Articles | Volume 25, issue 8
https://doi.org/10.5194/acp-25-4587-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-25-4587-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Source apportionment and ecotoxicity of PM2.5 pollution events in a major Southern Hemisphere megacity: influence of a biofuel-impacted fleet and biomass burning
Guilherme Martins Pereira
CORRESPONDING AUTHOR
Department of Atmospheric Sciences, Institute of Astronomy, Geophysics and Atmospheric Sciences, University of São Paulo, 05508-090, São Paulo, Brazil
Department of Chemistry, Institute of Chemistry, University of São Paulo, 05508-000, São Paulo, Brazil
Leonardo Yoshiaki Kamigauti
Department of Atmospheric Sciences, Institute of Astronomy, Geophysics and Atmospheric Sciences, University of São Paulo, 05508-090, São Paulo, Brazil
Rubens Fabio Pereira
Department of Atmospheric Sciences, Institute of Astronomy, Geophysics and Atmospheric Sciences, University of São Paulo, 05508-090, São Paulo, Brazil
Djacinto Monteiro dos Santos
Department of Applied Physics, Institute of Physics, University of São Paulo, 05508-090, São Paulo, Brazil
current address: Department of Meteorology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
Thayná da Silva Santos
Department of Chemistry, Institute of Chemistry, University of São Paulo, 05508-000, São Paulo, Brazil
José Vinicius Martins
Department of Mineralogy and Geotectonics, Institute of Geosciences, University of São Paulo, 05508-080, São Paulo, Brazil
Célia Alves
Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro, Portugal
Cátia Gonçalves
Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro, Portugal
current address: Department of Physics, University of León, Campus de Vegazana, 24071 León, Spain
Ismael Casotti Rienda
Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro, Portugal
Nora Kováts
Center of Natural Environmental Sciences, University of Pannonia, Egyetem str. 10, 8200 Veszprém, Hungary
Thiago Nogueira
Department of Environmental Health, School of Public Health, University of São Paulo, 01246-904, São Paulo, Brazil
Luciana Rizzo
Department of Applied Physics, Institute of Physics, University of São Paulo, 05508-090, São Paulo, Brazil
Paulo Artaxo
Department of Applied Physics, Institute of Physics, University of São Paulo, 05508-090, São Paulo, Brazil
Regina Maura de Miranda
School of Arts, Sciences and Humanities, University of São Paulo, 03828-000, São Paulo, Brazil
Marcia Akemi Yamasoe
Department of Atmospheric Sciences, Institute of Astronomy, Geophysics and Atmospheric Sciences, University of São Paulo, 05508-090, São Paulo, Brazil
Edmilson Dias de Freitas
Department of Atmospheric Sciences, Institute of Astronomy, Geophysics and Atmospheric Sciences, University of São Paulo, 05508-090, São Paulo, Brazil
Pérola de Castro Vasconcellos
Department of Chemistry, Institute of Chemistry, University of São Paulo, 05508-000, São Paulo, Brazil
Maria de Fatima Andrade
Department of Atmospheric Sciences, Institute of Astronomy, Geophysics and Atmospheric Sciences, University of São Paulo, 05508-090, São Paulo, Brazil
Related authors
No articles found.
Amauri C. Prudente Junior, Luiz A. T. Machado, Felipe S. Silva, Tercio Ambrizzi, Paulo Artaxo, Santiago Botia, Luan P. Cordeiro, Cleo Q. Dias Junior, Edmilson Freitas, Demerval S. Moreira, Christopher Pöhlker, Ivan M. C. Toro, Xiyan Xu, and Luciana V. Rizzo
EGUsphere, https://doi.org/10.5194/egusphere-2025-2869, https://doi.org/10.5194/egusphere-2025-2869, 2025
Short summary
Short summary
This study propoes a new method of spatialization to estimate carbon fluxes in the Brazilian Amazon biome. To do so, was used a land surface model (JULES) and two vegetation properties. The results of this spatialization resulted in a carbon fluxes of -1.34 Pg C during the year of 2021 in the entire Brazilian Amazon biome being the states of Amapa and Acre main relevant regions of carbon source.
Sara M. Blichner, Theodore Khadir, Sini Talvinen, Paulo Artaxo, Liine Heikkinen, Harri Kokkola, Radovan Krejci, Muhammed Irfan, Twan van Noije, Tuukka Petäjä, Christopher Pöhlker, Øyvind Seland, Carl Svenhag, Antti Vartiainen, and Ilona Riipinen
EGUsphere, https://doi.org/10.5194/egusphere-2025-2559, https://doi.org/10.5194/egusphere-2025-2559, 2025
Short summary
Short summary
This study looks at how well climate models capture the impact of rain on particles that help form cloud droplets. Using data from three measurement stations and applying both a correlation analysis and a machine learning approach, we found that models often miss how new particles form after rain and struggle in cold environments. This matters because these particles influence cloud formation and climate.
Aino Ovaska, Elio Rauth, Daniel Holmberg, Paulo Artaxo, John Backman, Benjamin Bergmans, Don Collins, Marco Aurélio Franco, Shahzad Gani, Roy M. Harrison, Rakes K. Hooda, Tareq Hussein, Antti-Pekka Hyvärinen, Kerneels Jaars, Adam Kristensson, Markku Kulmala, Lauri Laakso, Ari Laaksonen, Nikolaos Mihalopoulos, Colin O'Dowd, Jakub Ondracek, Tuukka Petäjä, Kristina Plauškaitė, Mira Pöhlker, Ximeng Qi, Peter Tunved, Ville Vakkari, Alfred Wiedensohler, Kai Puolamäki, Tuomo Nieminen, Veli-Matti Kerminen, Victoria A. Sinclair, and Pauli Paasonen
Aerosol Research Discuss., https://doi.org/10.5194/ar-2025-18, https://doi.org/10.5194/ar-2025-18, 2025
Preprint under review for AR
Short summary
Short summary
We trained machine learning models to estimate the number of aerosol particles large enough to form clouds and generated daily estimates for the entire globe. The models performed well in many continental regions but struggled in remote and marine areas. Still, this approach offers a way to quantify these particles in areas that lack direct measurements, helping us understand their influence on clouds and climate on a global scale.
Natalie M. Mahowald, Longlei Li, Julius Vira, Marje Prank, Douglas S. Hamilton, Hitoshi Matsui, Ron L. Miller, P. Louis Lu, Ezgi Akyuz, Daphne Meidan, Peter Hess, Heikki Lihavainen, Christine Wiedinmyer, Jenny Hand, Maria Grazia Alaimo, Célia Alves, Andres Alastuey, Paulo Artaxo, Africa Barreto, Francisco Barraza, Silvia Becagli, Giulia Calzolai, Shankararaman Chellam, Ying Chen, Patrick Chuang, David D. Cohen, Cristina Colombi, Evangelia Diapouli, Gaetano Dongarra, Konstantinos Eleftheriadis, Johann Engelbrecht, Corinne Galy-Lacaux, Cassandra Gaston, Dario Gomez, Yenny González Ramos, Roy M. Harrison, Chris Heyes, Barak Herut, Philip Hopke, Christoph Hüglin, Maria Kanakidou, Zsofia Kertesz, Zbigniew Klimont, Katriina Kyllönen, Fabrice Lambert, Xiaohong Liu, Remi Losno, Franco Lucarelli, Willy Maenhaut, Beatrice Marticorena, Randall V. Martin, Nikolaos Mihalopoulos, Yasser Morera-Gómez, Adina Paytan, Joseph Prospero, Sergio Rodríguez, Patricia Smichowski, Daniela Varrica, Brenna Walsh, Crystal L. Weagle, and Xi Zhao
Atmos. Chem. Phys., 25, 4665–4702, https://doi.org/10.5194/acp-25-4665-2025, https://doi.org/10.5194/acp-25-4665-2025, 2025
Short summary
Short summary
Aerosol particles are an important part of the Earth system, but their concentrations are spatially and temporally heterogeneous, as well as being variable in size and composition. Here, we present a new compilation of PM2.5 and PM10 aerosol observations, focusing on the spatial variability across different observational stations, including composition, and demonstrate a method for comparing the data sets to model output.
Nilton Évora do Rosário, Karla M. Longo, Pedro H. Toso, Saulo R. Freitas, Marcia A. Yamasoe, Luiz Flávio Rodrigues, Otavio Medeiros, Haroldo Campos Velho, Isilda da Cunha Menezes, and Ana Isabel Miranda
EGUsphere, https://doi.org/10.5194/egusphere-2025-454, https://doi.org/10.5194/egusphere-2025-454, 2025
Short summary
Short summary
The present article focuses on the topic of observations to constrain aerosol optical properties in climate models . We combine a machine learning approach (based on clustering), used to identify and characterize aerosol optical regimes, with another machine learning technique (Random Forest), used to train the prescription of the identified optical regimes from a mixture of columnar mass density of different aerosol-types.
Rafael Valiati, Bruno Backes Meller, Marco Aurélio Franco, Luciana Varanda Rizzo, Luiz Augusto Toledo Machado, Sebastian Brill, Bruna A. Holanda, Leslie A. Kremper, Subha S. Raj, Samara Carbone, Cléo Quaresma Dias-Júnior, Fernando Gonçalves Morais, Meinrat O. Andreae, Ulrich Pöschl, Christopher Pöhlker, and Paulo Artaxo
EGUsphere, https://doi.org/10.5194/egusphere-2025-1078, https://doi.org/10.5194/egusphere-2025-1078, 2025
Short summary
Short summary
This study highlights the different aerosol populations that are commonly observed in the central Amazon. Vertical gradients of aerosol optical and chemical properties were evaluated on different atmospheric conditions, and showed distinct characteristics of these particles. Intercontinental transport events bring to the region particles with a contrasting chemical composition, while vertical transport processes influence the aerosol properties by promoting the development of coating and aging.
