Articles | Volume 16, issue 19
Atmos. Chem. Phys., 16, 12631–12647, 2016
https://doi.org/10.5194/acp-16-12631-2016
Atmos. Chem. Phys., 16, 12631–12647, 2016
https://doi.org/10.5194/acp-16-12631-2016

Research article 11 Oct 2016

Research article | 11 Oct 2016

Photochemical organonitrate formation in wet aerosols

Yong Bin Lim et al.

Related authors

Synergistic enhancement of urban haze by nitrate uptake into transported hygroscopic particles in the Asian continental outflow
Jihoon Seo, Yong Bin Lim, Daeok Youn, Jin Young Kim, and Hyoun Cher Jin
Atmos. Chem. Phys., 20, 7575–7594, https://doi.org/10.5194/acp-20-7575-2020,https://doi.org/10.5194/acp-20-7575-2020, 2020
Short summary
Effects of meteorology and emissions on urban air quality: a quantitative statistical approach to long-term records (1999–2016) in Seoul, South Korea
Jihoon Seo, Doo-Sun R. Park, Jin Young Kim, Daeok Youn, Yong Bin Lim, and Yumi Kim
Atmos. Chem. Phys., 18, 16121–16137, https://doi.org/10.5194/acp-18-16121-2018,https://doi.org/10.5194/acp-18-16121-2018, 2018
Short summary
Multiday haze in the East Asia: Transport and chemical aging of hygroscopic particles
Yong Bin Lim, Jihoon Seo, Jin Young Kim, and Barbara J. Turpin
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-364,https://doi.org/10.5194/acp-2018-364, 2018
Revised manuscript not accepted
Short summary
On the multiday haze in the Asian continental outflow: the important role of synoptic conditions combined with regional and local sources
Jihoon Seo, Jin Young Kim, Daeok Youn, Ji Yi Lee, Hwajin Kim, Yong Bin Lim, Yumi Kim, and Hyoun Cher Jin
Atmos. Chem. Phys., 17, 9311–9332, https://doi.org/10.5194/acp-17-9311-2017,https://doi.org/10.5194/acp-17-9311-2017, 2017
Short summary
Chemical insights, explicit chemistry, and yields of secondary organic aerosol from OH radical oxidation of methylglyoxal and glyoxal in the aqueous phase
Y. B. Lim, Y. Tan, and B. J. Turpin
Atmos. Chem. Phys., 13, 8651–8667, https://doi.org/10.5194/acp-13-8651-2013,https://doi.org/10.5194/acp-13-8651-2013, 2013

Related subject area

Subject: Aerosols | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Effects of liquid–liquid phase separation and relative humidity on the heterogeneous OH oxidation of inorganic–organic aerosols: insights from methylglutaric acid and ammonium sulfate particles
Hoi Ki Lam, Rongshuang Xu, Jack Choczynski, James F. Davies, Dongwan Ham, Mijung Song, Andreas Zuend, Wentao Li, Ying-Lung Steve Tse, and Man Nin Chan
Atmos. Chem. Phys., 21, 2053–2066, https://doi.org/10.5194/acp-21-2053-2021,https://doi.org/10.5194/acp-21-2053-2021, 2021
Short summary
Measurement report: Sulfuric acid nucleation and experimental conditions in a photolytic flow reactor
David R. Hanson, Seakh Menheer, Michael Wentzel, and Joan Kunz
Atmos. Chem. Phys., 21, 1987–2001, https://doi.org/10.5194/acp-21-1987-2021,https://doi.org/10.5194/acp-21-1987-2021, 2021
Short summary
Ozonolysis of fatty acid monolayers at the air–water interface: organic films may persist at the surface of atmospheric aerosols
Benjamin Woden, Maximilian W. A. Skoda, Adam Milsom, Curtis Gubb, Armando Maestro, James Tellam, and Christian Pfrang
Atmos. Chem. Phys., 21, 1325–1340, https://doi.org/10.5194/acp-21-1325-2021,https://doi.org/10.5194/acp-21-1325-2021, 2021
Short summary
Quantification of the role of stabilized Criegee intermediates in the formation of aerosols in limonene ozonolysis
Yiwei Gong and Zhongming Chen
Atmos. Chem. Phys., 21, 813–829, https://doi.org/10.5194/acp-21-813-2021,https://doi.org/10.5194/acp-21-813-2021, 2021
Short summary
Photochemical degradation of iron(III) citrate/citric acid aerosol quantified with the combination of three complementary experimental techniques and a kinetic process model
Jing Dou, Peter A. Alpert, Pablo Corral Arroyo, Beiping Luo, Frederic Schneider, Jacinta Xto, Thomas Huthwelker, Camelia N. Borca, Katja D. Henzler, Jörg Raabe, Benjamin Watts, Hartmut Herrmann, Thomas Peter, Markus Ammann, and Ulrich K. Krieger
Atmos. Chem. Phys., 21, 315–338, https://doi.org/10.5194/acp-21-315-2021,https://doi.org/10.5194/acp-21-315-2021, 2021
Short summary

