Articles | Volume 10, issue 13
https://doi.org/10.5194/acp-10-5873-2010
© Author(s) 2010. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-10-5873-2010
© Author(s) 2010. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Thermodynamic properties and cloud droplet activation of a series of oxo-acids
M. Frosch
Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
A. A. Zardini
Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
S. M. Platt
Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
L. Müller
Department of Inorganic Chemistry and Analytical Chemistry, Johannes Gutenberg-Universität Mainz, Duesbergweg 10–14, 55128 Mainz, Germany
M.-C. Reinnig
Department of Inorganic Chemistry and Analytical Chemistry, Johannes Gutenberg-Universität Mainz, Duesbergweg 10–14, 55128 Mainz, Germany
T. Hoffmann
Department of Inorganic Chemistry and Analytical Chemistry, Johannes Gutenberg-Universität Mainz, Duesbergweg 10–14, 55128 Mainz, Germany
M. Bilde
Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
Related subject area
Subject: Aerosols | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Role of sea spray aerosol at the air–sea interface in transporting aromatic acids to the atmosphere
Modeling the influence of carbon branching structure on secondary organic aerosol formation via multiphase reactions of alkanes
Technical note: Characterization of a single-beam gradient force aerosol optical tweezer for droplet trapping, phase transition monitoring, and morphology studies
Soot aerosols from commercial aviation engines are poor ice-nucleating particles at cirrus cloud temperatures
Contribution of brown carbon to light absorption in emissions of European residential biomass combustion appliances
Measurement report: Water diffusion in single suspended phase-separated aerosols
Water activity and surface tension of aqueous ammonium sulfate and D-glucose aerosol nanoparticles
Jet aircraft lubrication oil droplets as contrail ice-forming particles
A study on the influence of inorganic ions, organic carbon and microstructure on the hygroscopic property of soot
Is transport of microplastics different from mineral particles? Idealized wind tunnel studies on polyethylene microspheres
Insights into secondary organic aerosol formation from the day- and nighttime oxidation of polycyclic aromatic hydrocarbons and furans in an oxidation flow reactor
Analysis of insoluble particles in hailstones in China
Influence of acidity on liquid–liquid phase transitions of mixed secondary organic aerosol (SOA) proxy–inorganic aerosol droplets
Deposition freezing, pore condensation freezing and adsorption: three processes, one description?
Measurements and calculations of enhanced side- and back-scattering of visible radiation by black carbon aggregates
Direct observation for relative-humidity-dependent mixing states of submicron particles containing organic surfactants and inorganic salts
Complex refractive index and single scattering albedo of Icelandic dust in the shortwave part of the spectrum
Volatility of aerosol particles from NO3 oxidation of various biogenic organic precursors
Saturation vapor pressure characterization of selected low-volatility organic compounds using a residence time chamber
Influence of the previous North Atlantic Oscillation (NAO) on the spring dust aerosols over North China
HUB: a method to model and extract the distribution of ice nucleation temperatures from drop-freezing experiments
Size-dependent hygroscopicity of levoglucosan and D-glucose aerosol nanoparticles
Technical note: Sublimation of frozen CsCl solutions in an environmental scanning electron microscope (ESEM) – determining the number and size of salt particles relevant to sea salt aerosols
Microphysics of liquid water in sub-10 nm ultrafine aerosol particles
Comparing the ice nucleation properties of the kaolin minerals kaolinite and halloysite
Physicochemical properties of charcoal aerosols derived from biomass pyrolysis affect their ice-nucleating abilities at cirrus and mixed-phase cloud conditions
Reconsideration of surface tension and phase state effects on cloud condensation nuclei activity based on the atomic force microscopy measurement
Hygroscopicity and CCN potential of DMS-derived aerosol particles
Hybrid water adsorption and solubility partitioning for aerosol hygroscopicity and droplet growth
Experimental development of a lake spray source function and its model implementation for Great Lakes surface emissions
The effectiveness of the coagulation sink of 3–10 nm atmospheric particles
What caused the interdecadal shift in the El Niño–Southern Oscillation (ENSO) impact on dust mass concentration over northwestern South Asia?
Measurement report: An exploratory study of fluorescence and cloud condensation nuclei activity of urban aerosols in San Juan, Puerto Rico
Viscosity and physical state of sucrose mixed with ammonium sulfate droplets
Distribution and stable carbon isotopic composition of dicarboxylic acids, ketocarboxylic acids and α-dicarbonyls in fresh and aged biomass burning aerosols
Time dependence of heterogeneous ice nucleation by ambient aerosols: laboratory observations and a formulation for models
Laboratory studies of ice nucleation onto bare and internally mixed soot–sulfuric acid particles
Enhanced soot particle ice nucleation ability induced by aggregate compaction and densification
Opinion: Insights into updating Ambient Air Quality Directive 2008/50/EC
On the evolution of sub- and super-saturated water uptake of secondary organic aerosol in chamber experiments from mixed precursors
Hygroscopicity of organic compounds as a function of organic functionality, water solubility, molecular weight, and oxidation level
Particle emissions from a modern heavy-duty diesel engine as ice nuclei in immersion freezing mode: a laboratory study on fossil and renewable fuels
Comparison of saturation vapor pressures of α-pinene + O3 oxidation products derived from COSMO-RS computations and thermal desorption experiments
Physical and chemical properties of black carbon and organic matter from different combustion and photochemical sources using aerodynamic aerosol classification
Technical note: Pyrolysis principles explain time-resolved organic aerosol release from biomass burning
The effect of (NH4)2SO4 on the freezing properties of non-mineral dust ice-nucleating substances of atmospheric relevance
Heterogeneous ice nucleation ability of aerosol particles generated from Arctic sea surface microlayer and surface seawater samples at cirrus temperatures
Aerosol formation and growth rates from chamber experiments using Kalman smoothing
Phase state of secondary organic aerosol in chamber photo-oxidation of mixed precursors
Ice nucleation on surrogates of boreal forest SOA particles: effect of water content and oxidative age
Yaru Song, Jianlong Li, Narcisse Tsona Tchinda, Kun Li, and Lin Du
Atmos. Chem. Phys., 24, 5847–5862, https://doi.org/10.5194/acp-24-5847-2024, https://doi.org/10.5194/acp-24-5847-2024, 2024
Short summary
Short summary
Aromatic acids can be transferred from seawater to the atmosphere through bubble bursting. The air–sea transfer efficiency of aromatic acids was evaluated by simulating SSA generation with a plunging jet. As a whole, the transfer capacity of aromatic acids may depend on their functional groups and on the bridging effect of cations, as well as their concentration in seawater, as these factors influence the global emission flux of aromatic acids via SSA.
Azad Madhu, Myoseon Jang, and Yujin Jo
Atmos. Chem. Phys., 24, 5585–5602, https://doi.org/10.5194/acp-24-5585-2024, https://doi.org/10.5194/acp-24-5585-2024, 2024
Short summary
Short summary
Secondary organic aerosol (SOA) formation from branched alkanes (BAs) was simulated using the UNIPAR model, which predicted SOA growth via multiphase reactions of hydrocarbons, and compared with chamber data. Product distributions (PDs) of BAs were created by extrapolating PDs of linear alkanes (LAs). To account for methyl branching, an autoxidation reduction factor was applied to PDs. BAs in diesel fuel were shown to produce a higher proportion of SOA compared with LAs.
Xiangyu Pei, Yikan Meng, Yueling Chen, Huichao Liu, Yao Song, Zhengning Xu, Fei Zhang, Thomas C. Preston, and Zhibin Wang
Atmos. Chem. Phys., 24, 5235–5246, https://doi.org/10.5194/acp-24-5235-2024, https://doi.org/10.5194/acp-24-5235-2024, 2024
Short summary
Short summary
An aerosol optical tweezer (AOT) Raman spectroscopy system is developed to capture a single aerosol droplet for phase transition monitoring and morphology studies. Rapid droplet capture is achieved and accurate droplet size and refractive index are retrieved. Results indicate that mixed inorganic/organic droplets are more inclined to form core–shell morphology when RH decreases. The phase transitions of secondary mixed organic aerosol/inorganic droplets vary with their precursors.
