Articles | Volume 25, issue 14
https://doi.org/10.5194/acp-25-8127-2025
https://doi.org/10.5194/acp-25-8127-2025
Research article
 | 
30 Jul 2025
Research article |  | 30 Jul 2025

Polar winter climate change: strong local effects from sea ice loss, widespread consequences from warming seas

Tuomas Naakka, Daniel Köhler, Kalle Nordling, Petri Räisänen, Marianne Tronstad Lund, Risto Makkonen, Joonas Merikanto, Bjørn H. Samset, Victoria A. Sinclair, Jennie L. Thomas, and Annica M. L. Ekman

Related authors

Summertime evaporation over two lakes in the Schirmacher oasis, East Antarctica
Elena Shevnina, Timo Vihma, Miguel Potes, and Tuomas Naakka
EGUsphere, https://doi.org/10.5194/egusphere-2025-1964,https://doi.org/10.5194/egusphere-2025-1964, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
The future North Atlantic jet stream and storm track: relative contributions from sea ice and sea surface temperature changes
Daniel Köhler, Petri Räisänen, Tuomas Naakka, Kalle Nordling, and Victoria A. Sinclair
Weather Clim. Dynam., 6, 669–694, https://doi.org/10.5194/wcd-6-669-2025,https://doi.org/10.5194/wcd-6-669-2025, 2025
Short summary
Is the summer aerosol over the Arctic controlled by regional atmospheric circulation or ice conditions? Trends and Future Implications
Caroline Leck, Jost Heintzenberg, Tiina Nygård, and Tuomas Naakka
EGUsphere, https://doi.org/10.5194/egusphere-2025-695,https://doi.org/10.5194/egusphere-2025-695, 2025
Short summary
Cold wintertime air masses over Europe: where do they come from and how do they form?
Tiina Nygård, Lukas Papritz, Tuomas Naakka, and Timo Vihma
Weather Clim. Dynam., 4, 943–961, https://doi.org/10.5194/wcd-4-943-2023,https://doi.org/10.5194/wcd-4-943-2023, 2023
Short summary
Evaporation over a glacial lake in Antarctica
Elena Shevnina, Miguel Potes, Timo Vihma, Tuomas Naakka, Pankaj Ramji Dhote, and Praveen Kumar Thakur
The Cryosphere, 16, 3101–3121, https://doi.org/10.5194/tc-16-3101-2022,https://doi.org/10.5194/tc-16-3101-2022, 2022
Short summary

Cited articles

Balsamo, G., Beljaars, A., Scipal, K., Viterbo, P., van den Hurk, B., Hirschi, M., and Betts A. K.: A revised hydrology for the ECMWF model: Verification from field site to terrestrial water storage and impact in the Integrated Forecast System, J. Hydrometeorol., 10, 623–643, https://doi.org/10.1175/2008JHM1068.1, 2009. 
Bozzo, A., Remy, S., Benedetti, A., Flemming, J., Bechtold, P., Rodwell, M. J., and Morcrette, J. J.: Implementation of a CAMS-based aerosol climatology in the IFS, Technical memorandum, vol. 801, European Centre for Medium-Range Weather Forecasts, Reading, UK, 1–33, https://doi.org/10.21957/84ya94mls, 2017. 
CESM: Community Earth System Model, CESM [code], https://github.com/ESCOMP/CESM (last access: 15 July 2025), 2025a. 
CESM: CESM Quickstart Guide (CESM2.2), GitHub, https://escomp.github.io/CESM/versions/cesm2.2/html/ (last access: 15 July 2025), 2025b. 
Chripko, S., Msadek, R., Sanchez-Gomez, E., Terray, L., Bessières, L., and Moine, M. P.: Impact of reduced arctic sea ice on northern hemisphere climate and weather in autumn and winter, J. Climate, 34, 5847–5867, https://doi.org/10.1175/JCLI-D-20-0515.1, 2021. 
Download
Short summary
The effects of warmer sea surface temperatures and decreasing sea ice cover on polar climates have been studied using four climate models with identical prescribed changes in sea surface temperatures and sea ice cover. The models predict similar changes in air temperature and precipitation in the polar regions in a warmer climate with less sea ice. However, the models disagree on how the atmospheric circulation, i.e. the large-scale winds, will change with warmer temperatures and less sea ice.
Share
Altmetrics
Final-revised paper
Preprint