Articles | Volume 15, issue 24
Atmos. Chem. Phys., 15, 13833–13848, 2015
https://doi.org/10.5194/acp-15-13833-2015
Atmos. Chem. Phys., 15, 13833–13848, 2015
https://doi.org/10.5194/acp-15-13833-2015

Research article 16 Dec 2015

Research article | 16 Dec 2015

Long-term trend analysis and climatology of tropical cirrus clouds using 16 years of lidar data set over Southern India

A. K. Pandit et al.

Related authors

Lightning occurrences and intensity over the Indian region: long-term trends and future projections
Rohit Chakraborty, Arindam Chakraborty, Ghouse Basha, and Madineni Venkat Ratnam
Atmos. Chem. Phys., 21, 11161–11177, https://doi.org/10.5194/acp-21-11161-2021,https://doi.org/10.5194/acp-21-11161-2021, 2021
Short summary
Structure, dynamics, and trace gas variability within the Asian summer monsoon anticyclone in the extreme El Niño of 2015–2016
Saginela Ravindra Babu, Madineni Venkat Ratnam, Ghouse Basha, Shantanu Kumar Pani, and Neng-Huei Lin
Atmos. Chem. Phys., 21, 5533–5547, https://doi.org/10.5194/acp-21-5533-2021,https://doi.org/10.5194/acp-21-5533-2021, 2021
Short summary
Assessment of vertical air motion among reanalyses and qualitative comparison with very-high-frequency radar measurements over two tropical stations
Kizhathur Narasimhan Uma, Siddarth Shankar Das, Madineni Venkat Ratnam, and Kuniyil Viswanathan Suneeth
Atmos. Chem. Phys., 21, 2083–2103, https://doi.org/10.5194/acp-21-2083-2021,https://doi.org/10.5194/acp-21-2083-2021, 2021
Short summary
Asian summer monsoon anticyclone: trends and variability
Ghouse Basha, M. Venkat Ratnam, and Pangaluru Kishore
Atmos. Chem. Phys., 20, 6789–6801, https://doi.org/10.5194/acp-20-6789-2020,https://doi.org/10.5194/acp-20-6789-2020, 2020
Short summary
Influence of Asian Summer Monsoon Anticyclone on the Trace gases and Aerosols over Indian region
Ghouse Basha, M. Venkat Ratnam, Pangaluru Kishore, S. Ravindrababu, and Isabella Velicogna
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-743,https://doi.org/10.5194/acp-2019-743, 2019
Preprint withdrawn
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Global evidence of aerosol-induced invigoration in marine cumulus clouds
Alyson Douglas and Tristan L'Ecuyer
Atmos. Chem. Phys., 21, 15103–15114, https://doi.org/10.5194/acp-21-15103-2021,https://doi.org/10.5194/acp-21-15103-2021, 2021
Short summary
Impacts of the Saharan air layer on the physical properties of the Atlantic tropical cyclone cloud systems: 2003–2019
Hao Luo and Yong Han
Atmos. Chem. Phys., 21, 15171–15184, https://doi.org/10.5194/acp-21-15171-2021,https://doi.org/10.5194/acp-21-15171-2021, 2021
Short summary
Two-year statistics of columnar-ice production in stratiform clouds over Hyytiälä, Finland: environmental conditions and the relevance to secondary ice production
Haoran Li, Ottmar Möhler, Tuukka Petäjä, and Dmitri Moisseev
Atmos. Chem. Phys., 21, 14671–14686, https://doi.org/10.5194/acp-21-14671-2021,https://doi.org/10.5194/acp-21-14671-2021, 2021
Short summary
Changes in cirrus cloud properties and occurrence over Europe during the COVID-19-caused air traffic reduction
Qiang Li and Silke Groß
Atmos. Chem. Phys., 21, 14573–14590, https://doi.org/10.5194/acp-21-14573-2021,https://doi.org/10.5194/acp-21-14573-2021, 2021
Short summary
A new conceptual model for adiabatic fog
Felipe Toledo, Martial Haeffelin, Eivind Wærsted, and Jean-Charles Dupont
Atmos. Chem. Phys., 21, 13099–13117, https://doi.org/10.5194/acp-21-13099-2021,https://doi.org/10.5194/acp-21-13099-2021, 2021
Short summary

Cited articles

Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh, S. K., Sherwood, S., Stevens, B., and Zhang, X.-Y.: Clouds and Aerosols, in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 571–658, https://doi.org/10.1017/CBO9781107415324.016, 2013.
Chen, T., Rossow, W. B., and Zhang, Y.: Radiative Effects of Cloud-Type Variations, J. Clim., 13, 264–286, https://doi.org/10.1175/1520-0442(2000)013<0264:REOCTV>2.0.CO;2, 2000.
Chen, W.-N., Chiang, C.-W., and Nee, J.-B.: Lidar ratio and depolarization ratio for cirrus clouds, Appl. Opt., 41, 6470–6476, https://doi.org/10.1364/ao.41.006470, 2002.
Chepfer, H., Pelon, J., Brogniez, G., Flamant, C., Trouillet, V., and Flamant, P. H.: Impact of cirrus cloud ice crystal shape and size on multiple scattering effects: Application to spaceborne and airborne backscatter lidar measurements during LITE Mission and E LITE Campaign, Geophys. Res. Lett., 26, 2203–2206, https://doi.org/10.1029/1999GL900474, 1999.
Chepfer, H., Noel, V., Winker, D., and Chiriaco, M.: Where and when will we observe cloud changes due to climate warming?, Geophys. Res. Lett., 41, 2014GL061792, https://doi.org/10.1002/2014GL061792, 2014.
Download
Short summary
We present the longest (1998 to 2013) cirrus cloud climatology over a tropical station using a ground-based lidar. A statistically significant increase is found in the altitude of sub-visible cirrus clouds. Also a systematic shift from thin to sub-visible cirrus cloud type is observed. Ground-based lidar is found to detect more number of sub-visible cirrus clouds than space-based lidar. These findings have implications to global warming and stratosphere-troposphere water vapour exchange studies.
Altmetrics
Final-revised paper
Preprint