Tailine Corrêa dos Santos, Elaine Cristina Araujo, Thaís Andrade da Silva, Enrico Valente Freire, Eduardo Landulfo, and Maria de Fátima Andrade
EGUsphere, https://doi.org/10.5194/egusphere-2025-968, https://doi.org/10.5194/egusphere-2025-968, 2025
Short summary
Short summary
It is widely used in national emission inventories estimated by IPCC emission factors. These estimates are sources of data uncertainty mainly because they do not include local specificities. Addressing this gap through targeted research and data collection is essential to develop effective mitigation policies and strategies. In the case of residential energy use, GHG emissions and indoor pollutants are expected to increase, especially as natural gas use continues to expand.
Hazel Vernier, Demilson Quintão, Bruno Biazon, Eduardo Landulfo, Giovanni Souza, V. Amanda Santos, J. S. Fabio Lopes, C. P. Alex Mendes, A. S. José da Matta, K. Pinheiro Damaris, Benoit Grosslin, P. M. P. Maria Jorge, Maria de Fátima Andrade, Neeraj Rastogi, Akhil Raj, Hongyu Liu, Mahesh Kovilakam, Suvarna Fadnavis, Frank G. Wienhold, Mathieu Colombier, D. Chris Boone, Gwenael Berthet, Nicolas Dumelie, Lilian Joly, and Jean-Paul Vernier
EGUsphere, https://doi.org/10.5194/egusphere-2025-924, https://doi.org/10.5194/egusphere-2025-924, 2025
Short summary
Short summary
The eruption of Hunga Tonga-Hunga Ha'apai injected large amounts of water vapor and sea salt into the stratosphere, altering traditional views of volcanic aerosols. Using balloon-borne samplers, we collected aerosol samples and found high levels of sea salt and calcium, suggesting sulfate depletion due to gypsum formation. These findings highlight the need to consider sea salt in climate models to better predict volcanic impacts on the atmosphere and climate.
Sebastian Brill, Björn Nillius, Jan-David Förster, Paulo Artaxo, Florian Ditas, Dennis Geis, Christian Gurk, Thomas Kenntner, Thomas Klimach, Mark Lamneck, Rafael Valiati, Bettina Weber, Stefan Wolff, Ulrich Pöschl, and Christopher Pöhlker
EGUsphere, https://doi.org/10.5194/egusphere-2025-295, https://doi.org/10.5194/egusphere-2025-295, 2025
Short summary
Short summary
Highly resolved vertical profiles are crucial for understanding ecosystem-atmosphere interactions. We developed the robotic lift (RoLi) as a platform for vertical profile measurements at the Amazon Tall Tower Observatory in the central Amazon basin. Initial results reveal distinct spatiotemporal patterns in altitude profiles of temperature, humidity, fog, and aerosol properties, offering new insights into the diurnal dynamics of convective daytime mixing and stable nighttime stratification.
Jianqiang Zhu, Guo Li, Uwe Kuhn, Bruno Backes Meller, Christopher Pöhlker, Paulo Artaxo, Ulrich Pöschl, Yafang Cheng, and Hang Su
EGUsphere, https://doi.org/10.5194/egusphere-2024-3911, https://doi.org/10.5194/egusphere-2024-3911, 2025
Short summary
Short summary
The manuscript reports unique measurement data on sub-40 nm particles and ions, especially those smaller than 10 nm in the Amazon from December 2022 to January 2023. A large number of sub-3 nm particles and naturally charged ions were present in the Amazonia boundary layer, and they showed a clear diurnal variation. The research will contribute to a better understanding of atmospheric processes in the pristine environment.
Jorge Rosas Santana, Gabriela Lima da Silva, Marcia Akemi Yamasoe, and Nilton Èvora do Rosario
EGUsphere, https://doi.org/10.5194/egusphere-2025-9, https://doi.org/10.5194/egusphere-2025-9, 2025
Short summary
Short summary
This study examines a rare event in São Paulo, Brazil, where wildfire smoke from South America mixed with clouds, causing midday darkness on 19 August 2019. Satellite data, surface measurements, and air mass modeling tracked the smoke from fires in Brazil, Bolivia, and Paraguay, transported to São Paulo within two days. The smoke-cloud interaction reduced surface irradiance to zero for 40 minutes and increased radiative efficiency by 7 %, highlighting impacts on air quality, energy, and climate.
Bighnaraj Sarangi, Darrel Baumgardner, Ana Isabel Calvo, Benjamin Bolaños-Rosero, Roberto Fraile, Alberto Rodríguez-Fernández, Delia Fernández-González, Carlos Blanco-Alegre, Cátia Gonçalves, Estela D. Vicente, and Olga L. Mayol-Bracero
Atmos. Chem. Phys., 25, 843–865, https://doi.org/10.5194/acp-25-843-2025, https://doi.org/10.5194/acp-25-843-2025, 2025
Short summary
Short summary
Measurements of fluorescing aerosol particle properties have been made during two major African dust events, one over the island of Puerto Rico and the other over the city of León, Spain. The measurements were made with two wideband integrated bioaerosol spectrometers. A significant change in the background aerosol properties, at both locations, is observed when the dust is in the respective regions.
Diego Aliaga, Victoria A. Sinclair, Radovan Krejci, Marcos Andrade, Paulo Artaxo, Luis Blacutt, Runlong Cai, Samara Carbone, Yvette Gramlich, Liine Heikkinen, Dominic Heslin-Rees, Wei Huang, Veli-Matti Kerminen, Alkuin Maximilian Koenig, Markku Kulmala, Paolo Laj, Valeria Mardoñez-Balderrama, Claudia Mohr, Isabel Moreno, Pauli Paasonen, Wiebke Scholz, Karine Sellegri, Laura Ticona, Gaëlle Uzu, Fernando Velarde, Alfred Wiedensohler, Doug Worsnop, Cheng Wu, Chen Xuemeng, Qiaozhi Zha, and Federico Bianchi
Aerosol Research, 3, 15–44, https://doi.org/10.5194/ar-3-15-2025, https://doi.org/10.5194/ar-3-15-2025, 2025
Short summary
Short summary
This study examines new particle formation (NPF) in the Bolivian Andes at Chacaltaya mountain (CHC) and the urban El Alto–La Paz area (EAC). Days are clustered into four categories based on NPF intensity. Differences in particle size, precursor gases, and pollution levels are found. High NPF intensities increased Aitken mode particle concentrations at both sites, while volcanic influence selectively diminished NPF intensity at CHC but not EAC. This study highlights NPF dynamics in the Andes.
Flossie Brown, Gerd Folberth, Stephen Sitch, Paulo Artaxo, Marijn Bauters, Pascal Boeckx, Alexander W. Cheesman, Matteo Detto, Ninong Komala, Luciana Rizzo, Nestor Rojas, Ines dos Santos Vieira, Steven Turnock, Hans Verbeeck, and Alfonso Zambrano
Atmos. Chem. Phys., 24, 12537–12555, https://doi.org/10.5194/acp-24-12537-2024, https://doi.org/10.5194/acp-24-12537-2024, 2024
Short summary
Short summary
Ozone is a pollutant that is detrimental to human and plant health. Ozone monitoring sites in the tropics are limited, so models are often used to understand ozone exposure. We use measurements from the tropics to evaluate ozone from the UK Earth system model, UKESM1. UKESM1 is able to capture the pattern of ozone in the tropics, except in southeast Asia, although it systematically overestimates it at all sites. This work highlights that UKESM1 can capture seasonal and hourly variability.
Rafael Stern, Joel F. de Brito, Samara Carbone, Luciana Varanda Rizzo, Jonathan Daniel Muller, and Paulo Artaxo
EGUsphere, https://doi.org/10.5194/egusphere-2024-3339, https://doi.org/10.5194/egusphere-2024-3339, 2024
Short summary
Short summary
Our work reveals the impact of forest fires on climate. We found that particles related to direct emissions from fires, beyond the well-known effect of absorbing light and thus heating the atmosphere, are also very efficient in scattering light, which causes an atmospheric cooling effect. In our remote study site, most of the particles presented a different chemical composition then particles directly emitted by the fires, but those were the main responsible for total light extinction.
Jorge E. Pachón, Mariel A. Opazo, Pablo Lichtig, Nicolas Huneeus, Idir Bouarar, Guy Brasseur, Cathy W. Y. Li, Johannes Flemming, Laurent Menut, Camilo Menares, Laura Gallardo, Michael Gauss, Mikhail Sofiev, Rostislav Kouznetsov, Julia Palamarchuk, Andreas Uppstu, Laura Dawidowski, Nestor Y. Rojas, María de Fátima Andrade, Mario E. Gavidia-Calderón, Alejandro H. Delgado Peralta, and Daniel Schuch
Geosci. Model Dev., 17, 7467–7512, https://doi.org/10.5194/gmd-17-7467-2024, https://doi.org/10.5194/gmd-17-7467-2024, 2024
Short summary
Short summary
Latin America (LAC) has some of the most populated urban areas in the world, with high levels of air pollution. Air quality management in LAC has been traditionally focused on surveillance and building emission inventories. This study performed the first intercomparison and model evaluation in LAC, with interesting and insightful findings for the region. A multiscale modeling ensemble chain was assembled as a first step towards an air quality forecasting system.
Rafaela Cruz Alves Alberti, Thomas Lauvaux, Angel Liduvino Vara-Vela, Ricard Segura Barrero, Christoffer Karoff, Maria de Fátima Andrade, Márcia Talita Amorim Marques, Noelia Rojas Benavente, Osvaldo Machado Rodrigues Cabral, Humberto Ribeiro da Rocha, and Rita Yuri Ynoue
EGUsphere, https://doi.org/10.5194/egusphere-2024-3060, https://doi.org/10.5194/egusphere-2024-3060, 2024
Short summary
Short summary
This study addresses uncertainties in atmospheric models by analyzing CO2 dynamics in a complex urban environment characterized by a dense population and tropical vegetation. High-accuracy sensors were deployed, and the WRF-GHG model was utilized to simulate CO2 transport, capturing variations and assessing contributions from both anthropogenic and biogenic sources.