Baptiste Testa, Lukas Durdina, Peter A. Alpert, Fabian Mahrt, Christopher H. Dreimol, Jacinta Edebeli, Curdin Spirig, Zachary C. J. Decker, Julien Anet, and Zamin A. Kanji
Atmos. Chem. Phys., 24, 4537–4567, https://doi.org/10.5194/acp-24-4537-2024, https://doi.org/10.5194/acp-24-4537-2024, 2024
Short summary
Short summary
Laboratory experiments on the ice nucleation of real commercial aviation soot particles are investigated for their cirrus cloud formation potential. Our results show that aircraft-emitted soot in the upper troposphere will be poor ice-nucleating particles. Measuring the soot particle morphology and modifying their mixing state allow us to elucidate why these particles are ineffective at forming ice, in contrast to previously used soot surrogates.
Satish Basnet, Anni Hartikainen, Aki Virkkula, Pasi Yli-Pirilä, Miika Kortelainen, Heikki Suhonen, Laura Kilpeläinen, Mika Ihalainen, Sampsa Väätäinen, Juho Louhisalmi, Markus Somero, Jarkko Tissari, Gert Jakobi, Ralf Zimmermann, Antti Kilpeläinen, and Olli Sippula
Atmos. Chem. Phys., 24, 3197–3215, https://doi.org/10.5194/acp-24-3197-2024, https://doi.org/10.5194/acp-24-3197-2024, 2024
Short summary
Short summary
Brown carbon (BrC) emissions were estimated, for residential wood combustion (RWC) from various northern European appliances, utilizing an extensive seven-wavelength aethalometer dataset and thermal–optical carbon analysis. The contribution of BrC370–950 to the absorption of visible light varied between 1 % and 21 %, and was linked with fuel moisture content and combustion efficiency. This study provides important information required for assessing the climate effects of RWC emissions.
Yu-Kai Tong, Zhijun Wu, Min Hu, and Anpei Ye
Atmos. Chem. Phys., 24, 2937–2950, https://doi.org/10.5194/acp-24-2937-2024, https://doi.org/10.5194/acp-24-2937-2024, 2024
Short summary
Short summary
The interplay between aerosols and moisture is one of the most crucial atmospheric processes. However, to date, literature results on the influence of phase separation on water diffusion in aerosols are divergent. This work directly unveiled the water diffusion process in single suspended phase-separated microdroplets and quantitatively analyzed the diffusion rate and extent. The results show that diffusion limitations and certain molecule clusters existed in the phase-separated aerosols.
Eugene F. Mikhailov, Sergey S. Vlasenko, and Alexei A. Kiselev
Atmos. Chem. Phys., 24, 2971–2984, https://doi.org/10.5194/acp-24-2971-2024, https://doi.org/10.5194/acp-24-2971-2024, 2024
Short summary
Short summary
Surface tension and water activity are key thermodynamic parameters determining the impact of atmospheric aerosols on human health and climate. However, these parameters are not well constrained for nanoparticles composed of organic and inorganic compounds. In this study, we determined for the first time the water activity and surface tension of mixed organic/inorganic nanodroplets by applying a differential Köhler analysis (DKA) to hygroscopic growth measurements.
Joel Ponsonby, Leon King, Benjamin J. Murray, and Marc E. J. Stettler
Atmos. Chem. Phys., 24, 2045–2058, https://doi.org/10.5194/acp-24-2045-2024, https://doi.org/10.5194/acp-24-2045-2024, 2024
Short summary
Short summary
Aerosol emissions from aircraft engines contribute to the formation of contrails, which have a climate impact as important as that of aviation’s CO2 emissions. For the first time, we experimentally investigate the freezing behaviour of water droplets formed on jet lubrication oil aerosol. We show that they can activate to form water droplets and discuss their potential impact on contrail formation. Our study has implications for contrails produced by future aircraft engine and fuel technologies.
Zhanyu Su, Lanxiadi Chen, Yuan Liu, Peng Zhang, Tianzeng Chen, Biwu Chu, Mingjin Tang, Qingxin Ma, and Hong He
Atmos. Chem. Phys., 24, 993–1003, https://doi.org/10.5194/acp-24-993-2024, https://doi.org/10.5194/acp-24-993-2024, 2024
Short summary
Short summary
In this study, different soot particles were analyzed to better understand their behavior. It was discovered that water-soluble substances in soot facilitate water adsorption at low humidity while increasing the number of water layers at high humidity. Soot from organic fuels exhibits hygroscopicity influenced by organic carbon and microstructure. Additionally, the presence of sulfate ions due to the oxidation of SO2 enhances soot's hygroscopicity.
Eike Maximilian Esders, Sebastian Sittl, Inka Krammel, Wolfgang Babel, Georg Papastavrou, and Christoph Karl Thomas
Atmos. Chem. Phys., 23, 15835–15851, https://doi.org/10.5194/acp-23-15835-2023, https://doi.org/10.5194/acp-23-15835-2023, 2023
Short summary
Short summary
Do microplastics behave differently from mineral particles when they are exposed to wind? We observed plastic and mineral particles in a wind tunnel and measured at what wind speeds the particles start to move. The results indicate that microplastics start to move at smaller wind speeds as they weigh less and are less sticky. Hence, we think that microplastics also move more easily in the environment.
Abd El Rahman El Mais, Barbara D'Anna, Luka Drinovec, Andrew T. Lambe, Zhe Peng, Jean-Eudes Petit, Olivier Favez, Selim Aït-Aïssa, and Alexandre Albinet
Atmos. Chem. Phys., 23, 15077–15096, https://doi.org/10.5194/acp-23-15077-2023, https://doi.org/10.5194/acp-23-15077-2023, 2023
Short summary
Short summary
Polycyclic aromatic hydrocarbons (PAHS) and furans are key precursors of secondary organic aerosols (SOAs) related to biomass burning emissions. We evaluated and compared the formation yields, and the physical and light absorption properties, of laboratory-generated SOAs from the oxidation of such compounds for both, day- and nighttime reactivities. The results illustrate that PAHs are large SOA precursors and may contribute significantly to the biomass burning brown carbon in the atmosphere.
Haifan Zhang, Xiangyu Lin, Qinghong Zhang, Kai Bi, Chan-Pang Ng, Yangze Ren, Huiwen Xue, Li Chen, and Zhuolin Chang
Atmos. Chem. Phys., 23, 13957–13971, https://doi.org/10.5194/acp-23-13957-2023, https://doi.org/10.5194/acp-23-13957-2023, 2023
Short summary
Short summary
This work is the first study to simultaneously analyze the number concentrations and species of insoluble particles in hailstones. The size distribution of insoluble particles for each species vary greatly in different hailstorms but little in shells. Two classic size distribution modes of organics and dust were fitted for the description of insoluble particles in deep convection. Combining this study with future experiments will lead to refinement of weather and climate models.
Yueling Chen, Xiangyu Pei, Huichao Liu, Yikan Meng, Zhengning Xu, Fei Zhang, Chun Xiong, Thomas C. Preston, and Zhibin Wang
Atmos. Chem. Phys., 23, 10255–10265, https://doi.org/10.5194/acp-23-10255-2023, https://doi.org/10.5194/acp-23-10255-2023, 2023
Short summary
Short summary
The impact of acidity on the phase transition behavior of levitated aerosol particles was examined. Our results revealed that lower acidity decreases the separation relative humidity of aerosol droplets mixed with ammonium sulfate and secondary organic aerosol proxy. Our research suggests that in real atmospheric conditions, with the high acidity found in many ambient aerosol particles, droplets encounter heightened impediments to phase separation and tend to display a homogeneous structure.
Mária Lbadaoui-Darvas, Ari Laaksonen, and Athanasios Nenes
Atmos. Chem. Phys., 23, 10057–10074, https://doi.org/10.5194/acp-23-10057-2023, https://doi.org/10.5194/acp-23-10057-2023, 2023
Short summary
Short summary
Heterogeneous ice nucleation is the main ice formation mechanism in clouds. The mechanism of different freezing modes is to date unknown, which results in large model biases. Experiments do not allow for direct observation of ice nucleation at its native resolution. This work uses first principles molecular simulations to determine the mechanism of the least-understood ice nucleation mode and link it to adsorption through a novel modeling framework that unites ice and droplet formation.
