Articles | Volume 15, issue 17
https://doi.org/10.5194/acp-15-9929-2015
https://doi.org/10.5194/acp-15-9929-2015
Research article
 | 
04 Sep 2015
Research article |  | 04 Sep 2015

Ergodicity test of the eddy-covariance technique

J. Chen, Y. Hu, Y. Yu, and S. Lü

Related authors

Measurement report: Contrasting elevation-dependent light absorption by black and brown carbon: lessons from in situ measurements from the highly polluted Sichuan Basin to the pristine Tibetan Plateau
Suping Zhao, Shaofeng Qi, Ye Yu, Shichang Kang, Longxiang Dong, Jinbei Chen, and Daiying Yin
Atmos. Chem. Phys., 22, 14693–14708, https://doi.org/10.5194/acp-22-14693-2022,https://doi.org/10.5194/acp-22-14693-2022, 2022
Short summary

Related subject area

Subject: Dynamics | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Triggering effects of large topography and boundary layer turbulence on convection over the Tibetan Plateau
Xiangde Xu, Yi Tang, Yinjun Wang, Hongshen Zhang, Ruixia Liu, and Mingyu Zhou
Atmos. Chem. Phys., 23, 3299–3309, https://doi.org/10.5194/acp-23-3299-2023,https://doi.org/10.5194/acp-23-3299-2023, 2023
Short summary
A change in the relation between the Subtropical Indian Ocean Dipole and the South Atlantic Ocean Dipole indices in the past four decades
Lejiang Yu, Shiyuan Zhong, Timo Vihma, Cuijuan Sui, and Bo Sun
Atmos. Chem. Phys., 23, 345–353, https://doi.org/10.5194/acp-23-345-2023,https://doi.org/10.5194/acp-23-345-2023, 2023
Short summary
Dependency of vertical velocity variance on meteorological conditions in the convective boundary layer
Noviana Dewani, Mirjana Sakradzija, Linda Schlemmer, Ronny Leinweber, and Juerg Schmidli
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-543,https://doi.org/10.5194/acp-2022-543, 2022
Revised manuscript accepted for ACP
Short summary
Characterising the dynamic movement of thunderstorms using very low- and low-frequency (VLF/LF) total lightning data over the Pearl River Delta region
Si Cheng, Jianguo Wang, Li Cai, Mi Zhou, Rui Su, Yijun Huang, and Quanxin Li
Atmos. Chem. Phys., 22, 10045–10059, https://doi.org/10.5194/acp-22-10045-2022,https://doi.org/10.5194/acp-22-10045-2022, 2022
Short summary
Evolution of turbulent kinetic energy during the entire sandstorm process
Hongyou Liu, Yanxiong Shi, and Xiaojing Zheng
Atmos. Chem. Phys., 22, 8787–8803, https://doi.org/10.5194/acp-22-8787-2022,https://doi.org/10.5194/acp-22-8787-2022, 2022
Short summary

Cited articles

Aubinet, M., Vesala, T., and Papale, D.: Eddy covariance, a practical guide to measurement and data analysis, Springer, Dordrecht, Heidelberg, London, New York, 438 pp., 2012.
Birkhoff, G. D.: Proof of the ergodic theorem, Proc. Nat. Acad. Sci. USA. 18, 656–660, 1931.
Boltzmann, L.: Analytischer beweis des zweiten Haubtsatzes der mechanischen Wärmetheorie aus den Sätzen über das Gleichgewicht der lebendigen Kraft, Wiener Berichte, 63, in: WAI, paper 20, 712–732, 1871.
Chang, S. S. and Huynh, G. D.: Analysis of sonic anemometer data from the CASES-99 field experiment, Army Research Laboratory, Adelphi, MD, 2002.
Chen, J., Hu Y., and Zhang L.: Principle of cross coupling between vertical heat turbulent transport and vertical velocity and determination of cross coupling coefficient, Adv. Atoms. Sci., 23, 639–648, 2007.
Download
Short summary
The ergodic theorem of stationary random processes is introduced to analyse and verify the ergodicity of atmospheric turbulence measured using the eddy-covariance technique with two sets of field observational data. The results show that the ergodicity of atmospheric turbulence in atmospheric boundary layer is relative not only to the atmospheric stratification but also to the eddy scale of atmospheric turbulence.
Altmetrics
Final-revised paper
Preprint