Articles | Volume 16, issue 8
https://doi.org/10.5194/acp-16-4817-2016
https://doi.org/10.5194/acp-16-4817-2016
Research article
 | 
19 Apr 2016
Research article |  | 19 Apr 2016

Modeling and measurements of urban aerosol processes on the neighborhood scale in Rotterdam, Oslo and Helsinki

Matthias Karl, Jaakko Kukkonen, Menno P. Keuken, Susanne Lützenkirchen, Liisa Pirjola, and Tareq Hussein

Related authors

The impact of nitrogen and sulfur emissions from shipping on the exceedance of critical loads in the Baltic Sea region
Sara Jutterström, Filip Moldan, Jana Moldanová, Matthias Karl, Volker Matthias, and Maximilian Posch
Atmos. Chem. Phys., 21, 15827–15845, https://doi.org/10.5194/acp-21-15827-2021,https://doi.org/10.5194/acp-21-15827-2021, 2021
Short summary
The urban dispersion model EPISODE v10.0 – Part 1: An Eulerian and sub-grid-scale air quality model and its application in Nordic winter conditions
Paul D. Hamer, Sam-Erik Walker, Gabriela Sousa-Santos, Matthias Vogt, Dam Vo-Thanh, Susana Lopez-Aparicio, Philipp Schneider, Martin O. P. Ramacher, and Matthias Karl
Geosci. Model Dev., 13, 4323–4353, https://doi.org/10.5194/gmd-13-4323-2020,https://doi.org/10.5194/gmd-13-4323-2020, 2020
Short summary
The impact of ship emissions on air quality and human health in the Gothenburg area – Part II: Scenarios for 2040
Martin O. P. Ramacher, Lin Tang, Jana Moldanová, Volker Matthias, Matthias Karl, Erik Fridell, and Lasse Johansson
Atmos. Chem. Phys., 20, 10667–10686, https://doi.org/10.5194/acp-20-10667-2020,https://doi.org/10.5194/acp-20-10667-2020, 2020
Short summary
The impact of ship emissions on air quality and human health in the Gothenburg area – Part 1: 2012 emissions
Lin Tang, Martin O. P. Ramacher, Jana Moldanová, Volker Matthias, Matthias Karl, Lasse Johansson, Jukka-Pekka Jalkanen, Katarina Yaramenka, Armin Aulinger, and Malin Gustafsson
Atmos. Chem. Phys., 20, 7509–7530, https://doi.org/10.5194/acp-20-7509-2020,https://doi.org/10.5194/acp-20-7509-2020, 2020
Short summary
Quantifying the contribution of shipping NOx emissions to the marine nitrogen inventory – a case study for the western Baltic Sea
Daniel Neumann, Matthias Karl, Hagen Radtke, Volker Matthias, René Friedland, and Thomas Neumann
Ocean Sci., 16, 115–134, https://doi.org/10.5194/os-16-115-2020,https://doi.org/10.5194/os-16-115-2020, 2020
Short summary