Carynelisa Haspel, Cuiqi Zhang, Martin J. Wolf, Daniel J. Cziczo, and Maor Sela
Atmos. Chem. Phys., 23, 10091–10115, https://doi.org/10.5194/acp-23-10091-2023, https://doi.org/10.5194/acp-23-10091-2023, 2023
Short summary
Short summary
Small particles, commonly termed aerosols, can be found throughout the atmosphere and come from both natural and anthropogenic sources. One important type of aerosol is black carbon (BC). In this study, we conducted laboratory measurements of light scattering by particles meant to mimic atmospheric BC and compared them to calculations of scattering. We find that it is likely that calculations underpredict the scattering by BC particles of certain polarizations of light in certain directions.
Chun Xiong, Binyu Kuang, Fei Zhang, Xiangyu Pei, Zhengning Xu, and Zhibin Wang
Atmos. Chem. Phys., 23, 8979–8991, https://doi.org/10.5194/acp-23-8979-2023, https://doi.org/10.5194/acp-23-8979-2023, 2023
Short summary
Short summary
In hydration, an apparent water diffusion hindrance by an organic surfactant shell was confirmed, raising the inorganic deliquescence relative humidity (RH) to a nearly saturated condition. In dehydration, phase separations were observed for inorganic surfactant systems, showing a strong dependence on the organic molecular
oxygen-to-carbon ratio. Our results could improve fundamental knowledge about aerosol mixing states and decrease uncertainty in model estimations of global radiative effects.
Clarissa Baldo, Paola Formenti, Claudia Di Biagio, Gongda Lu, Congbo Song, Mathieu Cazaunau, Edouard Pangui, Jean-Francois Doussin, Pavla Dagsson-Waldhauserova, Olafur Arnalds, David Beddows, A. Robert MacKenzie, and Zongbo Shi
Atmos. Chem. Phys., 23, 7975–8000, https://doi.org/10.5194/acp-23-7975-2023, https://doi.org/10.5194/acp-23-7975-2023, 2023
Short summary
Short summary
This paper presents new shortwave spectral complex refractive index and single scattering albedo data for Icelandic dust. Our results show that the imaginary part of the complex refractive index of Icelandic dust is at the upper end of the range of low-latitude dust. Furthermore, we observed that Icelandic dust is more absorbing towards the near-infrared, which we attribute to its high magnetite content. These findings are important for modeling dust aerosol radiative effects in the Arctic.
Emelie L. Graham, Cheng Wu, David M. Bell, Amelie Bertrand, Sophie L. Haslett, Urs Baltensperger, Imad El Haddad, Radovan Krejci, Ilona Riipinen, and Claudia Mohr
Atmos. Chem. Phys., 23, 7347–7362, https://doi.org/10.5194/acp-23-7347-2023, https://doi.org/10.5194/acp-23-7347-2023, 2023
Short summary
Short summary
The volatility of an aerosol particle is an important parameter for describing its atmospheric lifetime. We studied the volatility of secondary organic aerosols from nitrate-initiated oxidation of three biogenic precursors with experimental methods and model simulations. We saw higher volatility than for the corresponding ozone system, and our simulations produced variable results with different parameterizations which warrant a re-evaluation of the treatment of the nitrate functional group.
Zijun Li, Noora Hyttinen, Miika Vainikka, Olli-Pekka Tikkasalo, Siegfried Schobesberger, and Taina Yli-Juuti
Atmos. Chem. Phys., 23, 6863–6877, https://doi.org/10.5194/acp-23-6863-2023, https://doi.org/10.5194/acp-23-6863-2023, 2023
Short summary
Short summary
The saturation vapor pressure (psat) of low-volatility organic compounds (LVOCs) governs their partitioning between the gas and particle phases. To estimate the psat of selected LVOCs, we performed particle evaporation measurements in a residence time chamber at a temperature setting relevant to atmospheric aerosol formation and conducted state-of-the-art computational calculations. We found good agreement between the experimentally measured and model-estimated psat values for most LVOCs.
Yan Li, Falei Xu, Juan Feng, Mengying Du, Wenjun Song, Chao Li, and Wenjing Zhao
Atmos. Chem. Phys., 23, 6021–6042, https://doi.org/10.5194/acp-23-6021-2023, https://doi.org/10.5194/acp-23-6021-2023, 2023
Short summary
Short summary
There is a significantly negative relationship between boreal winter North Atlantic Oscillation (NAO) and dust aerosols (DAs) in the eastern part of China (30–40°N, 105–120°E), which is not a DA source area but is severely affected by the dust events (DEs). Under the effect of the NAO negative phase, main atmospheric circulation during the DEs is characterized by variation of the transient eddy flux. The work is of reference value to the prediction of DEs and the understanding of their causes.
Ingrid de Almeida Ribeiro, Konrad Meister, and Valeria Molinero
Atmos. Chem. Phys., 23, 5623–5639, https://doi.org/10.5194/acp-23-5623-2023, https://doi.org/10.5194/acp-23-5623-2023, 2023
Short summary
Short summary
Ice formation is a key atmospheric process facilitated by a wide range of aerosols. We present a method to model and interpret ice nucleation experiments and extract the distribution of the potency of nucleation sites. We use the method to optimize the conditions of laboratory sampling and extract distributions of ice nucleation temperatures from bacteria, fungi, and pollen. These reveal unforeseen subpopulations of nuclei in these systems and how they respond to changes in their environment.
Ting Lei, Hang Su, Nan Ma, Ulrich Pöschl, Alfred Wiedensohler, and Yafang Cheng
Atmos. Chem. Phys., 23, 4763–4774, https://doi.org/10.5194/acp-23-4763-2023, https://doi.org/10.5194/acp-23-4763-2023, 2023
Short summary
Short summary
We investigate the hygroscopic behavior of levoglucosan and D-glucose nanoparticles using a nano-HTDMA. There is a weak size dependence of the hygroscopic growth factor of levoglucosan and D-glucose with diameters down to 20 nm, while a strong size dependence of the hygroscopic growth factor of D-glucose has been clearly observed in the size range 6 to 20 nm. The use of the DKA method leads to good agreement with the hygroscopic growth factor of glucose nanoparticles with diameters down to 6 nm.
Lubica Vetráková, Vilém Neděla, Kamila Závacká, Xin Yang, and Dominik Heger
Atmos. Chem. Phys., 23, 4463–4488, https://doi.org/10.5194/acp-23-4463-2023, https://doi.org/10.5194/acp-23-4463-2023, 2023
Short summary
Short summary
Salt aerosols are important to polar atmospheric chemistry and global climate. Therefore, we utilized a unique electron microscope to identify the most suitable conditions for formation of the small salt (CsCl) particles, proxies of the aerosols, from sublimating salty snow. Very low sublimation temperature and low salt concentration are needed for formation of such particles. These observations may help us to better understand polar spring ozone depletion and bromine explosion events.
Xiaohan Li and Ian C. Bourg
Atmos. Chem. Phys., 23, 2525–2556, https://doi.org/10.5194/acp-23-2525-2023, https://doi.org/10.5194/acp-23-2525-2023, 2023
Short summary
Short summary
Aerosol particles with sizes smaller than 50 nm impact cloud formation and precipitation. Representation of this effect is hindered by limited understanding of the properties of liquid water in these particles. Our simulations of aerosol particles containing salt or organic compounds reveal that water enters a less cohesive phase at droplet sizes below 4 nm. This effect causes important deviations from theoretical predictions of aerosol properties, including phase state and hygroscopic growth.
Kristian Klumpp, Claudia Marcolli, Ana Alonso-Hellweg, Christopher H. Dreimol, and Thomas Peter
Atmos. Chem. Phys., 23, 1579–1598, https://doi.org/10.5194/acp-23-1579-2023, https://doi.org/10.5194/acp-23-1579-2023, 2023
Short summary
Short summary
The prerequisites of a particle surface for efficient ice nucleation are still poorly understood. This study compares the ice nucleation activity of two chemically identical but morphologically different minerals (kaolinite and halloysite). We observe, on average, not only higher ice nucleation activities for halloysite than kaolinite but also higher diversity between individual samples. We identify the particle edges as being the most likely site for ice nucleation.
