Articles | Volume 16, issue 22
https://doi.org/10.5194/acp-16-14249-2016
https://doi.org/10.5194/acp-16-14249-2016
Research article
 | 
16 Nov 2016
Research article |  | 16 Nov 2016

Large-scale vertical velocity, diabatic heating and drying profiles associated with seasonal and diurnal variations of convective systems observed in the GoAmazon2014/5 experiment

Shuaiqi Tang, Shaocheng Xie, Yunyan Zhang, Minghua Zhang, Courtney Schumacher, Hannah Upton, Michael P. Jensen, Karen L. Johnson, Meng Wang, Maike Ahlgrimm, Zhe Feng, Patrick Minnis, and Mandana Thieman

Related authors

Understanding aerosol–cloud interactions using a single-column model for a cold-air outbreak case during the ACTIVATE campaign
Shuaiqi Tang, Hailong Wang, Xiang-Yu Li, Jingyi Chen, Armin Sorooshian, Xubin Zeng, Ewan Crosbie, Kenneth L. Thornhill, Luke D. Ziemba, and Christiane Voigt
Atmos. Chem. Phys., 24, 10073–10092, https://doi.org/10.5194/acp-24-10073-2024,https://doi.org/10.5194/acp-24-10073-2024, 2024
Short summary
Atmospheric Radiation Measurement (ARM) airborne field campaign data products between 2013 and 2018
Fan Mei, Jennifer M. Comstock, Mikhail S. Pekour, Jerome D. Fast, Beat Schmid, Krista L. Gaustad, Shuaiqi Tang, Damao Zhang, John E. Shilling, Jason Tomlinson, Adam C. Varble, Jian Wang, L. Ruby Leung, Lawrence Kleinman, Scot Martin, Sebastien C. Biraud, Brian D. Ermold, and Kenneth W. Burk
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-97,https://doi.org/10.5194/essd-2024-97, 2024
Preprint under review for ESSD
Short summary
Earth System Model Aerosol–Cloud Diagnostics (ESMAC Diags) package, version 2: assessing aerosols, clouds, and aerosol–cloud interactions via field campaign and long-term observations
Shuaiqi Tang, Adam C. Varble, Jerome D. Fast, Kai Zhang, Peng Wu, Xiquan Dong, Fan Mei, Mikhail Pekour, Joseph C. Hardin, and Po-Lun Ma
Geosci. Model Dev., 16, 6355–6376, https://doi.org/10.5194/gmd-16-6355-2023,https://doi.org/10.5194/gmd-16-6355-2023, 2023
Short summary
Evaluation of liquid cloud albedo susceptibility in E3SM using coupled eastern North Atlantic surface and satellite retrievals
Adam C. Varble, Po-Lun Ma, Matthew W. Christensen, Johannes Mülmenstädt, Shuaiqi Tang, and Jerome Fast
Atmos. Chem. Phys., 23, 13523–13553, https://doi.org/10.5194/acp-23-13523-2023,https://doi.org/10.5194/acp-23-13523-2023, 2023
Short summary
Earth System Model Aerosol–Cloud Diagnostics (ESMAC Diags) package, version 1: assessing E3SM aerosol predictions using aircraft, ship, and surface measurements
Shuaiqi Tang, Jerome D. Fast, Kai Zhang, Joseph C. Hardin, Adam C. Varble, John E. Shilling, Fan Mei, Maria A. Zawadowicz, and Po-Lun Ma
Geosci. Model Dev., 15, 4055–4076, https://doi.org/10.5194/gmd-15-4055-2022,https://doi.org/10.5194/gmd-15-4055-2022, 2022
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Drivers of droplet formation in east Mediterranean orographic clouds
Romanos Foskinis, Ghislain Motos, Maria I. Gini, Olga Zografou, Kunfeng Gao, Stergios Vratolis, Konstantinos Granakis, Ville Vakkari, Kalliopi Violaki, Andreas Aktypis, Christos Kaltsonoudis, Zongbo Shi, Mika Komppula, Spyros N. Pandis, Konstantinos Eleftheriadis, Alexandros Papayannis, and Athanasios Nenes
Atmos. Chem. Phys., 24, 9827–9842, https://doi.org/10.5194/acp-24-9827-2024,https://doi.org/10.5194/acp-24-9827-2024, 2024
Short summary
Observability of moisture transport divergence in Arctic atmospheric rivers by dropsondes
Henning Dorff, Heike Konow, Vera Schemann, and Felix Ament
Atmos. Chem. Phys., 24, 8771–8795, https://doi.org/10.5194/acp-24-8771-2024,https://doi.org/10.5194/acp-24-8771-2024, 2024
Short summary
Elucidating the boundary layer turbulence dissipation rate using high-resolution measurements from a radar wind profiler network over the Tibetan Plateau
Deli Meng, Jianping Guo, Xiaoran Guo, Yinjun Wang, Ning Li, Yuping Sun, Zhen Zhang, Na Tang, Haoran Li, Fan Zhang, Bing Tong, Hui Xu, and Tianmeng Chen
Atmos. Chem. Phys., 24, 8703–8720, https://doi.org/10.5194/acp-24-8703-2024,https://doi.org/10.5194/acp-24-8703-2024, 2024
Short summary
Environmental controls on isolated convection during the Amazonian wet season
Leandro Alex Moreira Viscardi, Giuseppe Torri, David K. Adams, and Henrique de Melo Jorge Barbosa
Atmos. Chem. Phys., 24, 8529–8548, https://doi.org/10.5194/acp-24-8529-2024,https://doi.org/10.5194/acp-24-8529-2024, 2024
Short summary
Isotopic composition of convective rainfall in the inland tropics of Brazil
Vinicius dos Santos, Didier Gastmans, Ana María Durán-Quesada, Ricardo Sánchez-Murillo, Kazimierz Rozanski, Oliver Kracht, and Demilson de Assis Quintão
Atmos. Chem. Phys., 24, 6663–6680, https://doi.org/10.5194/acp-24-6663-2024,https://doi.org/10.5194/acp-24-6663-2024, 2024
Short summary

