Articles | Volume 12, issue 15
Atmos. Chem. Phys., 12, 6863–6889, 2012
https://doi.org/10.5194/acp-12-6863-2012

Special issue: Arctic Summer Cloud Ocean Study (ASCOS) (ACP/AMT/OS inter-journal...

Atmos. Chem. Phys., 12, 6863–6889, 2012
https://doi.org/10.5194/acp-12-6863-2012

Research article 01 Aug 2012

Research article | 01 Aug 2012

Meteorological conditions in the central Arctic summer during the Arctic Summer Cloud Ocean Study (ASCOS)

M. Tjernström et al.

Related subject area

Subject: Dynamics | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Turbulent and boundary layer characteristics during VOCALS-REx
Dillon S. Dodson and Jennifer D. Small Griswold
Atmos. Chem. Phys., 21, 1937–1961, https://doi.org/10.5194/acp-21-1937-2021,https://doi.org/10.5194/acp-21-1937-2021, 2021
Short summary
A foehn-induced haze front in Beijing: observations and implications
Ju Li, Zhaobin Sun, Donald H. Lenschow, Mingyu Zhou, Youjun Dou, Zhigang Cheng, Yaoting Wang, and Qingchun Li
Atmos. Chem. Phys., 20, 15793–15809, https://doi.org/10.5194/acp-20-15793-2020,https://doi.org/10.5194/acp-20-15793-2020, 2020
Short summary
Airborne measurements and large-eddy simulations of small-scale gravity waves at the tropopause inversion layer over Scandinavia
Sonja Gisinger, Johannes Wagner, and Benjamin Witschas
Atmos. Chem. Phys., 20, 10091–10109, https://doi.org/10.5194/acp-20-10091-2020,https://doi.org/10.5194/acp-20-10091-2020, 2020
Short summary
Observational analysis of the daily cycle of the planetary boundary layer in the central Amazon during a non-El Niño year and El Niño year (GoAmazon project 2014/5)
Rayonil G. Carneiro and Gilberto Fisch
Atmos. Chem. Phys., 20, 5547–5558, https://doi.org/10.5194/acp-20-5547-2020,https://doi.org/10.5194/acp-20-5547-2020, 2020
Short summary
Planetary boundary layer evolution over the Amazon rainforest in episodes of deep moist convection at the Amazon Tall Tower Observatory
Maurício I. Oliveira, Otávio C. Acevedo, Matthias Sörgel, Ernani L. Nascimento, Antonio O. Manzi, Pablo E. S. Oliveira, Daiane V. Brondani, Anywhere Tsokankunku, and Meinrat O. Andreae
Atmos. Chem. Phys., 20, 15–27, https://doi.org/10.5194/acp-20-15-2020,https://doi.org/10.5194/acp-20-15-2020, 2020
Short summary

Cited articles

ACIA: Impacts of a warming Arctic: Arctic Climate Impact Assessment, Cambridge University Press, 2005.
Belchansky, G. I., Douglas, D. C., and Platonov, N. G.: Duration of the Arctic sea ice melt season: regional and interannual variability, 1979–2001, J. Climate, 17, 67–80, 2004.
Birch, C. E., Brooks, I. M., Tjernström, M., Shupe, M. D., Mauritsen, T., Sedlar, J., Lock, A. P., Earnshaw, P., Persson, P. O. G., Milton, S. F., and Leck, C.: Modelling atmospheric structure, cloud and their response to CCN in the central Arctic: ASCOS case studies, Atmos. Chem. Phys., 12, 3419–3435, https://doi.org/10.5194/acp-12-3419-2012, 2012.
Chapman, W. L. and Walsh, J. E.: Simulations of Arctic temperature and pressure by global coupled models, J. Climate, 20, 609–632, https://doi.org/10.1175/JCLI4026.1, 2007.
Curry, J. A. and Ebert, E. E.: Annual cycle of radiative fluxes over the Arctic Ocean: Sensitivity to cloud optical properties, J. Climate, 5, 1267–1280, 1992.
Download
Altmetrics
Final-revised paper
Preprint