Fabian Mahrt, Carolin Rösch, Kunfeng Gao, Christopher H. Dreimol, Maria A. Zawadowicz, and Zamin A. Kanji
Atmos. Chem. Phys., 23, 1285–1308, https://doi.org/10.5194/acp-23-1285-2023, https://doi.org/10.5194/acp-23-1285-2023, 2023
Short summary
Short summary
Major aerosol types emitted by biomass burning include soot, ash, and charcoal particles. Here, we investigated the ice nucleation activity of 400 nm size-selected particles of two different pyrolyis-derived charcoal types in the mixed phase and cirrus cloud regime. We find that ice nucleation is constrained to cirrus cloud conditions, takes place via pore condensation and freezing, and is largely governed by the particle porosity and mineral content.
Chun Xiong, Xueyan Chen, Xiaolei Ding, Binyu Kuang, Xiangyu Pei, Zhengning Xu, Shikuan Yang, Huan Hu, and Zhibin Wang
Atmos. Chem. Phys., 22, 16123–16135, https://doi.org/10.5194/acp-22-16123-2022, https://doi.org/10.5194/acp-22-16123-2022, 2022
Short summary
Short summary
Water surface tension is applied widely in current aerosol–cloud models but could be inappropriate in the presence of atmospheric surfactants. With cloud condensation nuclei (CCN) activity and atomic force microscopy (AFM) measurement results of mixed inorganic salt and dicarboxylic acid particles, we concluded that surface tension reduction and phase state should be carefully considered in aerosol–cloud interactions. Our results could help to decease uncertainties in climate models.
Bernadette Rosati, Sini Isokääntä, Sigurd Christiansen, Mads Mørk Jensen, Shamjad P. Moosakutty, Robin Wollesen de Jonge, Andreas Massling, Marianne Glasius, Jonas Elm, Annele Virtanen, and Merete Bilde
Atmos. Chem. Phys., 22, 13449–13466, https://doi.org/10.5194/acp-22-13449-2022, https://doi.org/10.5194/acp-22-13449-2022, 2022
Short summary
Short summary
Sulfate aerosols have a strong influence on climate. Due to the reduction in sulfur-based fossil fuels, natural sulfur emissions play an increasingly important role. Studies investigating the climate relevance of natural sulfur aerosols are scarce. We study the water uptake of such particles in the laboratory, demonstrating a high potential to take up water and form cloud droplets. During atmospheric transit, chemical processing affects the particles’ composition and thus their water uptake.
Kanishk Gohil, Chun-Ning Mao, Dewansh Rastogi, Chao Peng, Mingjin Tang, and Akua Asa-Awuku
Atmos. Chem. Phys., 22, 12769–12787, https://doi.org/10.5194/acp-22-12769-2022, https://doi.org/10.5194/acp-22-12769-2022, 2022
Short summary
Short summary
The Hybrid Activity Model (HAM) is a promising new droplet growth model that can be potentially used for the analysis of any type of atmospheric compound. HAM may potentially improve the representation of hygroscopicity of organic aerosols in large-scale global climate models (GCMs), hence reducing the uncertainties in the climate forcing due to the aerosol indirect effect.
Charbel Harb and Hosein Foroutan
Atmos. Chem. Phys., 22, 11759–11779, https://doi.org/10.5194/acp-22-11759-2022, https://doi.org/10.5194/acp-22-11759-2022, 2022
Short summary
Short summary
A model representation of lake spray aerosol (LSA) ejection from freshwater breaking waves is crucial for understanding their climatic and public health impacts. We develop an LSA emission parameterization and implement it in an atmospheric model to investigate Great Lakes surface emissions. We find that the same breaking wave is likely to produce fewer aerosols in freshwater than in saltwater and that Great Lakes emissions influence the regional aerosol burden and can reach the cloud layer.
Runlong Cai, Ella Häkkinen, Chao Yan, Jingkun Jiang, Markku Kulmala, and Juha Kangasluoma
Atmos. Chem. Phys., 22, 11529–11541, https://doi.org/10.5194/acp-22-11529-2022, https://doi.org/10.5194/acp-22-11529-2022, 2022
Short summary
Short summary
The influences of new particle formation on the climate and air quality are governed by particle survival, which has been under debate due to uncertainties in the coagulation sink. Here we measure the coagulation coefficient of sub-10 nm particles and demonstrate that collisions between the freshly nucleated and background particles can effectively lead to coagulation. We further show that the effective coagulation sink is consistent with the new particle formation measured in urban Beijing.
Lamei Shi, Jiahua Zhang, Da Zhang, Jingwen Wang, Xianglei Meng, Yuqin Liu, and Fengmei Yao
Atmos. Chem. Phys., 22, 11255–11274, https://doi.org/10.5194/acp-22-11255-2022, https://doi.org/10.5194/acp-22-11255-2022, 2022
Short summary
Short summary
Dust impacts climate and human life. Analyzing the interdecadal change in dust activity and its influence factors is crucial for disaster mitigation. Based on a linear regression method, this study revealed the interdecadal variability of relationships between ENSO and dust over northwestern South Asia from 1982 to 2014 and analyzed the effects of atmospheric factors on this interdecadal variability. The result sheds new light on numerical simulation involving the interdecadal variation of dust.
Bighnaraj Sarangi, Darrel Baumgardner, Benjamin Bolaños-Rosero, and Olga L. Mayol-Bracero
Atmos. Chem. Phys., 22, 9647–9661, https://doi.org/10.5194/acp-22-9647-2022, https://doi.org/10.5194/acp-22-9647-2022, 2022
Short summary
Short summary
Here, the fluorescent characteristics and cloud-forming efficiency of aerosols at an urban site in Puerto Rico are discussed. The results from this pilot study highlight the capabilities of ultraviolet-induced fluorescence (UV-IF) measurements for characterizing the properties of fluorescing aerosol particles, as they relate to the daily evolution of primary biological aerosol particles. This work has established a database of measurements on which future, longer-term studies will be initiated.
Rani Jeong, Joseph Lilek, Andreas Zuend, Rongshuang Xu, Man Nin Chan, Dohyun Kim, Hi Gyu Moon, and Mijung Song
Atmos. Chem. Phys., 22, 8805–8817, https://doi.org/10.5194/acp-22-8805-2022, https://doi.org/10.5194/acp-22-8805-2022, 2022
Short summary
Short summary
In this study, the viscosities of particles of sucrose–H2O, AS–H2O, and sucrose–AS–H2O for OIRs of 4:1, 1:1, and 1:4 for decreasing RH, were quantified by poke-and-flow and bead-mobility techniques at 293 ± 1 K. Based on the viscosity results, the particles of binary and ternary systems ranged from liquid to semisolid, and even the solid state depending on the RH. Moreover, we compared the measured viscosities of ternary systems to the predicted viscosities with excellent agreement.
Minxia Shen, Kin Fai Ho, Wenting Dai, Suixin Liu, Ting Zhang, Qiyuan Wang, Jingjing Meng, Judith C. Chow, John G. Watson, Junji Cao, and Jianjun Li
Atmos. Chem. Phys., 22, 7489–7504, https://doi.org/10.5194/acp-22-7489-2022, https://doi.org/10.5194/acp-22-7489-2022, 2022
Short summary
Short summary
Looking at characteristics and δ13C compositions of dicarboxylic acids and related compounds in BB aerosols, we used a combined combustion and aging system to generate fresh and aged aerosols from burning straw. The results showed the emission factors (EFaged) of total diacids of aging experiments were around an order of magnitude higher than EFfresh. This meant that dicarboxylic acids are involved with secondary photochemical processes in the atmosphere rather than primary emissions from BB.
Jonas K. F. Jakobsson, Deepak B. Waman, Vaughan T. J. Phillips, and Thomas Bjerring Kristensen
Atmos. Chem. Phys., 22, 6717–6748, https://doi.org/10.5194/acp-22-6717-2022, https://doi.org/10.5194/acp-22-6717-2022, 2022
Short summary
Short summary
Long-lived cold-layer clouds at subzero temperatures are observed to be remarkably persistent in their generation of ice particles and snow precipitation. There is uncertainty about why this is so. This motivates the present lab study to observe the long-term ice-nucleating ability of aerosol samples from the real troposphere. Time dependence of their ice nucleation is observed to be weak in lab experiments exposing the samples to isothermal conditions for up to about 10 h.