Luiz A. T. Machado, Jürgen Kesselmeier, Santiago Botía, Hella van Asperen, Meinrat O. Andreae, Alessandro C. de Araújo, Paulo Artaxo, Achim Edtbauer, Rosaria R. Ferreira, Marco A. Franco, Hartwig Harder, Sam P. Jones, Cléo Q. Dias-Júnior, Guido G. Haytzmann, Carlos A. Quesada, Shujiro Komiya, Jost Lavric, Jos Lelieveld, Ingeborg Levin, Anke Nölscher, Eva Pfannerstill, Mira L. Pöhlker, Ulrich Pöschl, Akima Ringsdorf, Luciana Rizzo, Ana M. Yáñez-Serrano, Susan Trumbore, Wanda I. D. Valenti, Jordi Vila-Guerau de Arellano, David Walter, Jonathan Williams, Stefan Wolff, and Christopher Pöhlker
Atmos. Chem. Phys., 24, 8893–8910, https://doi.org/10.5194/acp-24-8893-2024, https://doi.org/10.5194/acp-24-8893-2024, 2024
Short summary
Short summary
Composite analysis of gas concentration before and after rainfall, during the day and night, gives insight into the complex relationship between trace gas variability and precipitation. The analysis helps us to understand the sources and sinks of trace gases within a forest ecosystem. It elucidates processes that are not discernible under undisturbed conditions and contributes to a deeper understanding of the trace gas life cycle and its intricate interactions with cloud dynamics in the Amazon.
Marco A. Franco, Rafael Valiati, Bruna A. Holanda, Bruno B. Meller, Leslie A. Kremper, Luciana V. Rizzo, Samara Carbone, Fernando G. Morais, Janaína P. Nascimento, Meinrat O. Andreae, Micael A. Cecchini, Luiz A. T. Machado, Milena Ponczek, Ulrich Pöschl, David Walter, Christopher Pöhlker, and Paulo Artaxo
Atmos. Chem. Phys., 24, 8751–8770, https://doi.org/10.5194/acp-24-8751-2024, https://doi.org/10.5194/acp-24-8751-2024, 2024
Short summary
Short summary
The Amazon wet-season atmosphere was studied at the Amazon Tall Tower Observatory site, revealing vertical variations (between 60 and 325 m) in natural aerosols. Daytime mixing contrasted with nighttime stratification, with distinct rain-induced changes in aerosol populations. Notably, optical property recovery at higher levels was faster, while near-canopy aerosols showed higher scattering efficiency. These findings enhance our understanding of aerosol impacts on climate dynamics.
Gabriela R. Unfer, Luiz A. T. Machado, Paulo Artaxo, Marco A. Franco, Leslie A. Kremper, Mira L. Pöhlker, Ulrich Pöschl, and Christopher Pöhlker
Atmos. Chem. Phys., 24, 3869–3882, https://doi.org/10.5194/acp-24-3869-2024, https://doi.org/10.5194/acp-24-3869-2024, 2024
Short summary
Short summary
Amazonian aerosols and their interactions with precipitation were studied by understanding them in a 3D space based on three parameters that characterize the concentration and size distribution of aerosols. The results showed characteristic arrangements regarding seasonal and diurnal cycles, as well as when interacting with precipitation. The use of this 3D space appears to be a promising tool for aerosol population analysis and for model validation and parameterization.
Natalie M. Mahowald, Longlei Li, Julius Vira, Marje Prank, Douglas S. Hamilton, Hitoshi Matsui, Ron L. Miller, Louis Lu, Ezgi Akyuz, Daphne Meidan, Peter Hess, Heikki Lihavainen, Christine Wiedinmyer, Jenny Hand, Maria Grazia Alaimo, Célia Alves, Andres Alastuey, Paulo Artaxo, Africa Barreto, Francisco Barraza, Silvia Becagli, Giulia Calzolai, Shankarararman Chellam, Ying Chen, Patrick Chuang, David D. Cohen, Cristina Colombi, Evangelia Diapouli, Gaetano Dongarra, Konstantinos Eleftheriadis, Corinne Galy-Lacaux, Cassandra Gaston, Dario Gomez, Yenny González Ramos, Hannele Hakola, Roy M. Harrison, Chris Heyes, Barak Herut, Philip Hopke, Christoph Hüglin, Maria Kanakidou, Zsofia Kertesz, Zbiginiw Klimont, Katriina Kyllönen, Fabrice Lambert, Xiaohong Liu, Remi Losno, Franco Lucarelli, Willy Maenhaut, Beatrice Marticorena, Randall V. Martin, Nikolaos Mihalopoulos, Yasser Morera-Gomez, Adina Paytan, Joseph Prospero, Sergio Rodríguez, Patricia Smichowski, Daniela Varrica, Brenna Walsh, Crystal Weagle, and Xi Zhao
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-1, https://doi.org/10.5194/essd-2024-1, 2024
Preprint withdrawn
Short summary
Short summary
Aerosol particles can interact with incoming solar radiation and outgoing long wave radiation, change cloud properties, affect photochemistry, impact surface air quality, and when deposited impact surface albedo of snow and ice, and modulate carbon dioxide uptake by the land and ocean. Here we present a new compilation of aerosol observations including composition, a methodology for comparing the datasets to model output, and show the implications of these results using one model.
Xurong Wang, Qiaoqiao Wang, Maria Prass, Christopher Pöhlker, Daniel Moran-Zuloaga, Paulo Artaxo, Jianwei Gu, Ning Yang, Xiajie Yang, Jiangchuan Tao, Juan Hong, Nan Ma, Yafang Cheng, Hang Su, and Meinrat O. Andreae
Atmos. Chem. Phys., 23, 9993–10014, https://doi.org/10.5194/acp-23-9993-2023, https://doi.org/10.5194/acp-23-9993-2023, 2023
Short summary
Short summary
In this work, with an optimized particle mass size distribution, we captured observed aerosol optical depth (AOD) and coarse aerosol concentrations over source and/or receptor regions well, demonstrating good performance in simulating export of African dust toward the Amazon Basin. In addition to factors controlling the transatlantic transport of African dust, the study investigated the impact of African dust over the Amazon Basin, including the nutrient inputs associated with dust deposition.
Elion Daniel Hack, Theotonio Pauliquevis, Henrique Melo Jorge Barbosa, Marcia Akemi Yamasoe, Dimitri Klebe, and Alexandre Lima Correia
Atmos. Meas. Tech., 16, 1263–1278, https://doi.org/10.5194/amt-16-1263-2023, https://doi.org/10.5194/amt-16-1263-2023, 2023
Short summary
Short summary
Water vapor is a key factor when seeking to understand fast-changing processes when clouds and storms form and develop. We show here how images from a calibrated infrared camera can be used to derive how much water vapor there is in the atmosphere at a given time. Comparing our results to an established technique, for a case of stable atmospheric conditions, we found an agreement within 2.8 %. Water vapor sky maps can be retrieved every few minutes, day or night, under partly cloudy skies.
Wiebke Scholz, Jiali Shen, Diego Aliaga, Cheng Wu, Samara Carbone, Isabel Moreno, Qiaozhi Zha, Wei Huang, Liine Heikkinen, Jean Luc Jaffrezo, Gaelle Uzu, Eva Partoll, Markus Leiminger, Fernando Velarde, Paolo Laj, Patrick Ginot, Paolo Artaxo, Alfred Wiedensohler, Markku Kulmala, Claudia Mohr, Marcos Andrade, Victoria Sinclair, Federico Bianchi, and Armin Hansel
Atmos. Chem. Phys., 23, 895–920, https://doi.org/10.5194/acp-23-895-2023, https://doi.org/10.5194/acp-23-895-2023, 2023
Short summary
Short summary
Dimethyl sulfide (DMS), emitted from the ocean, is the most abundant biogenic sulfur emission into the atmosphere. OH radicals, among others, can oxidize DMS to sulfuric and methanesulfonic acid, which are relevant for aerosol formation. We quantified DMS and nearly all DMS oxidation products with novel mass spectrometric instruments for gas and particle phase at the high mountain station Chacaltaya (5240 m a.s.l.) in the Bolivian Andes in free tropospheric air after long-range transport.
Yunfan Liu, Hang Su, Siwen Wang, Chao Wei, Wei Tao, Mira L. Pöhlker, Christopher Pöhlker, Bruna A. Holanda, Ovid O. Krüger, Thorsten Hoffmann, Manfred Wendisch, Paulo Artaxo, Ulrich Pöschl, Meinrat O. Andreae, and Yafang Cheng
Atmos. Chem. Phys., 23, 251–272, https://doi.org/10.5194/acp-23-251-2023, https://doi.org/10.5194/acp-23-251-2023, 2023
Short summary
Short summary
The origins of the abundant cloud condensation nuclei (CCN) in the upper troposphere (UT) of the Amazon remain unclear. With model developments of new secondary organic aerosol schemes and constrained by observation, we show that strong aerosol nucleation and condensation in the UT is triggered by biogenic organics, and organic condensation is key for UT CCN production. This UT CCN-producing mechanism may prevail over broader vegetation canopies and deserves emphasis in aerosol–climate feedback.
Nilton Évora do Rosário, Elisa Thomé Sena, and Marcia Akemi Yamasoe
Atmos. Chem. Phys., 22, 15021–15033, https://doi.org/10.5194/acp-22-15021-2022, https://doi.org/10.5194/acp-22-15021-2022, 2022
Short summary
Short summary
The 2020 burning season in Brazil was marked by an atypically high number of fire spots across Pantanal, leading to high amounts of smoke within the biome. This study shows that smoke over Pantanal, usually a fraction of that over Amazonia, was higher and resulted mainly from fires in conservation and indigenous areas. It also contributes to highlighting Pantanal's 2020 burning season as the worst combination of a climate extreme scenario and inadequately enforced environmental regulations.
Micael Amore Cecchini, Marco de Bruine, Jordi Vilà-Guerau de Arellano, and Paulo Artaxo
Atmos. Chem. Phys., 22, 11867–11888, https://doi.org/10.5194/acp-22-11867-2022, https://doi.org/10.5194/acp-22-11867-2022, 2022
Short summary
Short summary
Shallow clouds (vertical extent up to 3 km height) are ubiquitous throughout the Amazon and are responsible for redistributing the solar heat and moisture vertically and horizontally. They are a key component of the water cycle because they can grow past the shallow phase to contribute significantly to the precipitation formation. However, they need favourable environmental conditions to grow. In this study, we analyse how changing wind patterns affect the development of such shallow clouds.