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Parameterization of size of organic and secondary inorganic aerosol for efficient representation of global aerosol optical properties
Haihui Zhu, Randall V. Martin, Betty Croft, Shixian Zhai, Chi Li, Liam Bindle, Jeffrey R. Pierce, Rachel Y.-W. Chang, Bruce E. Anderson, Luke D. Ziemba, Johnathan W. Hair, Richard A. Ferrare, Chris A. Hostetler, Inderjeet Singh, Deepangsu Chatterjee, Jose L. Jimenez, Pedro Campuzano-Jost, Benjamin A. Nault, Jack E. Dibb, Joshua S. Schwarz, and Andrew Weinheimer
Atmos. Chem. Phys., 23, 5023–5042, https://doi.org/10.5194/acp-23-5023-2023,https://doi.org/10.5194/acp-23-5023-2023, 2023
Short summary
Model-based insights into aerosol perturbation on pristine continental convective precipitation
Mengjiao Jiang, Yaoting Li, Weiji Hu, Yinshan Yang, Guy Brasseur, and Xi Zhao
Atmos. Chem. Phys., 23, 4545–4557, https://doi.org/10.5194/acp-23-4545-2023,https://doi.org/10.5194/acp-23-4545-2023, 2023
Short summary
The impact of using assimilated Aeolus wind data on regional WRF-Chem dust simulations
Pantelis Kiriakidis, Antonis Gkikas, Georgios Papangelis, Theodoros Christoudias, Jonilda Kushta, Emmanouil Proestakis, Anna Kampouri, Eleni Marinou, Eleni Drakaki, Angela Benedetti, Michael Rennie, Christian Retscher, Anne Grete Straume, Alexandru Dandocsi, Jean Sciare, and Vasilis Amiridis
Atmos. Chem. Phys., 23, 4391–4417, https://doi.org/10.5194/acp-23-4391-2023,https://doi.org/10.5194/acp-23-4391-2023, 2023
Short summary
On the differences in the vertical distribution of modeled aerosol optical depth over the southeastern Atlantic
Ian Chang, Lan Gao, Connor J. Flynn, Yohei Shinozuka, Sarah J. Doherty, Michael S. Diamond, Karla M. Longo, Gonzalo A. Ferrada, Gregory R. Carmichael, Patricia Castellanos, Arlindo M. da Silva, Pablo E. Saide, Calvin Howes, Zhixin Xue, Marc Mallet, Ravi Govindaraju, Qiaoqiao Wang, Yafang Cheng, Yan Feng, Sharon P. Burton, Richard A. Ferrare, Samuel E. LeBlanc, Meloë S. Kacenelenbogen, Kristina Pistone, Michal Segal-Rozenhaimer, Kerry G. Meyer, Ju-Mee Ryoo, Leonhard Pfister, Adeyemi A. Adebiyi, Robert Wood, Paquita Zuidema, Sundar A. Christopher, and Jens Redemann
Atmos. Chem. Phys., 23, 4283–4309, https://doi.org/10.5194/acp-23-4283-2023,https://doi.org/10.5194/acp-23-4283-2023, 2023
Short summary
A global evaluation of daily to seasonal aerosol and water vapor relationships using a combination of AERONET and NAAPS reanalysis data
Juli I. Rubin, Jeffrey S. Reid, Peng Xian, Christopher M. Selman, and Thomas F. Eck
Atmos. Chem. Phys., 23, 4059–4090, https://doi.org/10.5194/acp-23-4059-2023,https://doi.org/10.5194/acp-23-4059-2023, 2023
Short summary

Cited articles

Dall'Osto, M., Thorpe, A., Beddows, D. C. S., Harrison, R. M., Barlow, J. F., Dunbar, T., Williams, P. I., and Coe, H.: Remarkable dynamics of nanoparticles in the urban atmosphere, Atmos. Chem. Phys., 11, 6623–6637, https://doi.org/10.5194/acp-11-6623-2011, 2011.
Fridell, E., Steen, E., and Peterson, K.: Primary particles in ship emission, Atmos. Environ., 42, 1160–1168, 2008.
Gidhagen, L., Johansson, C., Langner, J., and Foltescu, V. L.: Urban scale modeling of particle number concentration in Stockholm, Atmos. Environ., 39, 1711–1725, 2005.
Guha, A.: A unified Eulerian theory of turbulent deposition to smooth and rough surfaces, J. Aerosol Sci., 28, 1517–1537, 1997.
Download
Short summary
Particles emitted from road traffic are subject to complex dilution processes as well as microphysical transformation processes. Particle measurements at major roads in Rotterdam, Oslo and Helsinki were used to analyze the relevance of microphysical transformation processes. Transformation processes caused changes of the particle number concentration of up to 20–30 % on the neighborhood scale. A simple parameterization to predict particle number concentrations in urban areas is presented.
Altmetrics
Final-revised paper
Preprint