Kunfeng Gao, Chong-Wen Zhou, Eszter J. Barthazy Meier, and Zamin A. Kanji
Atmos. Chem. Phys., 22, 5331–5364, https://doi.org/10.5194/acp-22-5331-2022, https://doi.org/10.5194/acp-22-5331-2022, 2022
Short summary
Short summary
Incomplete combustion of fossil fuel produces carbonaceous particles called soot. These particles can affect cloud formation by acting as centres for droplet or ice formation. The atmospheric residence time of soot particles is of the order of days to weeks, which can result in them becoming coated by various trace species in the atmosphere such as acids. In this study, we quantify the cirrus cloud-forming ability of soot particles coated with the atmospherically ubiquitous sulfuric acid.
Kunfeng Gao, Franz Friebel, Chong-Wen Zhou, and Zamin A. Kanji
Atmos. Chem. Phys., 22, 4985–5016, https://doi.org/10.5194/acp-22-4985-2022, https://doi.org/10.5194/acp-22-4985-2022, 2022
Short summary
Short summary
Soot particles impact cloud formation and radiative properties in the upper atmosphere where aircraft emit carbonaceous particles. We use cloud chambers to mimic the upper atmosphere temperature and humidity to test the influence of the morphology of the soot particles on ice cloud formation. For particles larger than 200 nm, the compacted (densified) samples have a higher affinity for ice crystal formation in the cirrus regime than the fluffy (un-compacted) soot particles of the same sample.
Joel Kuula, Hilkka Timonen, Jarkko V. Niemi, Hanna E. Manninen, Topi Rönkkö, Tareq Hussein, Pak Lun Fung, Sasu Tarkoma, Mikko Laakso, Erkka Saukko, Aino Ovaska, Markku Kulmala, Ari Karppinen, Lasse Johansson, and Tuukka Petäjä
Atmos. Chem. Phys., 22, 4801–4808, https://doi.org/10.5194/acp-22-4801-2022, https://doi.org/10.5194/acp-22-4801-2022, 2022
Short summary
Short summary
Modern and up-to-date policies and air quality management strategies are instrumental in tackling global air pollution. As the European Union is preparing to revise Ambient Air Quality Directive 2008/50/EC, this paper initiates discussion on selected features of the directive that we believe would benefit from a reassessment. The scientific community has the most recent and deepest understanding of air pollution; thus, its contribution is essential.
Yu Wang, Aristeidis Voliotis, Dawei Hu, Yunqi Shao, Mao Du, Ying Chen, Judith Kleinheins, Claudia Marcolli, M. Rami Alfarra, and Gordon McFiggans
Atmos. Chem. Phys., 22, 4149–4166, https://doi.org/10.5194/acp-22-4149-2022, https://doi.org/10.5194/acp-22-4149-2022, 2022
Short summary
Short summary
Aerosol water uptake plays a key role in atmospheric physicochemical processes. We designed chamber experiments on aerosol water uptake of secondary organic aerosol (SOA) from mixed biogenic and anthropogenic precursors with inorganic seed. Our results highlight this chemical composition influences the reconciliation of the sub- and super-saturated water uptake, providing laboratory evidence for understanding the chemical controls of water uptake of the multi-component aerosol.
Shuang Han, Juan Hong, Qingwei Luo, Hanbing Xu, Haobo Tan, Qiaoqiao Wang, Jiangchuan Tao, Yaqing Zhou, Long Peng, Yao He, Jingnan Shi, Nan Ma, Yafang Cheng, and Hang Su
Atmos. Chem. Phys., 22, 3985–4004, https://doi.org/10.5194/acp-22-3985-2022, https://doi.org/10.5194/acp-22-3985-2022, 2022
Short summary
Short summary
We present the hygroscopicity of 23 organic species with different physicochemical properties using a hygroscopicity tandem differential mobility analyzer (HTDMA) and compare the results with previous studies. Based on the hygroscopicity parameter κ, the influence of different physicochemical properties that potentially drive hygroscopicity, such as the functionality, water solubility, molar volume, and O : C ratio of organics, are examined separately.
Kimmo Korhonen, Thomas Bjerring Kristensen, John Falk, Vilhelm B. Malmborg, Axel Eriksson, Louise Gren, Maja Novakovic, Sam Shamun, Panu Karjalainen, Lassi Markkula, Joakim Pagels, Birgitta Svenningsson, Martin Tunér, Mika Komppula, Ari Laaksonen, and Annele Virtanen
Atmos. Chem. Phys., 22, 1615–1631, https://doi.org/10.5194/acp-22-1615-2022, https://doi.org/10.5194/acp-22-1615-2022, 2022
Short summary
Short summary
We investigated the ice-nucleating abilities of particulate emissions from a modern diesel engine using the portable ice-nuclei counter SPIN, a continuous-flow diffusion chamber instrument. Three different fuels were studied without blending, including fossil diesel and two renewable fuels, testing different emission aftertreatment systems and photochemical aging. We found that the diesel emissions were inefficient ice nuclei, and aging had no or little effect on their ice-nucleating abilities.
Noora Hyttinen, Iida Pullinen, Aki Nissinen, Siegfried Schobesberger, Annele Virtanen, and Taina Yli-Juuti
Atmos. Chem. Phys., 22, 1195–1208, https://doi.org/10.5194/acp-22-1195-2022, https://doi.org/10.5194/acp-22-1195-2022, 2022
Short summary
Short summary
Accurate saturation vapor pressure estimates of atmospherically relevant organic compounds are critical for modeling secondary organic aerosol (SOA) formation. We investigated vapor pressures of highly oxygenated SOA constituents using state-of-the-art computational and experimental methods. We found a good agreement between low and extremely low vapor pressures estimated using the two methods, and the smallest molecules detected in our experiment were likely products of thermal decomposition.
Dawei Hu, M. Rami Alfarra, Kate Szpek, Justin M. Langridge, Michael I. Cotterell, Claire Belcher, Ian Rule, Zixia Liu, Chenjie Yu, Yunqi Shao, Aristeidis Voliotis, Mao Du, Brett Smith, Greg Smallwood, Prem Lobo, Dantong Liu, Jim M. Haywood, Hugh Coe, and James D. Allan
Atmos. Chem. Phys., 21, 16161–16182, https://doi.org/10.5194/acp-21-16161-2021, https://doi.org/10.5194/acp-21-16161-2021, 2021
Short summary
Short summary
Here, we developed new techniques for investigating these properties in the laboratory and applied these to BC and BrC from different sources, including diesel exhaust, inverted propane flame and wood combustion. These have allowed us to quantify the changes in shape and chemical composition of different soots according to source and variables such as the moisture content of wood.
Mariam Fawaz, Anita Avery, Timothy B. Onasch, Leah R. Williams, and Tami C. Bond
Atmos. Chem. Phys., 21, 15605–15618, https://doi.org/10.5194/acp-21-15605-2021, https://doi.org/10.5194/acp-21-15605-2021, 2021
Short summary
Short summary
Biomass burning is responsible for 90 % of the emissions of primary organic aerosols to the atmosphere. Emissions from biomass burning sources are considered chaotic. In this work, we developed a controlled experimental approach to understand the controlling factors in emission. Our results showed that emissions are repeatable and deterministic and that emissions from wood can be constrained.
Soleil E. Worthy, Anand Kumar, Yu Xi, Jingwei Yun, Jessie Chen, Cuishan Xu, Victoria E. Irish, Pierre Amato, and Allan K. Bertram
Atmos. Chem. Phys., 21, 14631–14648, https://doi.org/10.5194/acp-21-14631-2021, https://doi.org/10.5194/acp-21-14631-2021, 2021
Short summary
Short summary
We studied the effect of (NH4)2SO4 on the immersion freezing of non-mineral dust ice-nucleating substances (INSs) and mineral dusts. (NH4)2SO4 had no effect on the median freezing temperature of 9 of the 10 tested non-mineral dust INSs, slightly decreased that of the other, and increased that of all the mineral dusts. The difference in the response of mineral dust and non-mineral dust INSs to (NH4)2SO4 suggests that they nucleate ice and/or interact with (NH4)2SO4 via different mechanisms.
Robert Wagner, Luisa Ickes, Allan K. Bertram, Nora Els, Elena Gorokhova, Ottmar Möhler, Benjamin J. Murray, Nsikanabasi Silas Umo, and Matthew E. Salter
Atmos. Chem. Phys., 21, 13903–13930, https://doi.org/10.5194/acp-21-13903-2021, https://doi.org/10.5194/acp-21-13903-2021, 2021
Short summary
Short summary
Sea spray aerosol particles are a mixture of inorganic salts and organic matter from phytoplankton organisms. At low temperatures in the upper troposphere, both inorganic and organic constituents can induce the formation of ice crystals and thereby impact cloud properties and climate. In this study, we performed experiments in a cloud simulation chamber with particles produced from Arctic seawater samples to quantify the relative contribution of inorganic and organic species in ice formation.