Carlos Alberti, Frank Hase, Matthias Frey, Darko Dubravica, Thomas Blumenstock, Angelika Dehn, Paolo Castracane, Gregor Surawicz, Roland Harig, Bianca C. Baier, Caroline Bès, Jianrong Bi, Hartmut Boesch, André Butz, Zhaonan Cai, Jia Chen, Sean M. Crowell, Nicholas M. Deutscher, Dragos Ene, Jonathan E. Franklin, Omaira García, David Griffith, Bruno Grouiez, Michel Grutter, Abdelhamid Hamdouni, Sander Houweling, Neil Humpage, Nicole Jacobs, Sujong Jeong, Lilian Joly, Nicholas B. Jones, Denis Jouglet, Rigel Kivi, Ralph Kleinschek, Morgan Lopez, Diogo J. Medeiros, Isamu Morino, Nasrin Mostafavipak, Astrid Müller, Hirofumi Ohyama, Paul I. Palmer, Mahesh Pathakoti, David F. Pollard, Uwe Raffalski, Michel Ramonet, Robbie Ramsay, Mahesh Kumar Sha, Kei Shiomi, William Simpson, Wolfgang Stremme, Youwen Sun, Hiroshi Tanimoto, Yao Té, Gizaw Mengistu Tsidu, Voltaire A. Velazco, Felix Vogel, Masataka Watanabe, Chong Wei, Debra Wunch, Marcia Yamasoe, Lu Zhang, and Johannes Orphal
Atmos. Meas. Tech., 15, 2433–2463, https://doi.org/10.5194/amt-15-2433-2022, https://doi.org/10.5194/amt-15-2433-2022, 2022
Short summary
Short summary
Space-borne greenhouse gas missions require ground-based validation networks capable of providing fiducial reference measurements. Here, considerable refinements of the calibration procedures for the COllaborative Carbon Column Observing Network (COCCON) are presented. Laboratory and solar side-by-side procedures for the characterization of the spectrometers have been refined and extended. Revised calibration factors for XCO2, XCO and XCH4 are provided, incorporating 47 new spectrometers.
Marco A. Franco, Florian Ditas, Leslie A. Kremper, Luiz A. T. Machado, Meinrat O. Andreae, Alessandro Araújo, Henrique M. J. Barbosa, Joel F. de Brito, Samara Carbone, Bruna A. Holanda, Fernando G. Morais, Janaína P. Nascimento, Mira L. Pöhlker, Luciana V. Rizzo, Marta Sá, Jorge Saturno, David Walter, Stefan Wolff, Ulrich Pöschl, Paulo Artaxo, and Christopher Pöhlker
Atmos. Chem. Phys., 22, 3469–3492, https://doi.org/10.5194/acp-22-3469-2022, https://doi.org/10.5194/acp-22-3469-2022, 2022
Short summary
Short summary
In Central Amazonia, new particle formation in the planetary boundary layer is rare. Instead, there is the appearance of sub-50 nm aerosols with diameters larger than about 20 nm that eventually grow to cloud condensation nuclei size range. Here, 254 growth events were characterized which have higher predominance in the wet season. About 70 % of them showed direct relation to convective downdrafts, while 30 % occurred partly under clear-sky conditions, evidencing still unknown particle sources.
Luiz A. T. Machado, Marco A. Franco, Leslie A. Kremper, Florian Ditas, Meinrat O. Andreae, Paulo Artaxo, Micael A. Cecchini, Bruna A. Holanda, Mira L. Pöhlker, Ivan Saraiva, Stefan Wolff, Ulrich Pöschl, and Christopher Pöhlker
Atmos. Chem. Phys., 21, 18065–18086, https://doi.org/10.5194/acp-21-18065-2021, https://doi.org/10.5194/acp-21-18065-2021, 2021
Short summary
Short summary
Several studies evaluate aerosol–cloud interactions, but only a few attempted to describe how clouds modify aerosol properties. This study evaluates the effect of weather events on the particle size distribution at the ATTO, combining remote sensing and in situ data. Ultrafine, Aitken and accumulation particles modes have different behaviors for the diurnal cycle and for rainfall events. This study opens up new scientific questions that need to be pursued in detail in new field campaigns.
Diego Aliaga, Victoria A. Sinclair, Marcos Andrade, Paulo Artaxo, Samara Carbone, Evgeny Kadantsev, Paolo Laj, Alfred Wiedensohler, Radovan Krejci, and Federico Bianchi
Atmos. Chem. Phys., 21, 16453–16477, https://doi.org/10.5194/acp-21-16453-2021, https://doi.org/10.5194/acp-21-16453-2021, 2021
Short summary
Short summary
We investigate the origin of air masses sampled at Mount Chacaltaya, Bolivia. Three-quarters of the measured air has not been influenced by the surface in the previous 4 d. However, it is rare that, at any given time, the sampled air has not been influenced at all by the surface, and often the sampled air has multiple origins. The influence of the surface is more prevalent during day than night. Furthermore, during the 6-month study, one-third of the air masses originated from Amazonia.
Maria Prass, Meinrat O. Andreae, Alessandro C. de Araùjo, Paulo Artaxo, Florian Ditas, Wolfgang Elbert, Jan-David Förster, Marco Aurélio Franco, Isabella Hrabe de Angelis, Jürgen Kesselmeier, Thomas Klimach, Leslie Ann Kremper, Eckhard Thines, David Walter, Jens Weber, Bettina Weber, Bernhard M. Fuchs, Ulrich Pöschl, and Christopher Pöhlker
Biogeosciences, 18, 4873–4887, https://doi.org/10.5194/bg-18-4873-2021, https://doi.org/10.5194/bg-18-4873-2021, 2021
Short summary
Short summary
Bioaerosols in the atmosphere over the Amazon rain forest were analyzed by molecular biological staining and microscopy. Eukaryotic, bacterial, and archaeal aerosols were quantified in time series and altitude profiles which exhibited clear differences in number concentrations and vertical distributions. Our results provide insights into the sources and dispersion of different Amazonian bioaerosol types as a basis for a better understanding of biosphere–atmosphere interactions.
James Weber, Scott Archer-Nicholls, Nathan Luke Abraham, Youngsub M. Shin, Thomas J. Bannan, Carl J. Percival, Asan Bacak, Paulo Artaxo, Michael Jenkin, M. Anwar H. Khan, Dudley E. Shallcross, Rebecca H. Schwantes, Jonathan Williams, and Alex T. Archibald
Geosci. Model Dev., 14, 5239–5268, https://doi.org/10.5194/gmd-14-5239-2021, https://doi.org/10.5194/gmd-14-5239-2021, 2021
Short summary
Short summary
The new mechanism CRI-Strat 2 features state-of-the-art isoprene chemistry not previously available in UKCA and improves UKCA's ability to reproduce observed concentrations of isoprene, monoterpenes, and OH in tropical regions. The enhanced ability to model isoprene, the most widely emitted non-methane volatile organic compound (VOC), will allow understanding of how isoprene and other biogenic VOCs affect atmospheric composition and, through biosphere–atmosphere feedbacks, climate change.
Djacinto Monteiro dos Santos, Luciana Varanda Rizzo, Samara Carbone, Patrick Schlag, and Paulo Artaxo
Atmos. Chem. Phys., 21, 8761–8773, https://doi.org/10.5194/acp-21-8761-2021, https://doi.org/10.5194/acp-21-8761-2021, 2021
Short summary
Short summary
The metropolitan area of São Paulo (MASP), with very extensive biofuel use, has unique atmospheric chemistry among world megacities. In this study, we examine the complex relationships between aerosol chemical composition and particle size distribution. Our findings provide a better understanding of the dynamics of the physicochemical properties of submicron particles and highlight the key role of secondary organic aerosol formation in the pollution levels in São Paulo.
Mario Eduardo Gavidia-Calderón, Sergio Ibarra-Espinosa, Youngseob Kim, Yang Zhang, and Maria de Fatima Andrade
Geosci. Model Dev., 14, 3251–3268, https://doi.org/10.5194/gmd-14-3251-2021, https://doi.org/10.5194/gmd-14-3251-2021, 2021
Short summary
Short summary
The MUNICH model was used to calculate pollutant concentrations inside the streets of São Paulo. The VEIN emission model provided the vehicular emissions and the coordinates of the streets. We used information from an air quality station to account for pollutant concentrations over the street rooftops. Results showed that when emissions are calibrated, MUNICH satisfied the performance criteria. MUNICH can be used to evaluate the impact of traffic-related air pollution on public health.
Robbie Ramsay, Chiara F. Di Marco, Mathew R. Heal, Matthias Sörgel, Paulo Artaxo, Meinrat O. Andreae, and Eiko Nemitz
Biogeosciences, 18, 2809–2825, https://doi.org/10.5194/bg-18-2809-2021, https://doi.org/10.5194/bg-18-2809-2021, 2021
Short summary
Short summary
The exchange of the gas ammonia between the atmosphere and the surface is an important biogeochemical process, but little is known of this exchange for certain ecosystems, such as the Amazon rainforest. This study took measurements of ammonia exchange over an Amazon rainforest site and subsequently modelled the observed deposition and emission patterns. We observed emissions of ammonia from the rainforest, which can be simulated accurately by using a canopy resistance modelling approach.
