sounders AIRS and IASI: strengths and applications
Claudia J. Stubenrauch, Artem G. Feofilov, Sofia E. Protopapadaki, and Raymond Armante
Atmos. Chem. Phys., 17, 13625–13644, https://doi.org/10.5194/acp-17-13625-2017,https://doi.org/10.5194/acp-17-13625-2017, 2017
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Contrasting ice formation in Arctic clouds: surface-coupled vs. surface-decoupled clouds
Hannes J. Griesche, Kevin Ohneiser, Patric Seifert, Martin Radenz, Ronny Engelmann, and Albert Ansmann
Atmos. Chem. Phys., 21, 10357–10374, https://doi.org/10.5194/acp-21-10357-2021,https://doi.org/10.5194/acp-21-10357-2021, 2021
Short summary
Evaluation of the CMIP6 marine subtropical stratocumulus cloud albedo and its controlling factors
Bida Jian, Jiming Li, Guoyin Wang, Yuxin Zhao, Yarong Li, Jing Wang, Min Zhang, and Jianping Huang
Atmos. Chem. Phys., 21, 9809–9828, https://doi.org/10.5194/acp-21-9809-2021,https://doi.org/10.5194/acp-21-9809-2021, 2021
Short summary
Identifying meteorological influences on marine low-cloud mesoscale morphology using satellite classifications
Johannes Mohrmann, Robert Wood, Tianle Yuan, Hua Song, Ryan Eastman, and Lazaros Oreopoulos
Atmos. Chem. Phys., 21, 9629–9642, https://doi.org/10.5194/acp-21-9629-2021,https://doi.org/10.5194/acp-21-9629-2021, 2021
Short summary
Lidar observations of cirrus clouds in Palau (7°33′ N, 134°48′ E)
Francesco Cairo, Mauro De Muro, Marcel Snels, Luca Di Liberto, Silvia Bucci, Bernard Legras, Ajil Kottayil, Andrea Scoccione, and Stefano Ghisu
Atmos. Chem. Phys., 21, 7947–7961, https://doi.org/10.5194/acp-21-7947-2021,https://doi.org/10.5194/acp-21-7947-2021, 2021
Short summary
Observing the timescales of aerosol–cloud interactions in snapshot satellite images
Edward Gryspeerdt, Tom Goren, and Tristan W. P. Smith
Atmos. Chem. Phys., 21, 6093–6109, https://doi.org/10.5194/acp-21-6093-2021,https://doi.org/10.5194/acp-21-6093-2021, 2021
Short summary

Cited articles

Adler, R., Wilheit Jr., T., Kummerow, C., and Ferraro, R.: AMSR-E/Aqua L2B Global Swath Rain Rate/Type GSFC Profiling Algorithm, Version 2, Boulder, Colorado USA, NASA National Snow and Ice Data Center Distributed Active Archive Center, https://doi.org/10.5067/AMSR-E/AE_RAIN.002, 2004.
Altaratz, O., Koren, I., Remer, L. A., and Hirsch, E.: Review: cloud invigoration by aerosols-coupling between microphysics and dynamics, Atmos. Res., 140, 38–60, 2014.
Bacmeister, J. T. and Stephens, G. L.: Spatial statistics of likely convective clouds in CloudSat data, J. Geophys. Res.-Atmos., 116, 2156–2202, 2011.
Bony, S., Stevens, B., Coppin, D., Becker, T., Reed, K. A., Voigt, A., and Medeiros, B.: Thermodynamic control of anvil cloud amount, P. Natl. Acad. Sci. USA, 113, 8927–8932, 2016.
Download
Short summary
Upper tropospheric clouds cover about 30 % of the Earth and play a key role in the climate system by modulating the Earth's energy budget and heat transport. In this article, we study upper tropospheric cloud systems using cloud properties deduced from infrared sounders. Our analyses show that the size of the systems as well as the fraction of thin cirrus over the total anvil area increases with increasing convective depth.
Altmetrics
Final-revised paper
Preprint