Articles | Volume 16, issue 13
https://doi.org/10.5194/acp-16-8331-2016
https://doi.org/10.5194/acp-16-8331-2016
Research article
 | 
11 Jul 2016
Research article |  | 11 Jul 2016

Representativeness of total column water vapour retrievals from instruments on polar orbiting satellites

Hannes Diedrich, Falco Wittchen, René Preusker, and Jürgen Fischer

Related authors

An intercalibrated dataset of total column water vapour and wet tropospheric correction based on MWR on board ERS-1, ERS-2, and Envisat
Ralf Bennartz, Heidrun Höschen, Bruno Picard, Marc Schröder, Martin Stengel, Oliver Sus, Bojan Bojkov, Stefano Casadio, Hannes Diedrich, Salomon Eliasson, Frank Fell, Jürgen Fischer, Rainer Hollmann, Rene Preusker, and Ulrika Willén
Atmos. Meas. Tech., 10, 1387–1402, https://doi.org/10.5194/amt-10-1387-2017,https://doi.org/10.5194/amt-10-1387-2017, 2017
Short summary
Retrieval of daytime total columnar water vapour from MODIS measurements over land surfaces
H. Diedrich, R. Preusker, R. Lindstrot, and J. Fischer
Atmos. Meas. Tech., 8, 823–836, https://doi.org/10.5194/amt-8-823-2015,https://doi.org/10.5194/amt-8-823-2015, 2015
Quantification of uncertainties of water vapour column retrievals using future instruments
H. Diedrich, R. Preusker, R. Lindstrot, and J. Fischer
Atmos. Meas. Tech., 6, 359–370, https://doi.org/10.5194/amt-6-359-2013,https://doi.org/10.5194/amt-6-359-2013, 2013

Related subject area

Subject: Gases | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Automated detection of regions with persistently enhanced methane concentrations using Sentinel-5 Precursor satellite data
Steffen Vanselow, Oliver Schneising, Michael Buchwitz, Maximilian Reuter, Heinrich Bovensmann, Hartmut Boesch, and John P. Burrows
Atmos. Chem. Phys., 24, 10441–10473, https://doi.org/10.5194/acp-24-10441-2024,https://doi.org/10.5194/acp-24-10441-2024, 2024
Short summary
Biomass burning CO emissions: exploring insights through TROPOMI-derived emissions and emission coefficients
Debora Griffin, Jack Chen, Kerry Anderson, Paul Makar, Chris A. McLinden, Enrico Dammers, and Andre Fogal
Atmos. Chem. Phys., 24, 10159–10186, https://doi.org/10.5194/acp-24-10159-2024,https://doi.org/10.5194/acp-24-10159-2024, 2024
Short summary
Measurement report: Combined use of MAX-DOAS and AERONET ground-based measurements in Montevideo, Uruguay, for the detection of distant biomass burning
Matías Osorio, Alejandro Agesta, Tim Bösch, Nicolás Casaballe, Andreas Richter, Leonardo M. A. Alvarado, and Erna Frins
Atmos. Chem. Phys., 24, 7447–7465, https://doi.org/10.5194/acp-24-7447-2024,https://doi.org/10.5194/acp-24-7447-2024, 2024
Short summary
Quantifying CH4 emissions from coal mine aggregation areas in Shanxi, China, using TROPOMI observations and the wind-assigned anomaly method
Qiansi Tu, Frank Hase, Kai Qin, Jason Blake Cohen, Farahnaz Khosrawi, Xinrui Zou, Matthias Schneider, and Fan Lu
Atmos. Chem. Phys., 24, 4875–4894, https://doi.org/10.5194/acp-24-4875-2024,https://doi.org/10.5194/acp-24-4875-2024, 2024
Short summary
Identifying episodic carbon monoxide emission events in the MOPITT measurement dataset
Paul S. Jeffery, James R. Drummond, Jiansheng Zou, and Kaley A. Walker
Atmos. Chem. Phys., 24, 4253–4263, https://doi.org/10.5194/acp-24-4253-2024,https://doi.org/10.5194/acp-24-4253-2024, 2024
Short summary

Cited articles

Bennartz, R. and Fischer, J.: Retrieval of columnar water vapour over land from backscattered solar radiation using the Medium Resolution Imaging Spectrometer, Remote Sens. Environ., 78, 274–283, https://doi.org/10.1016/S0034-4257(01)00218-8, 2001.
Bevis, M., Businger, S., Herring, T. A., Rocken, C., Anthes, R. A., and Ware, R. H.: GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system, J. Geophys. Res., 97, 15787, https://doi.org/10.1029/92jd01517, 1992.
Carbajal Henken, C. K., Diedrich, H., Preusker, R., and Fischer, J.: MERIS full-resolution total column water vapor: observing horizontal convective rolls, Geophys. Res. Lett., 42, 10074–10081, https://doi.org/10.1002/2015gl066650, 2015.
Dick, G., Gendt, G., and Reigber, C.: First experience with near real-time water vapor estimation in a German GPS network, J. Atmos. Sol.-Terr. Phy., 63, 1295–1304, https://doi.org/10.1016/S1364-6826(00)00248-0, 2001.
Diedrich, H., Preusker, R., Lindstrot, R., and Fischer, J.: Quantification of uncertainties of water vapour column retrievals using future instruments, Atmos. Meas. Tech., 6, 359–370, https://doi.org/10.5194/amt-6-359-2013, 2013.
Download
Short summary
As water vapour is the most important greenhouse gas, the remote sensing of total column water vapour (TCWV) is an important part of climate research. The remote sensing from polar orbiting, sun-synchronous satellites has some limitations. This study investigates the representativeness of observations from space regarding these limitations. The mean daily variability of the diurnal cycle of TCWV was quantified using a water vapour data set from ground-based observations.
Altmetrics
Final-revised paper
Preprint