Janaína P. Nascimento, Megan M. Bela, Bruno B. Meller, Alessandro L. Banducci, Luciana V. Rizzo, Angel Liduvino Vara-Vela, Henrique M. J. Barbosa, Helber Gomes, Sameh A. A. Rafee, Marco A. Franco, Samara Carbone, Glauber G. Cirino, Rodrigo A. F. Souza, Stuart A. McKeen, and Paulo Artaxo
Atmos. Chem. Phys., 21, 6755–6779, https://doi.org/10.5194/acp-21-6755-2021, https://doi.org/10.5194/acp-21-6755-2021, 2021
Marcia Akemi Yamasoe, Nilton Manuel Évora Rosário, Samantha Novaes Santos Martins Almeida, and Martin Wild
Atmos. Chem. Phys., 21, 6593–6603, https://doi.org/10.5194/acp-21-6593-2021, https://doi.org/10.5194/acp-21-6593-2021, 2021
Short summary
Short summary
Spatio-temporal disparity to assess global dimming and brightening phenomena has been a critical topic. For instance, few studies addressed surface solar irradiation (SSR) long-term trend in South America. In this study, SSR, sunshine duration (SD) and the diurnal temperature range (DTR) are analysed for São Paulo, Brazil. We found a dimming phase, identified by SSR, SD and DTR, extending till 1983. Then, while SSR is still declining, consistent with cloud increasing, SD and DTR are increasing.
Guilherme F. Camarinha-Neto, Julia C. P. Cohen, Cléo Q. Dias-Júnior, Matthias Sörgel, José Henrique Cattanio, Alessandro Araújo, Stefan Wolff, Paulo A. F. Kuhn, Rodrigo A. F. Souza, Luciana V. Rizzo, and Paulo Artaxo
Atmos. Chem. Phys., 21, 339–356, https://doi.org/10.5194/acp-21-339-2021, https://doi.org/10.5194/acp-21-339-2021, 2021
Short summary
Short summary
It was observed that friagem phenomena (incursion of cold waves from the high latitudes of the Southern Hemisphere to the Amazon region), very common in the dry season of the Amazon region, produced significant changes in microclimate and atmospheric chemistry. Moreover, the effects of the friagem change the surface O3 and CO2 mixing ratios and therefore interfere deeply in the microclimatic conditions and the chemical composition of the atmosphere above the rainforest.
Jann Schrod, Erik S. Thomson, Daniel Weber, Jens Kossmann, Christopher Pöhlker, Jorge Saturno, Florian Ditas, Paulo Artaxo, Valérie Clouard, Jean-Marie Saurel, Martin Ebert, Joachim Curtius, and Heinz G. Bingemer
Atmos. Chem. Phys., 20, 15983–16006, https://doi.org/10.5194/acp-20-15983-2020, https://doi.org/10.5194/acp-20-15983-2020, 2020
Short summary
Short summary
Long-term ice-nucleating particle (INP) data are presented from four semi-pristine sites located in the Amazon, the Caribbean, Germany and the Arctic. Average INP concentrations did not differ by orders of magnitude between the sites. For all sites short-term variability dominated the time series, which lacked clear trends and seasonalities. Common drivers to explain the INP levels and their variations could not be identified, illustrating the complex nature of heterogeneous ice nucleation.
Robbie Ramsay, Chiara F. Di Marco, Matthias Sörgel, Mathew R. Heal, Samara Carbone, Paulo Artaxo, Alessandro C. de Araùjo, Marta Sá, Christopher Pöhlker, Jost Lavric, Meinrat O. Andreae, and Eiko Nemitz
Atmos. Chem. Phys., 20, 15551–15584, https://doi.org/10.5194/acp-20-15551-2020, https://doi.org/10.5194/acp-20-15551-2020, 2020
Short summary
Short summary
The Amazon rainforest is a unique
laboratoryto study the processes which govern the exchange of gases and aerosols to and from the atmosphere. This study investigated these processes by measuring the atmospheric concentrations of trace gases and particles at the Amazon Tall Tower Observatory. We found that the long-range transport of pollutants can affect the atmospheric composition above the Amazon rainforest and that the gases ammonia and nitrous acid can be emitted from the rainforest.
Lixia Liu, Yafang Cheng, Siwen Wang, Chao Wei, Mira L. Pöhlker, Christopher Pöhlker, Paulo Artaxo, Manish Shrivastava, Meinrat O. Andreae, Ulrich Pöschl, and Hang Su
Atmos. Chem. Phys., 20, 13283–13301, https://doi.org/10.5194/acp-20-13283-2020, https://doi.org/10.5194/acp-20-13283-2020, 2020
Short summary
Short summary
This modeling paper reveals how aerosol–cloud interactions (ACIs) and aerosol–radiation interactions (ARIs) induced by biomass burning (BB) aerosols act oppositely on radiation, cloud, and precipitation in the Amazon during the dry season. The varying relative significance of ACIs and ARIs with BB aerosol concentration leads to a nonlinear dependence of the total climate response on BB aerosol loading and features the growing importance of ARIs at high aerosol loading.
Kouji Adachi, Naga Oshima, Zhaoheng Gong, Suzane de Sá, Adam P. Bateman, Scot T. Martin, Joel F. de Brito, Paulo Artaxo, Glauber G. Cirino, Arthur J. Sedlacek III, and Peter R. Buseck
Atmos. Chem. Phys., 20, 11923–11939, https://doi.org/10.5194/acp-20-11923-2020, https://doi.org/10.5194/acp-20-11923-2020, 2020
Short summary
Short summary
Occurrences, size distributions, and number fractions of individual aerosol particles from the Amazon basin during the GoAmazon2014/5 campaign were analyzed using transmission electron microscopy. Aerosol particles from natural sources (e.g., mineral dust, primary biological aerosols, and sea salts) during the wet season originated from the Amazon forest and long-range transports (the Saharan desert and the Atlantic Ocean). They commonly mix at an individual particle scale during transport.
Cited articles
Abram, N. J., Henley, B. J., Sen Gupta, A., Lippmann, T. J. R., Clarke, H., Dowdy, A. J., Sharples, J. J., Nolan, R. H., Zhang, T., Wooster, M. J., Wurtzel, J. B., Meissner, K. J., Pitman, A. J., Ukkola, A. M., Murphy, B. P., Tapper, N. J., and Boer, M. M.: Connections of climate change and variability to large and extreme forest fires in southeast Australia, Commun. Earth Environ., 2, 1–17, https://doi.org/10.1038/s43247-020-00065-8, 2021.
Akyüz, M. and Cabuk, H.: Gas-particle partitioning and seasonal variation of polycyclic aromatic hydrocarbons in the atmosphere of Zonguldak, Turkey, Sci. Total Environ., 408, 5550–5558, https://doi.org/10.1016/j.scitotenv.2010.07.063, 2010.
Allen, A. G., Cardoso, A. A., Wiatr, A. G., Machado, C. M. D., Paterlini, W. C., and Baker, J.: Influence of intensive agriculture on dry deposition of aerosol nutrients, J. Braz. Chem. Soc., 21, 1, https://doi.org/10.1590/S0103-50532010000100014, 2010.
Almeida, S. M., Pio, C. A., Freitas, M. C., Reis, M. A., and Trancoso, M. A.: Approaching PM2.5 and PM2.5–10 source apportionment by mass balance analysis, principal component analysis and particle size distribution, Sci. Total Environ., 368, 663–674, https://doi.org/10.1016/j.scitotenv.2006.03.031, 2006.
Alves, C., Rienda, I. C., Vicente, A., Vicente, E., Gonçalves, C., Candeias, C., Rocha, F., Lucarelli, F., Pazzi, G., Kováts, N., Hubai, K., Pio, C., and Tchepel, O.: Morphological properties, chemical composition, cancer risks and toxicological potential of airborne particles from traffic and urban background sites, Atmos. Res., 264, 105837, https://doi.org/10.1016/j.atmosres.2021.105837, 2021.
Alves, C. A., Evtyugina, M., Vicente, A. M. P., Vicente, E. D., Nunes, T. V., Silva, P. M. A., Duarte, M. A. C., Pio, C. A., Amato, F., and Querol, X.: Chemical profiling of PM10 from urban road dust, Sci. Total Environ., 634, 41–51, https://doi.org/10.1016/j.scitotenv.2018.03.338, 2018.
Alves, C. A., Vicente, A. M. P., Calvo, A. I., Baumgardner, D., Amato, F., Querol, X., Pio, C., and Gustafsson, M.: Physical and chemical properties of non-exhaust particles generated from wear between pavements and tyres, Atmos. Environ., 224, 117252, https://doi.org/10.1016/j.atmosenv.2019.117252, 2020.
Amarillo, A. C. and Carreras, H.: Quantifying the influence of meteorological variables on particle-bound PAHs in urban environments, Atmos. Pollut. Res., 7, 597–602, https://doi.org/10.1016/j.apr.2016.02.006, 2016.
Amato, F., Alastuey, A., Karanasiou, A., Lucarelli, F., Nava, S., Calzolai, G., Severi, M., Becagli, S., Gianelle, V. L., Colombi, C., Alves, C., Custódio, D., Nunes, T., Cerqueira, M., Pio, C., Eleftheriadis, K., Diapouli, E., Reche, C., Minguillón, M. C., Manousakas, M.-I., Maggos, T., Vratolis, S., Harrison, R. M., and Querol, X.: AIRUSE-LIFE+: a harmonized PM speciation and source apportionment in five southern European cities, Atmos. Chem. Phys., 16, 3289–3309, https://doi.org/10.5194/acp-16-3289-2016, 2016.
Andrade, F., Orsini, C., and Maenhaut, W.: Relation between aerosol sources and meteorological parameters for inhalable atmospheric particles in Sao Paulo City, Brazil, Atmos. Environ., 28, 2307–2315, https://doi.org/10.1016/1352-2310(94)90484-7, 1994.
Andrade, M. F., de Miranda, R. M., Fornaro, A., Kerr, A., Oyama, B., de Andre, P. A., and Saldiva, P.: Vehicle emissions and PM2.5 mass concentrations in six Brazilian cities, Air Qual. Atmos. Health, 5, 79–88, https://doi.org/10.1007/s11869-010-0104-5, 2012.
Andrade, M. F., Kumar, P., de Freitas, E. D., Ynoue, R. Y., Martins, J., Martins, L. D., Nogueira, T., Perez-Martinez, P., de Miranda, R. M., Albuquerque, T., Gonçalves, F. L. T., Oyama, B., and Zhang, Y.: Air quality in the megacity of São Paulo: Evolution over the last 30 years and future perspectives, Atmos. Environ., 159, 66–82, https://doi.org/10.1016/j.atmosenv.2017.03.051, 2017.