Cited articles

Ahmed, F., Schumacher, C., Feng, Z., and Hagos, S.: A Retrieval of Tropical Latent Heating Using the 3D Structure of Precipitation Features, J. Appl. Meteorol. Clim., 55, 1965–1982, https://doi.org/10.1175/JAMC-D-15-0038.1, 2016.
Atmospheric Radiation Measurement (ARM) Climate Research Facility, updated hourly. Radiative Flux Analysis (RADFLUX1LONG). 2014-02-15 to 2014-10-10, 3.21297 S 60.5981 W: ARM Mobile Facility (MAO) Manacapuru, Amazonas, Brazil; AMF1 (M1), compiled by: Long, C., Gaustad, K., and Riihimaki, L., Atmospheric Radiation Measurement (ARM) Climate Research Facility Data Archive: Oak Ridge, Tennessee, USA, last access: 9 March 2016 at https://doi.org/10.5439/1179822, 1994.
Atmospheric Radiation Measurement (ARM) Climate Research Facility, updated monthly. SCM-Forcing DATA from variational analysis (VARANAL). 2014-02-18 to 2014-10-10, 3.21297 S 60.5981 W: ARM Mobile Facility (MAO) Manacapuru, Amazonas, Brazil; AMF1 (M1), compiled by: Tang, S., Xie, S., and Zhang, Y., Atmospheric Radiation Measurement (ARM) Climate Research Facility Data Archive: Oak Ridge, Tennessee, USA, last access: 22 July 2016 at https://doi.org/10.5439/1273323, 2001.
Atmospheric Radiation Measurement (ARM) Climate Research Facility, updated hourly. Quality Controlled Eddy Correlation Flux Measurement (30QCECOR). 2014-02-15 to 2014-10-10, 3.21297 S 60.5981 W: ARM Mobile Facility (MAO) Manacapuru, Amazonas, Brazil; AMF1 (M1), compiled by: McCoy, R., Zhang, Y., and Xie, S., Atmospheric Radiation Measurement (ARM) Climate Research Facility Data Archive: Oak Ridge, Tennessee, USA, last access: 22 March 2016 at https://doi.org/10.5439/1097546, 2003.
Burleyson, C. D., Feng, Z., Hagos, S. M., Fast, J., Machado, L. A. T., and Martin, S. T.: Spatial Variability of the Background Diurnal Cycle of Deep Convection around the GoAmazon2014/5 Field Campaign Sites, J. Appl. Meteor. Climatol., 55, 1579–1598, https://doi.org/10.1175/JAMC-D-15-0229.1, 2016.
Download
Short summary
Data observed during the Green Ocean Amazon (GoAmazon2014/5) experiment are used to derive the large-scale fields in this study. The morning propagating convective systems are active during the wet season but rare during the dry season. The afternoon convections are active in both seasons, with heating and moistening in the lower level corresponding to the vertical convergence of eddy fluxes. Case study shows distinguish large-scale environments for three types of convective systems in Amazonia.
Altmetrics
Final-revised paper
Preprint