Matthew Ozon, Dominik Stolzenburg, Lubna Dada, Aku Seppänen, and Kari E. J. Lehtinen
Atmos. Chem. Phys., 21, 12595–12611, https://doi.org/10.5194/acp-21-12595-2021, https://doi.org/10.5194/acp-21-12595-2021, 2021
Short summary
Short summary
Measuring the rate at which aerosol particles are formed is of importance for understanding climate change. We present an analysis method based on Kalman smoothing, which retrieves new particle formation and growth rates from size-distribution measurements. We apply it to atmospheric simulation chamber experiments and show that it agrees well with traditional methods. In addition, it provides reliable uncertainty estimates, and we suggest instrument design optimisation for signal processing.
Yu Wang, Aristeidis Voliotis, Yunqi Shao, Taomou Zong, Xiangxinyue Meng, Mao Du, Dawei Hu, Ying Chen, Zhijun Wu, M. Rami Alfarra, and Gordon McFiggans
Atmos. Chem. Phys., 21, 11303–11316, https://doi.org/10.5194/acp-21-11303-2021, https://doi.org/10.5194/acp-21-11303-2021, 2021
Short summary
Short summary
Aerosol phase behaviour plays a profound role in atmospheric physicochemical processes. We designed dedicated chamber experiments to study the phase state of secondary organic aerosol from biogenic and anthropogenic mixed precursors. Our results highlight the key role of the organic–inorganic ratio and relative humidity in phase state, but the sources and organic composition are less important. The result provides solid laboratory evidence for understanding aerosol phase in a complex atmosphere.
Ana A. Piedehierro, André Welti, Angela Buchholz, Kimmo Korhonen, Iida Pullinen, Ilkka Summanen, Annele Virtanen, and Ari Laaksonen
Atmos. Chem. Phys., 21, 11069–11078, https://doi.org/10.5194/acp-21-11069-2021, https://doi.org/10.5194/acp-21-11069-2021, 2021
Short summary
Short summary
Ice crystals in cirrus clouds contain particles that start ice formation. We study whether particles forming above boreal forests can help in the making of cirrus clouds and if the water content in the particles affects this property. In the laboratory, we made boreal-forest-like particles and cooled and humidified them to measure whether an ice crystal develops. We found that only when dry can these particles form an ice crystal but no better than solution droplets.
Cited articles
Bilde, M. and Pandis, S. N.: Evaporation rates and vapor pressures of individual aerosol species formed in the atmospheric oxidation of α- and β-pinene, Environ. Sci. Technol., 35, 3344–3349, https://doi.org/10.1021/es001946b, 2001.
Bilde, M., Svenningsson, B., Mønster, J., and Rosenørn, T.: Even-odd alternation of evaporation rates and vapor pressures of C3-C9 dicarboxylic acid aerosols, Environ. Sci. Technol., 37, 1371–1378, https://doi.org/10.1021/es0201810, 2003.
Bilde, M. and Svenningsson, B.: CCN activation of slightly soluble organics: the importance of small amounts of inorganic salt and particle phase, Tellus B, 56, 128–134, https://doi.org/10.1111/j.1600-0889.2004.00090.x, 2004.
Bird, R. B., Steward, W. E., and Lightfoot, E. N.: Transport phenomena, John Wiley & Sons, New York, 1960.
Booth, A. M., Markus, T., McFiggans, G., Percival, C. J., Mcgillen, M. R., and Topping, D. O.: Design and construction of a simple Knudsen Effusion Mass Spectrometer (KEMS) system for vapour pressure measurements of low volatility organics, Atmos. Meas. Tech., 2, 355–361, https://doi.org/10.5194/amt-2-355-2009, 2009.
Booth, A. M., Barley, M. H., Topping, D. O., McFiggans, G., Garforth, A., and Percival, C. J.: Solid state and sub-cooled liquid vapour pressures of substituted dicarboxylic acids using Knudsen Effusion Mass Spectrometry (KEMS) and Differential Scanning Calorimetry, Atmos. Chem. Phys., 10, 4879–4892, https://doi.org/10.5194/acp-10-4879-2010, 2010.
Buldain, G., de los Santos, C., and Frydman, B.: Carbon-13 nuclear magnetic resonance spectra of the hydrate, keto and enol forms of oxalacetic acid, Magn. Reson Chem., 23, 478–481, https://doi.org/10.1002/mrc.1260230615, 1985.
Cappa, C. D., Lovejoy, E. R., and Ravishankara, A. R.: Determination of evaporation rates and vapor pressures of very low volatility compounds: A study of the C4-C10 and C12 dicarboxylic acids, J. Phys. Chem. A., 111, 3099–3109, https://doi.org/10.1021/jp068686q, 2007.
Chattopadhyay, S. and Ziemann, P. J.: Vapor pressures of substituted and unsubstituted monocarboxylic and dicarboxylic acids measured using an improved thermal desorption particle beam mass spectrometry method, Aerosol Sci. Techol., 39, 1085–1100, https://doi.org/10.1080/02786820500421547, 2005.
Cruz, C. N. and Pandis, S. N.: A study of the ability of pure secondary organic aerosol to act as cloud condensation nuclei, Atmos. Environ., 31, 2205–2214, https://doi.org/10.1016/S1352-2310(97)00054-X, 1997.
Davis, E. J. and Ray, A. K.: Submicron droplet evaporation in the continuum and non-continuum regimes, J. Aerosol Sci., 9, 411–422, https://doi.org/10.1016/0021-8502(78)90003-4, 1978
Dinar, E., Taraniuk, I., Graber, E. R., Katsman, S., Moise, T., Anttila, T., Mentel, T. F., and Rudich, Y.: Cloud Condensation Nuclei properties of model and atmospheric HULIS, Atmos. Chem. Phys., 6, 2465–2482, https://doi.org/10.5194/acp-6-2465-2006, 2006.
Dinar, E., Taraniuk, I., Graber, E. R., Anttila, T., Mentel, T. F., and Rudich, Y.: Hygroscopic growth of atmospheric and model humic-like substances, J. Geophys. Res-Atmos, 112, D05211, https://doi.org/10.1029/2006jd007442, 2007.
Elias, T., Haeffelin, M., Drobinski, P., Gomes, L., Rangognio, J., Bergot, T., Chazette, P., Raut, J. C., and Colomb, M.: Particulate contribution to extinction of visible radiation: Pollution, haze, and fog, Atmos. Res., 92, 443–454, https://doi.org/10.1016/j.atmosres.2009.01.006, 2009.
Emly, M. and Leussing, D. L.: Dehydration and enolization rates of oxalacetate – catalysis by tertiary amines, J. Am. Chem. Soc., 103, 628–634, https://doi.org/10.1021/ja00393a022, 1981.
Fuchs, N. A., Sutugin, A. G., Hidy, G. N., and Brock, J. R.: Topics in current aerosol research, Pergamon Press, New York, 1971.
Gao, S., Keywood, M., Ng, N. L., Surratt, J. D., Varutbangkul, V., Bahreini, R., Flagan, R. C., and Seinfeld, J. H.: Low-molecular-weight and oligomeric components in secondary organic aerosol from the ozonolysis of cycloalkenes and α-pinene, J. Phys. Chem. A., 108, 10147–10164, https://doi.org/10.1021/jp047466e, 2004.
Goldstein, A. H. and Galbally, I. E.: Known and unexplored organic constituents in the Earth's atmosphere, Environ. Sci. Technol., 41, 1514–1521, https://doi.org/10.1021/es072476p, 2007.
Graber, E. R. and Rudich, Y.: Atmospheric HULIS: How humic-like are they? A comprehensive and critical review, Atmos. Chem. Phys., 6, 729–753, https://doi.org/10.5194/acp-6-729-2006, 2006.
Grossert, J. S., Fancy, P. D., and White, R. L.: Fragmentation pathways of negative ions produced by electrospray ionization of acyclic dicarboxylic acids and derivatives, Can. J. Chem.-Rev. Can. Chim., 83, 1878–1890, https://doi.org/10.1139/v05-214 , 2005.