Artaxo, P., Gerab, F., Yamasoe, M. A., and Martins, J. V.: Fine mode aerosol composition at three long-term atmospheric monitoring sites in the Amazon Basin, J. Geophys. Res., 99, 22857, https://doi.org/10.1029/94JD01023, 1994.
Aubin, S. and Farant, J. P.: Benzo[b]fluoranthene, a potential alternative to benzo[a]pyrene as an indicator of exposure to airborne PAHs in the vicinity of Söderberg aluminum smelters, J. Air Waste Manag. Assoc., 50, 2093–2101, https://doi.org/10.1080/10473289.2000.10464236, 2000.
Bhattarai, H., Saikawa, E., Wan, X., Zhu, H., Ram, K., Gao, S., Kang, S., Zhang, Q., Zhang, Y., Wu, G., Wang, X., Kawamura, K., Fu, P., and Cong, Z.: Levoglucosan as a tracer of biomass burning: Recent progress and perspectives, Atmos. Res., 220, 20–33, https://doi.org/10.1016/j.atmosres.2019.01.004, 2019.
Bian, Y. X., Zhao, C. S., Ma, N., Chen, J., and Xu, W. Y.: A study of aerosol liquid water content based on hygroscopicity measurements at high relative humidity in the North China Plain, Atmos. Chem. Phys., 14, 6417–6426, https://doi.org/10.5194/acp-14-6417-2014, 2014.
Bourotte, C., Forti, M. C., Melfi, A. J., and Lucas, Y.: Morphology and solutes content of atmospheric particles in an urban and a natural area of São Paulo state, Brazil, Water Air Soil Pollut., 170, 301–316, https://doi.org/10.1007/s11270-005-9001-1, 2006.
Bourotte, C. L. M., Sanchéz-Ccoyllo, O. R., Forti, M. C., and Melfi, A. J.: Chemical composition of atmospheric particulate matter soluble fraction and meteorological variables in São Paulo state, Brazil, Rev. Bras. Meteorol., 26, 419–432, https://doi.org/10.1590/S0102-77862011000300008, 2011.
Brito, J., Rizzo, L. V., Herckes, P., Vasconcellos, P. C., Caumo, S. E. S., Fornaro, A., Ynoue, R. Y., Artaxo, P., and Andrade, M. F.: Physical–chemical characterisation of the particulate matter inside two road tunnels in the São Paulo Metropolitan Area, Atmos. Chem. Phys., 13, 12199–12213, https://doi.org/10.5194/acp-13-12199-2013, 2013.
Brito, J., Carbone, S., A. Monteiro dos Santos, D., Dominutti, P., de Oliveira Alves, N., Rizzo, L. V., and Artaxo, P.: Disentangling vehicular emission impact on urban air pollution using ethanol as a tracer, Sci. Rep., 8, 10679, https://doi.org/10.1038/s41598-018-29138-7, 2018.
Buchholz, R. R., Park, M., Worden, H. M., Tang, W., Edwards, D. P., Gaubert, B., Deeter, M. N., Sullivan, T., Ru, M., Chin, M., Levy, R. C., Zheng, B., and Magzamen, S.: New seasonal pattern of pollution emerges from changing North American wildfires, Nat. Commun., 13, 2043, https://doi.org/10.1038/s41467-022-29623-8, 2022.
Calvo, A. I., Alves, C., Castro, A., Pont, V., Vicente, A. M., and Fraile, R.: Research on aerosol sources and chemical composition: Past, current and emerging issues, Atmos. Res., 120–121, 1–28, https://doi.org/10.1016/j.atmosres.2012.09.021, 2013.
Carbone, S., Saarikoski, S., Frey, A., Reyes, F., Reyes, P., Castillo, M., Gramsch, E., Oyola, P., Jayne, J., Worsnop, D. R., and Hillamo, R.: Chemical characterization of submicron aerosol particles in Santiago de Chile, Aerosol Air Qual. Res., 13, 462–473, https://doi.org/10.4209/aaqr.2012.10.0261, 2013.
Carslaw, D. C. and Ropkins, K.: openair – An R package for air quality data analysis, Environ. Model. Softw., 27–28, 52–61, https://doi.org/10.1016/j.envsoft.2011.09.008, 2012.
Carslaw, D., Davison, J., and Ropkins, K.: openair: Tools for the Analysis of Air Pollution Data, CRAN [code], https://cran.r-project.org/web/packages/openair/index.html (last access: 1 February 2024), 2024.
Carvalho, J. S., do Nascimento, R. K. S., Cintra, J. V. F. R. F., da Rosa, N. L. C., Grosseli, G. M., Fadini, P. S., and Urban, R. C.: Source apportionment and health impact assessment of atmospheric particulate matter in the city of São Carlos, Brazil, Chemosphere, 326, 138450, https://doi.org/10.1016/j.chemosphere.2023.138450, 2023.
Caseiro, A., Marr, I. L., Claeys, M., Kasper-Giebl, A., Puxbaum, H., and Pio, C.: Determination of saccharides in atmospheric aerosol using anion-exchange high-performance liquid chromatography and pulsed-amperometric detection, J. Chromatogr. A, 1171, 37–45, https://doi.org/10.1016/j.chroma.2007.09.038, 2007.
Caseiro, A., Bauer, H., Schmidl, C., Pio, C. A., and Puxbaum, H.: Wood burning impact on PM10 in three Austrian regions, Atmos. Environ., 43, 2186–2195, https://doi.org/10.1016/j.atmosenv.2009.01.012, 2009.
Castanho, A. D. A. and Artaxo, P.: Wintertime and summertime São Paulo aerosol source apportionment study, Atmos. Environ., 35, 4889–4902, https://doi.org/10.1016/S1352-2310(01)00357-0, 2001.
Caumo, S., Traub, A., Evans, G., and de Castro Vasconcellos, P.: Health risk assessment in atmosphere near a petrochemical industrial complex: Measuring oxidative potential and oxidative burden, Atmos. Pollut. Res., 13, 101457, https://doi.org/10.1016/j.apr.2022.101457, 2022.
Cavalli, F., Viana, M., Yttri, K. E., Genberg, J., and Putaud, J.-P.: Toward a standardised thermal-optical protocol for measuring atmospheric organic and elemental carbon: the EUSAAR protocol, Atmos. Meas. Tech., 3, 79–89, https://doi.org/10.5194/amt-3-79-2010, 2010.
Cecinato, A.: Polynuclear aromatic hydrocarbons (PAH), benz(a)pyrene (BaPY) and nitrated-PAH (NPAH) in suspended particulate matter, Ann. Chim., 87, 483–496, 1997.
CETESB: Companhia de Tecnologia do Saneamento Ambiental: Relatório de qualidade do ar no Estado de São Paulo 2014, Report of air quality in the São Paulo State 2014, São Paulo, Brazil, https://cetesb.sp.gov.br/ar/publicacoes-relatorios/ (last access: 1 February 2024), 2015.
CETESB: Companhia de Tecnologia do Saneamento Ambiental: Relatório de qualidade do ar no Estado de São Paulo 2019, Report of air quality in the São Paulo State 2019, São Paulo, Brazil, https://cetesb.sp.gov.br/ar/publicacoes-relatorios/ (last accesss: 1 February 2024), 2020.
CETESB: Proconve – Programa de Controle da Poluição do Ar por Veículos Automotores – Companhia Ambiental do Estado de São Paulo, https://cetesb.sp.gov.br/veicular/proconve/ (last access: 1 April 2022), 2022.
CETESB: Companhia de Tecnologia do Saneamento Ambiental: Relatório de qualidade do ar no Estado de São Paulo 2022, Report of air quality in the São Paulo State 2022, São Paulo, Brazil, https://cetesb.sp.gov.br/ar/publicacoes-relatorios/ (last access: 1 February 2024), 2023.
Cheong, Y., Kim, T., Ryu, J., Ryoo, I., Park, J., Jeon, K.-H., Yi, S.-M., and Hopke, P. K.: Source apportionment of PM2.5 using DN-PMF in three megacities in South Korea, Air Qual. Atmos. Health, 17, 2579–2599, https://doi.org/10.1007/s11869-024-01584-5, 2024.
Chow, W. S., Liao, K., Huang, X. H. H., Leung, K. F., Lau, A. K. H., and Yu, J. Z.: Measurement report: The 10-year trend of PM2.5 major components and source tracers from 2008 to 2017 in an urban site of Hong Kong, China, Atmos. Chem. Phys., 22, 11557–11577, https://doi.org/10.5194/acp-22-11557-2022, 2022.
Clemente, Á., Yubero, E., Nicolás, J. F., Crespo, J., and Galindo N.: Organic tracers in fine and coarse aerosols at an urban Mediterranean site: contribution of biomass burning and biogenic emissions, Environ. Sci. Pollut. Res., 31, 25216–25226, https://doi.org/10.1007/s11356-024-32789-x , 2024.
Cohen, A. J., Brauer, M., Burnett, R., Anderson, H. R., Frostad, J., Estep, K., Balakrishnan, K., Brunekreef, B., Dandona, L., Dandona, R., Feigin, V., Freedman, G., Hubbell, B., Jobling, A., Kan, H., Knibbs, L., Liu, Y., Martin, R., Morawska, L., Pope III, C. A., Shin, H., Straif, K., Shaddick, G., Thomas, M., van Dingenen, R., van Donkelaar, A., Vos, T., Murray, C. J. L., and Forouzanfar, M. H.: Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015, Lancet, 389, 1907–1918, https://doi.org/10.1016/S0140-6736(17)30505-6, 2017.
CONAMA: Conselho Nacional de Meio Ambiente – Resolução No. 491, 19 November 2018, http://www2.mma.gov.br/port/conama/legiabre.cfm?codlegi=740 (last access: 1 February 2024), 2018.
Contini, D., Cesari, D., Conte, M., and Donateo, A.: Application of PMF and CMB receptor models for the evaluation of the contribution of a large coal-fired power plant to PM10 concentrations, Sci. Total Environ., 560–561, 131–140, https://doi.org/10.1016/j.scitotenv.2016.04.031, 2016.
da Rocha, G. O., Vasconcellos, P. d. C., Ávila, S. G., Souza, D. Z., Reis, E. A. O., Oliveira, P. V., and Sanchez-Ccoyllo, O.: Seasonal distribution of airborne trace elements and water-soluble ions in São Paulo Megacity, Brazil, J. Braz. Chem. Soc., 23, 1915–1924, https://doi.org/10.1590/S0103-50532012005000062, 2012.