Cited articles

Allen, H. M., Draper, D. C., Ayres, B. R., Ault, A., Bondy, A., Takahama, S., Modini, R. L., Baumann, K., Edgerton, E., Knote, C., Laskin, A., Wang, B., and Fry, J. L.: Influence of crustal dust and sea spray supermicron particle concentrations and acidity on inorganic NO3 aerosol during the 2013 Southern Oxidant and Aerosol Study, Atmos. Chem. Phys., 15, 10669–10685, https://doi.org/10.5194/acp-15-10669-2015, 2015.
Altieri, K. E., Seitzinger, S. P., Carlton, A. G., Turpin, B. J., Klein, G. C., and Marshall, A. G.: Oligomers formed through in-cloud methylglyoxal reactions: Chemical composition, properties, and mechanisms investigated by ultra-high resolution FT-ICR mass spectrometry, Atmos. Environ., 42, 1476–1490, https://doi.org/10.1016/j.atmosenv.2007.11.015, 2008.
Altieri, K. E., Turpin, B. J., and Seitzinger, S. P.: Oligomers, organosulfates, and nitrooxy organosulfates in rainwater identified by ultra-high resolution electrospray ionization FT-ICR mass spectrometry, Atmos. Chem. Phys., 9, 2533–2542, https://doi.org/10.5194/acp-9-2533-2009, 2009.
Arakaki, T., Anastasio, C., Kuroki, Y., Nakajima, H., Okada, K., Kotani, Y., Handa, D., Azechi, S., Kimura, T., Tsuhako, A., and Miyagi, Y.: A General Scavenging Rate Constant for Reaction of Hydroxyl Radical with Organic Carbon in Atmospheric Waters, Environ. Sci. Technol., 47, 8196–8203, https://doi.org/10.1021/es401927b, 2013.
Arey, J., Aschmann, S. M., Kwok, E. S. C., and Atkinson, R.: Alkyl Nitrate, Hydroxyalkyl Nitrate, and Hydroxycarbonyl Formation from the NOx−Air Photooxidations of C5–C8 n-Alkanes, J. Phys. Chem. A, 105, 1020–1027, https://doi.org/10.1021/jp003292z, 2001.
Download
Short summary
We report that organonitrates were photochemically formed in wet aerosols via aqueous chemistry in the NOx–O3 chamber at high humidity. Organonitrates are considered to form in the gas phase (peroxy radical–NO during the daytime or VOC–NO3 during the nighttime); however, our chamber study results suggest daytime organonitrate formation in polluted and humid areas. Besides organonitrates, organonitrogens, organosulfates, and organonitrogen sulfates were also dominant photooxidation products.
Altmetrics
Final-revised paper
Preprint