Hartz, K. E. H., Tischuk, J. E., Chan, M. N., Chan, C. K., Donahue, N. M., and Pandis, S. N.: Cloud condensation nuclei activation of limited solubility organic aerosol, Atmos. Environ., 40, 605–617, https://doi.org/10.1016/j.atmosenv.2005.09.076, 2006.
Guzman, M. I. and Martin, S. T. Oxaloacetate-to-malate conversion by mineral photoelectrochemistry: implications for the viability of the reductive tricarboxylic acid cycle in prebiotic chemistry, Int. J. Astrobiol., 7, 271–278, https://doi.org/10.1017/S1473350408004291, 2008.
Hay, R. W. and Bond, M. A.: Kinetics of decarboxylation of acetoacetic acid, Aust. J. Chem., 20, 1823–1828, https://doi.org/10.1071/CH9671823, 1967.
Henning, S., Rosenørn, T., D'Anna, B., Gola, A. A., Svenningsson, B., and Bilde, M.: Cloud droplet activation and surface tension of mixtures of slightly soluble organics and inorganic salt, Atmos. Chem. Phys., 5, 575–582, https://doi.org/10.5194/acp-5-575-2005, 2005.
Hori, M., Ohta, S., Murao, N., and Yamagata, S.: Activation capability of water soluble organic substances as CCN, J. Aerosol Sci., 34, 419–448, https://doi.org/10.1016/S0021-8502(02)00190-8 2003.
IPCC: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, 2007.
Kanakidou, M., Seinfeld, J. H., Pandis, S. N., Barnes, I., Dentener, F. J., Facchini, M. C., Van Dingenen, R., Ervens, B., Nenes, A., Nielsen, C. J., Swietlicki, E., Putaud, J. P., Balkanski, Y., Fuzzi, S., Horth, J., Moortgat, G. K., Winterhalter, R., Myhre, C. E. L., Tsigaridis, K., Vignati, E., Stephanou, E. G., and Wilson, J.: Organic aerosol and global climate modelling: a review, Atmos. Chem. Phys., 5, 1053–1123, https://doi.org/10.5194/acp-5-1053-2005, 2005.
Kawamura, K. and Kaplan, I. R.: Motor exhaust emissions as a primary source for dicarboxylic acids in Los Angeles ambient air, Environ. Sci. Technol., 21, 105–110, https://doi.org/10.1021/es00155a014, 1987.
Kawamura, K., Kasukabe, H., Yasui, O., and Barrie, L. A.: Production of dicarboxylic acids in the arctic atmosphere at polar sunrise, Geophys. Res. Lett., 22, 1253–1256, https://doi.org/10.1029/95GL00880, 1995.
Kawamura, K., Seméré, R., Imai, Y., Fujii, Y., and Hayashi, M.: Water soluble dicarboxylic acids and related compounds in Antarctic aerosols, J. Geophys. Res-Atmos, 101, 18721–18728, https://doi.org/10.1029/96JD01541, 1996.
Kawamura, K. and Sakaguchi, F.: Molecular distribution of water soluble dicarboxylic acids in marine aerosols over the pacific ocean including tropics, J. Geophys. Res., 104, 3501–3509, https://doi.org/10.1029/1998JD100041, 1999.
Köhler, H.: The nucleus in and the growth of hygroscopic droplets, T. Faraday Soc., 32, 1152–1161, https://doi.org/10.1039/TF9363201152, 1936.
Kokesh, F. C.: Determination by proton nuclear magnetic-resonance of the enol, hydrate, and keto forms of oxaloacetic acid and its anions, J. Org. Chem., 41, 3593–3599, doi{:}10.1021/jo00884a025, 1976.
Koponen, I. K., Riipinen, I., Hienola, A., Kulmala, M., and Bilde, M.: Thermodynamic properties of malonic, succinic, and glutaric acids: Evaporation rates and saturation vapor pressures, Environ. Sci. Technol., 41, 3926–3933, https://doi.org/10.1021/es0611240, 2007.
Kornberg, A., Ochoa, S., and Mehler, A. H.: Spectrophotometric studies on the decarboxylation of β-keto acids, J. Biol. Chem., 174, 159–172, 1948.
Kosicki, G. W. and Lipvac, S. N.: The pH and pD dependence of the spontaneous and magnesium-ion-catalyzed decarboxylation of oxalacetic acid, Can. J. Chem., 42, 403–415, https://doi.org/10.1139/v64-057, 1964.
Kosicki, G. W., Lipovac, S. N., and Annett, R. G.: Lithium chloride catalyzed decarboxylation of oxalacetic acid in ethanol, Can. J. Chem., 42, 2806–2810, https://doi.org/10.1139/v64-057, 1964.
Krebs, H. A.: The effects of inorganic salts on the ketone decomposition of oxaloacetic acid, Biochem. J., 36, 303–305, 1942.
Kristensson, A., Rosenørn, T., and Bilde, M.: Cloud droplet activation of amino acid aerosol particles, J. Phys. Chem. A., 114, 379–386, https://doi.org/10.1021/jp9055329, 2010.
Kulmala, M. and Wagner, P. E.: Mass accommodation and uptake coefficients - a quantitative comparison, J. Aerosol Sci., 32, 833–841, https://doi.org/10.1016/S0021-8502(00)00116-6, 2001.
Pradeep Kumar, P., Broekhuizen, K., and Abbatt, J. P. D.: Organic acids as cloud condensation nuclei: Laboratory studies of highly soluble and insoluble species, Atmos. Chem. Phys., 3, 509–520, https://doi.org/10.5194/acp-3-509-2003, 2003.
Kumler, W. D., Kun, E., and Shoolery, J. N.: The enolization of oxaloacetic acid, diethyl oxaloacetate, and diethyl fluorooxaloacetate as determined by NMR analyses, J. Org. Chem., 27, 1165–1167, https://doi.org/10.1021/jo01051a010, 1962.
Laden, F., Schwartz, J., Speizer, F. E., and Dockery, D. W.: Reduction in fine particulate air pollution and mortality - Extended follow-up of the Harvard six cities study, Am. J. Resp. Crit. Care, 173, 667–672, https://doi.org/10.1164/rccm.200503-443OC, 2006.
Larson, D. W. and Lister, M. W.: Catalytic decomposition of acetonedicarboxylic acid, Can. J. Chemistry, 46, 823–832, https://doi.org/10.1139/v68-143, 1968.
Lide, D. R.: CRC Handbook of Chemistry and Physics, 85th edition., CRC Press, Boce Raton, 2004.
Liu, B. Y. H. and Bademosi, F.: Diffusion charging of Knudsen Aerosols, PTL publication no. 156, Particle Technology Laboratory, University of Minnesota, 1971.
Loewus, F. A., Tchen, T. T., and Vennesland, B.: The enzymatic transfer of hydrogen. III. The reaction catalyzed by malic dehydrogenase, J. Biol. Chem., 212, 787–800, 1955.
Low, R. D. H.: A theoretical study of nineteen condensation nuclei, Journal de Recherches Atmosphériques, 4, 65–78, 1969.
Lyderson, A. L.: Estimation of Critical Properties of Organic Compounds by the Method of Group Contributions; Engineering Experiment Station Report 3; University of Wisconsin: Madison, WI, 1955.
McMurry, J.: Fundamentals of organic chemistry, Thomson Brooks/Cole, California, 2003.
Mønster, J., Rosenørn, T., Svenningsson, B., and Bilde, M.: Evaporation of methyl- and dimethyl-substituted malonic, succinic, glutaric and adipic acid particles at ambient temperatures, J. Aerosol Sci., 35, 1453–1465, https://doi.org/10.1016/j.jaerosci.2004.07.004, 2004.
Pedersen, K. J.: The dissociation constants of pyruvic and oxaloacetic acid, Acta Chem. Scand., 6, 243–256, 1952.
Petters, M. D. and Kreidenweis, S. M.: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity, Atmos. Chem. Phys., 7, 1961–1971, https://doi.org/10.5194/acp-7-1961-2007, 2007.
Petters, M. D. , Kreidenweis, S. M., Prenni, A. J., Sullivan, R. C., Carrico, C. M., Koehler, K. A., and P. J. Ziemann: Role of molecular size in cloud droplet activation, Geophys. Res. Lett., 36, L22801, https://doi.org/10.1029/2009GL040131, 2009.