Dawidowski, L., Constantin, J. G., Murillo, J. H., Gómez-Marín, M., Nogueira, T., Jiménez, S. B., Díaz-Suárez, V., Victorica, F. B., Lichtig, P., Resquin, M. D., Vargas-Rojas, M., Murillo-Hernández, J., Correa, J. A. V., Andrade, M. F., dos Santos, D. M., Maldonado, J. F., Aldape, F., Abreu, L. F., and Manousakas, M. I.: Carbonaceous fraction in PM2.5 of six Latin American cities: Seasonal variations, sources and secondary organic carbon contribution, Sci. Total Environ, 948, 174630, https://doi.org/10.1016/j.scitotenv.2024.174630, 2024.
de Abrantes, R., Vicente de Assunção, J., Pesquero, C. R., Bruns, R. E., and Nóbrega, R. P.: Emission of polycyclic aromatic hydrocarbons from gasohol and ethanol vehicles, Atmos. Environ., 43, 648–654, https://doi.org/10.1016/j.atmosenv.2008.10.014, 2009.
Decesari, S., Fuzzi, S., Facchini, M. C., Mircea, M., Emblico, L., Cavalli, F., Maenhaut, W., Chi, X., Schkolnik, G., Falkovich, A., Rudich, Y., Claeys, M., Pashynska, V., Vas, G., Kourtchev, I., Vermeylen, R., Hoffer, A., Andreae, M. O., Tagliavini, E., Moretti, F., and Artaxo, P.: Characterization of the organic composition of aerosols from Rondônia, Brazil, during the LBA-SMOCC 2002 experiment and its representation through model compounds, Atmos. Chem. Phys., 6, 375–402, https://doi.org/10.5194/acp-6-375-2006, 2006.
De La Torre-Roche, R. J., Lee, W.-Y., and Campos-Díaz, S. I.: Soil-borne polycyclic aromatic hydrocarbons in El Paso, Texas: analysis of a potential problem in the United States/Mexico border region., J. Hazard. Mater., 163, 946–958, https://doi.org/10.1016/j.jhazmat.2008.07.089, 2009.
de Miranda, R. M., Lopes, F., do Rosário, N. É., Yamasoe, M. A., Landulfo, E., and Andrade, M. F.: The relationship between aerosol particles chemical composition and optical properties to identify the biomass burning contribution to fine particles concentration: a case study for São Paulo city, Brazil, Environ. Monit. Assess., 189, 6, https://doi.org/10.1007/s10661-016-5659-7, 2017.
de Oliveira Alves, N., Brito, J., Caumo, S., Arana, A., de Souza Hacon, S., Artaxo, P., Hillamo, R., Teinilä, K., Batistuzzo de Medeiros, S. R., and de Castro Vasconcellos, P.: Biomass burning in the Amazon region: Aerosol source apportionment and associated health risk assessment, Atmos. Environ., 120, 277–285, https://doi.org/10.1016/j.atmosenv.2015.08.059, 2015.
de Oliveira Alves, N., Pereira, G. M., Di Domenico, M., Costanzo, G., Benevenuto, S., de Oliveira Fonoff, A. M., de Souza Xavier Costa, N., Ribeiro Júnior, G., Satoru Kajitani, G., Cestari Moreno, N., Fotoran, W., Iannicelli Torres, J., de Andrade, J. B., Matera Veras, M., Artaxo, P., Menck, C. F. M., de Castro Vasconcellos, P., and Saldiva, P.: Inflammation response, oxidative stress and DNA damage caused by urban air pollution exposure increase in the lack of DNA repair XPC protein, Environ. Int., 145, 106150, https://doi.org/10.1016/j.envint.2020.106150, 2020.
dos Santos, L. H. M., Kerr, A. A. F. S., Veríssimo, T. G., Andrade, M. F., de Miranda, R. M., Fornaro, A., and Saldiva, P.: Analysis of atmospheric aerosol (PM2.5) in Recife city, Brazil, J. Air Waste Manag. Assoc., 64, 519–528, https://doi.org/10.1080/10962247.2013.854282, 2014.
Draxler, R. and Rolph, G.: HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory) model, NOAA Air Resour. Lab., Silver Spring, MD, https://www.ready.noaa.gov/HYSPLIT.php (last access: 1 December 2024), 2003.
Emygdio, A. P. M., Andrade, M. F., Gonçalves, F. L. T., Engling, G., Zanetti, R. H. S., and Kumar, P.: Biomarkers as indicators of fungal biomass in the atmosphere of São Paulo, Brazil, Sci. Total Environ., 612, 809–821, https://doi.org/10.1016/j.scitotenv.2017.08.153, 2018.
Faisal, M., Ali, U., Kumar, A., Hazarika, N., Singh, V., and Kumar, M.: Festive fireworks in Delhi: A major source of elemental aerosols established through dispersion normalized PMF in a multiyear study, Atmos. Environ., 323, 120394, https://doi.org/10.1016/j.atmosenv.2024.120394, 2024.
Ferrari, C. P., Hong, S., Van de Velde, K., Boutron, C. F., Rudniev, S. N., Bolshov, M., Chisholm, W., and Rosman, K. J. R.: Natural and anthropogenic bismuth in Central Greenland, Atmos. Environ., 34, 941–948, https://doi.org/10.1016/S1352-2310(99)00257-5, 2000.
Ferreira da Silva, M., Vicente de Assunção, J., de Fátima Andrade, M., and Pesquero, C. R.: Characterization of metal and trace element contents of particulate matter (PM10) emitted by vehicles running on Brazilian fuels-hydrated ethanol and gasoline with 22 % of anhydrous ethanol, J. Toxicol. Environ. Health A, 73, 901–909, https://doi.org/10.1080/15287391003744849, 2010.
Fine, P. M., Cass, G. R., and Simoneit, B. R.: Chemical characterization of fine particle emissions from fireplace combustion of woods grown in the northeastern United States, Environ. Sci. Technol., 35, 2665–2675, https://doi.org/10.1021/es001466k, 2001.
Fountoukis, C. and Nenes, A.: ISORROPIA II: a computationally efficient thermodynamic equilibrium model for K+–Ca2+–Mg2+– –Na+– – –Cl−–H2O aerosols, Atmos. Chem. Phys., 7, 4639–4659, https://doi.org/10.5194/acp-7-4639-2007, 2007.
Galvão, E. S., Reis, N. C., Lima, A. T., Stuetz, R. M., Orlando, M. T. A., and Santos, J. M.: Use of inorganic and organic markers associated with their directionality for the apportionment of highly correlated sources of particulate matter, Sci. Total Environ., 651, 1332–1343, https://doi.org/10.1016/j.scitotenv.2018.09.263, 2019.
Gioia, S. M. C. L., Babinski, M., Weiss, D. J., Spiro, B., Kerr, A. A. F. S., Veríssimo, T. G., Ruiz, I., and Prates, J. C. M.: An isotopic study of atmospheric lead in a megacity after phasing out of leaded gasoline, Atmos. Environ., 149, 70–83, https://doi.org/10.1016/j.atmosenv.2016.10.049, 2017.
Gómez Peláez, L. M., Santos, J. M., de Almeida Albuquerque, T. T., Reis, N. C., Andreão, W. L., and de Fátima Andrade, M.: Air quality status and trends over large cities in South America, Environ. Sci. Policy, 114, 422–435, https://doi.org/10.1016/j.envsci.2020.09.009, 2020.
Gonçalves, C., Alves, C., Fernandes, A. P., Monteiro, C., Tarelho, L., Evtyugina, M., and Pio, C.: Organic compounds in PM2.5 emitted from fireplace and woodstove combustion of typical Portuguese wood species, Atmos. Environ., 45, 4533–4545, https://doi.org/10.1016/j.atmosenv.2011.05.071, 2011.
Gonçalves, C., Rienda, I.C., Pina, N., Gama, C., Nunes, T., Tchepel, O., and Alves, C.: PM10-Bound Sugars: Chemical Composition, Sources and Seasonal Variations, Atmosphere, 12, 194, https://doi.org/10.3390/atmos12020194, 2021.
Goss, M., Swain, D. L., Abatzoglou, J. T., Sarhadi, A., Kolden, C. A., Williams, A. P., and Diffenbaugh, N. S.: Climate change is increasing the likelihood of extreme autumn wildfire conditions across California, Environ. Res. Lett., 15, 094016, https://doi.org/10.1088/1748-9326/ab83a7, 2020.
Graham, B.: Water-soluble organic compounds in biomass burning aerosols over Amazonia 1. Characterization by NMR and GC-MS, J. Geophys. Res., 107, 8047, https://doi.org/10.1029/2001JD000336, 2002.
Guo, S., Hu, M., Wang, Z. B., Slanina, J., and Zhao, Y. L.: Size-resolved aerosol water-soluble ionic compositions in the summer of Beijing: implication of regional secondary formation, Atmos. Chem. Phys., 10, 947–959, https://doi.org/10.5194/acp-10-947-2010, 2010.
Hall, D., Wu, C.-Y., Hsu, Y.-M., Stormer, J., Engling, G., Capeto, K., Wang, J., Brown, S., Li, H.-W., and Yu, K.-M.: PAHs, carbonyls, VOCs and PM2.5 emission factors for pre-harvest burning of Florida sugarcane, Atmos. Environ., 55, 164–172, https://doi.org/10.1016/j.atmosenv.2012.03.034, 2012.
Han, Y.-S, Eun, D.-M., Lee, G., Gong, S. Y., Youn, J.-S., Enhancement of PM2.5 source appointment in a large industrial city of Korea by applying the elemental carbon tracer method for positive matrix factorization (PMF) model, Atmos. Pollut. Res., 14, 101910, https://doi.org/10.1016/j.apr.2023.101910, 2023.