Pogson, C. I. and Wolfe, R. G.: Oxaloacetic acid. Tautomeric and hydrated forms in solution, Biochem. Biophys. Res. Co., 46, 1048–1054, 1972.
Prenni, A. J., DeMott, P. J., Kreidenweis, S. M., Sherman, D. E., Russell, L. M., and Ming, Y.: The effects of low molecular weight dicarboxylic acids on cloud formation, J. Phys. Chem. A., 105, 11240–11248, https://doi.org/10.1021/jp012427d, 2001.
Prisle, N. L., Raatikainen, T., Sorjamaa, R., Svenningsson, B., Laaksonen, A., and Bilde, M.: Surfactant partitioning in cloud droplet activation: a study of C8, C10, C12 and C14 normal fatty acid sodium salts, Tellus B, 60, 416–431, https://doi.org/10.1111/j.1600-0889.2008.00352.x, 2008.
Prue, J. E.: The kinetics of the metal-ion catalysed decarboxylation of acetonedicarboxylic acid, J. Chem. Soc., 2331–2338, https://doi.org/10.1039/JR9520002331, 1952.
Rader, D. J., McMurry, P. H., and Smith, S.: Evaporation rates of monodisperse organic aerosols 0.02- to 0.2-μm-diameter range. Aerosol Sci. Tech.. 6, 247–260, https://doi.org/10.1080/02786828708959137, 1987.
Raghavan, N. V. and Leussing, D. L.: Kinetic study of the copper(II)-catalyzed enolization, ketonization, and decarboxylation of oxaloacetate, J. Am. Chem. Soc., 98, 723–730, https://doi.org/10.1021/ja00419a014, 1976.
Raymond, T. M. and Pandis, S. N.: Cloud activation of single-component organic aerosol particles, J. Geophys. Res., 107, 16-1–16-8, https://doi.org/10.1029/2002JD002159, 2002.
Riipinen, I., Koponen, I. K., Frank, G. P., Hyvaerinen, A. P., Vanhanen, J., Lihavainen, H., Lehtinen, K. E. J., Bilde, M., and Kulmala, M.: Adipic and malonic acid aqueous solutions: Surface tensions and saturation vapor pressures, J. Phys. Chem. A., 111, 12995–13002, doi{:}10.1021/jp073731v, 2007.
Rissman, T. A., Varutbangkul, V., Surratt, J. D., Topping, D. O., McFiggans, G., Flagan, R. C., and Seinfeld, J. H.: Cloud condensation nucleus (CCN) behavior of organic aerosol particles generated by atomization of water and methanol solutions, Atmos. Chem. Phys., 7, 2949–2971, https://doi.org/10.5194/acp-7-2949-2007, 2007.
Rogge, W. F., Mazurek, M. A., Hildemann, L. M., and Cass, G. R.: Quantification of urban organic aerosols at a molecular level: Identification, abundance and seasonal variation, Atmos. Environ., 27, 1309–1330, https://doi.org/10.1016/0960-1686(93)90257-Y, 1993.
Sakaguchi, F. and Kawamura, K.: Identification of 4-oxoheptanedioic acid in the marine atmosphere by capillary gas chromatography-mass spectrometry, J. Chromatogr. A, 687, 315–321, https://doi.org/10.1016/0021-9673(94)00925-2, 1994.
Saxena, P. and Hildemann, L. M.: Water-soluble organics in atmospheric particles: A critical review of the literature and application of thermodynamics to identify candidate compounds, J. Atmos. Chem., 24, 57–109, 1996.
Seinfeld, J. H. and Pandis, S. N.: Atmospheric chemistry and physics: From air pollution to climate change. Wiley Interscience Publication, John Wiley and Sons, New York, 1998.
Sjogren, S., Gysel, M., Weingartner, E., Baltensperger, U., Cubison, M. J., Coe, H., Zardini, A. A., Marcolli, C., Krieger, U. K., and Peter, T.: Hygroscopic growth and water uptake kinetics of two-phase aerosol particles consisting of ammonium sulfate, adipic and humic acid mixtures, J. Aerosol Sci., 38, 157–171, https://doi.org/10.1016/j.jaerosci.2006.11.005, 2007.
Steinberger, R. and Westheimer, F. H.: Metal ion-catalyzed decarboxylation: A model for an enzyme system, J. Am. Chem. Soc., 73, 429–435, doi{:}10.1021/ja01145a139, 1951.
Svenningsson, B., Rissler, J., Swietlicki, E., Mircea, M., Bilde, M., Facchini, M. C., Decesari, S., Fuzzi, S., Zhou, J., Mønster, J., and Rosenørn, T.: Hygroscopic growth and critical supersaturations for mixed aerosol particles of inorganic and organic compounds of atmospheric relevance, Atmos. Chem. Phys., 6, 1937–1952, https://doi.org/10.5194/acp-6-1937-2006, 2006.
Svenningsson, B. and Bilde, M.: Relaxed step functions for evaluation of CCN counter data on size-separated aerosol particles, J. Aerosol Sci., 39, 592–608, https://doi.org/10.1016/j.jaerosci.2008.03.004 , 2008.
Tate, S. S., Grzybowski, A. K., and Datta, S. P.: Acid dissociations of keto and enol isomers of oxaloacetic acid at 25°, J. Chem. Soc., 1372–1380, 1964.
Varga, Z., Kiss, G., and Hansson, H.-C.: Modelling the cloud condensation nucleus activity of organic acids on the basis of surface tension and osmolality measurements, Atmos. Chem. Phys., 7, 4601–4611, https://doi.org/10.5194/acp-7-4601-2007, 2007.
von Pechmann, H.: Über die acetondicarbonsäure, Chem. Ber., 17, 2542–2543, 1884.
Wang, H., Kawamura, K., and Yamazaki, K.: Water-soluble dicarboxylic acids, ketoacids and dicarbonyls in the atmospheric aerosols over the southern ocean and western pacific ocean, J. Atmos. Chem., 53, 43–61, https://doi.org/10.1007/s10874-006-1479-4, 2006.
Wiig, E. O.: Carbon dioxide cleavage from acetone dicarboxylic acid, J. Phys. Chem., 32, 961–981, https://doi.org/10.1021/j150289a001, 1928.
Wiig, E. O.: Acetonedicarboxylic acid as a leavening agent, Ind. Eng. Chem., 21, 1145–1146, https://doi.org/10.1021/ie50239a046, 1929.
Yaws, C. L.: The Yaws handbook of physical properties for hydrocarbons and chemicals, Gulf Publishing Company, Houston, Texas, 2005.
Yokouchi, Y. and Ambe, Y.: Characterization of polar organics in airborne particulate matter, Atmos. Environ., 20, 1727–1734, https://doi.org/10.1016/0004-6981(86)90121-6, 1986.
Young, K. C. and Warren, A. J.: A reexamination of the deriviation of the equilibrium supersaturation curve for soluble particles, J. Atmos. Sci., 49, 1138–1143, 1992.
Zardini, A. A., Krieger, U. K., and Marcolli, C.: White light Mie resonance spectroscopy used to measure very low vapor pressures of substances in aqueous solution aerosol particles, Opt. Express, 14, 6951–6962, https://doi.org/10.1364/OE.14.006951, 2006.
Zardini, A. A., Sjogren, S., Marcolli, C., Krieger, U. K., Gysel, M., Weingartner, E., Baltensperger, U., and Peter, T.: A combined particle trap/HTDMA hygroscopicity study of mixed inorganic/organic aerosol particles, Atmos. Chem. Phys., 8, 5589–5601, https://doi.org/10.5194/acp-8-5589-2008, 2008.
Zardini, A. A. and Krieger, U. K.: Evaporation kinetics of a non-spherical, levitated aerosol particle using optical resonance spectroscopy for precision sizing, Opt. Express, 17, 4659–4669, https://doi.org/10.1364/OE.17.004659, 2009.
Zhang, S. H., Seinfeld, J. H., and Flagan, R. C.: Determination of particle vapor pressures using the tandem differential mobility analyzer, Aerosol Sci. Tech., 19, 3–14, doi{:}10.1080/02786829308959616, 1993.
Altmetrics
Final-revised paper
Preprint