Hetem, I. G. and Andrade, M. F.: Characterization of fine particulate matter emitted from the resuspension of road and pavement dust in the Metropolitan Area of São Paulo, Brazil, Atmosphere, 7, 31, https://doi.org/10.3390/atmos7030031, 2016.
Huang, X., Liu, Z., Zhang, J., Wen, T., Ji, D., and Wang, Y.: Seasonal variation and secondary formation of size-segregated aerosol water-soluble inorganic ions during pollution episodes in Beijing, Atmos. Res., 168, 70–79, https://doi.org/10.1016/j.atmosres.2015.08.021, 2016.
Ianniello, A., Spataro, F., Esposito, G., Allegrini, I., Hu, M., and Zhu, T.: Chemical characteristics of inorganic ammonium salts in PM2.5 in the atmosphere of Beijing (China), Atmos. Chem. Phys., 11, 10803–10822, https://doi.org/10.5194/acp-11-10803-2011, 2011.
INPE: Portal do Monitoramento de Queimadas, INPE (Instituto Nacional de Pesquisas Espaciais), https://terrabrasilis.dpi.inpe.br/queimadas/bdqueimadas/ (last access: 1 February 2024), 2019.
Jang, H.-N., Seo, Y.-C., Lee, J.-H., Hwang, K.-W., Yoo, J.-I., Sok, C.-H., and Kim, S.-H.: Formation of fine particles enriched by V and Ni from heavy oil combustion: Anthropogenic sources and drop-tube furnace experiments, Atmos. Environ., 41, 1053–1063, https://doi.org/10.1016/j.atmosenv.2006.09.011, 2007.
Johnson, G. R., Juwono, A. M., Friend, A. J., Cheung, H.-C., Stelcer, E., Cohen, D., Ayoko, G. A., and Morawska, L.: Relating urban airborne particle concentrations to shipping using carbon based elemental emission ratios, Atmos. Environ., 95, 525–536, https://doi.org/10.1016/j.atmosenv.2014.07.003, 2014.
Jung, J., Lee, S., Kim, H., Kim, D., Lee, H., and Oh, S.: Quantitative determination of the biomass-burning contribution to atmospheric carbonaceous aerosols in Daejeon, Korea, during the rice-harvest period, Atmos. Environ., 89, 642–650, https://doi.org/10.1016/j.atmosenv.2014.03.010, 2014.
Justo, E. P. S., Quijano, M. F. C., Beringui, K., Ventura, L. B., Pereira, G. M., Vasconcellos, P. C., and Gioda, A.: Assessment of the impact of the bus fleet and transportation infrastructure works on the air quality in Rio de Janeiro (Olympic Games 2016). Air Qual. Atmos. Health., 16, 289–309, https://doi.org/10.1007/s11869-022-01275-z, 2023.
Keyte, I. J., Harrison, R. M., and Lammel, G.: Chemical reactivity and long-range transport potential of polycyclic aromatic hydrocarbons – a review, Chem. Soc. Rev., 42, 9333–9391, https://doi.org/10.1039/C3CS60147A, 2013.
Khan, Z. Y., Kettler, J., Khwaja, H. A., Naqvi, I. I., Malik, A., and Stone, E. A.: Organic aerosol characterization and source identification in Karachi, Pakistan, Aerosol Air Qual. Res., 18, 2550–2564, https://doi.org/10.4209/aaqr.2017.12.0579, 2018.
Knorr, W., Dentener, F., Lamarque, J.-F., Jiang, L., and Arneth, A.: Wildfire air pollution hazard during the 21st century, Atmos. Chem. Phys., 17, 9223–9236, https://doi.org/10.5194/acp-17-9223-2017, 2017.
Kováts, N., Hubai, K., Sainnokhoi, T.-A., Hoffer, A., and Teke, G.: Ecotoxicity testing of airborne particulate matter-comparison of sample preparation techniques for the Vibrio fischeri assay, Environ. Geochem. Health, 43, 4367–4378, https://doi.org/10.1007/s10653-021-00927-w, 2021.
Kulkarni, P., Chellam, S., and Fraser, M. P.: Lanthanum and lanthanides in atmospheric fine particles and their apportionment to refinery and petrochemical operations in Houston, TX, Atmos. Environ., 40, 508–520, https://doi.org/10.1016/j.atmosenv.2005.09.063, 2006.
Kumar, P., Morawska, L., Birmili, W., Paasonen, P., Hu, M., Kulmala, M., Harrison, R. M., Norford, L., and Britter, R.: Ultra fine particles in cities, Environ. Int., 66, 1–10, https://doi.org/10.1016/j.envint.2014.01.013, 2014.
Kumar, P., de Fatima Andrade, M., Ynoue, R. Y., Fornaro, A., de Freitas, E. D., Martins, J., Martins, L. D., Albuquerque, T., Zhang, Y., and Morawska, L.: New directions: From biofuels to wood stoves: The modern and ancient air quality challenges in the megacity of São Paulo, Atmos. Environ., 140, 364–369, https://doi.org/10.1016/j.atmosenv.2016.05.059, 2016.
Kumar, S., Aggarwal, S. G., Gupta, P. K., and Kawamura, K.: Investigation of the tracers for plastic-enriched waste burning aerosols, Atmos. Environ., 108, 49–58, https://doi.org/10.1016/j.atmosenv.2015.02.066, 2015.
La Colla, N. S., Botté, S. E., and Marcovecchio, J. E.: Atmospheric particulate pollution in South American megacities, Environ. Rev. 29, 3, https://doi.org/10.1139/er-2020-0105, 2021.
Lang, Y.-H., Li, G., Wang, X.-M., and Peng, P.: Combination of Unmix and PMF receptor model to apportion the potential sources and contributions of PAHs in wetland soils from Jiaozhou Bay, China, Mar. Pollut. Bull., 90, 129–134, https://doi.org/10.1016/j.marpolbul.2014.11.009, 2015.
Lee, J. D.: Concise Inorganic Chemistry, 5th edn., Willey, 1070 pp., ISBN 978-0-632-05293-6, 1999.
Lima, F. D. M.: Quantificação e caracterização físico-química do material particulado fino (MP2,5): queima de biomassa em fornos de pizzaria na cidade de São Paulo, Master thesis, University of São Paulo, https://doi.org/10.11606/D.100.2015.tde-01092015-141346, 2015.
Linak, W. P., Miller, C. A., Wood, J. P., Shinagawa, T., Yoo, J.-I., Santoianni, D. A., King, C. J., Wendt, J. O. L., and Seo, Y.-C.: High temperature interactions between residual oil ash and dispersed kaolinite powders, Aerosol Sci. Tech., 38, 900–913, https://doi.org/10.1080/027868290500805, 2004.
Li, J., Carlson, B. E., Yung, Y. L., Lv, D., Hansen, J., Penner, J. E., Liao, H., Ramaswamy, V., Kahn, R. A., Zhang, P., Dubovik, O., Ding, A., Lacis, A. A., Zhang, L., and Dong, Y.: Scattering and absorbing aerosols in the climate system, Nat. Rev. Earth Environ., 3, 363–379, https://doi.org/10.1038/s43017-022-00296-7, 2022.
Li, Q.-F., Wang-Li, L., Shah, S. B., Jayanty, R. K. M., and Bloomfield, P.: Ammonia concentrations and modeling of inorganic particulate matter in the vicinity of an egg production facility in Southeastern USA, Environ. Sci. Pollut. Res. Int., 21, 4675–4685, https://doi.org/10.1007/s11356-013-2417-z, 2014.
Li, W., Ge, P., Chen, M., Tang, J., Cao, M., Cui, Y., Hu, K., and Nie, D.: Tracers from Biomass Burning Emissions and Identification of Biomass Burning, Atmosphere, 12, 1401, https://doi.org/10.3390/atmos12111401, 2021.
Marynowski, L. and Simoneit, B. R. T.: Saccharides in atmospheric particulate and sedimentary organic matter: status overview and future perspectives, Chemosphere, 288, 132376, https://doi.org/10.1016/j.chemosphere.2021.132376, 2022.
Massimi, L., Simonetti, G., Buiarelli, F., Di Filippo, P., Pomata, D., Riccardi, C., Ristorini, M., Astolfi, M. L., and Canepari, S.: Spatial distribution of levoglucosan and alternative biomass burning tracers in atmospheric aerosols, in an urban and industrial hot-spot of Central Italy, Atmos. Res., 239, 104904, https://doi.org/10.1016/j.atmosres.2020.104904, 2020.
Mehdi, Y., Hornick, J.-L., Istasse, L., and Dufrasne, I.: Selenium in the environment, metabolism and involvement in body functions, Molecules, 18, 3292–3311, https://doi.org/10.3390/molecules18033292, 2013.
Menares, C., Gallardo, L., Kanakidou, M., Seguel, R., and Huneeus, N.: Increasing trends (2001–2018) in photochemical activity and secondary aerosols in Santiago, Chile, Tellus B, 72, 1–18, https://doi.org/10.1080/16000889.2020.1821512, 2020.
Meng, J., Li, Z., Zhou, R., Chen, M., Li, Y., Yi, Y., Ding, Z., Li, H., Yan, L., Hou, Z., and Wang, G.: Enhanced photochemical formation of secondary organic aerosols during the COVID-19 lockdown in Northern China, Sci. Total Environ., 758, 143709, https://doi.org/10.1016/j.scitotenv.2020.143709, 2021.
MME (Ministério de Minas e Energia): Natural Gas and Biofuels – Brazilian Statistical Yearbook of Petroleum, Natural Gas and Biofuels, Ministry of Mines and Energy – Brazil, National Agency of Petroleum, 2023, https://www.gov.br/anp/pt-br/centrais-de-conteudo/publicacoes/anuario-estatistico/arquivos-anuario-estatistico-2023/anuario-2023.pdf/view (last access: 15 January 2024), 2023.
MME (Ministério de Minas e Energia): Natural Gas and Biofuels – RESOLUÇÃO ANP No. 968, DE 30 DE ABRIL DE 2024 (ANP RESOLUTION No. 968, OF APRIL 30, 2024, Ministry of Mines and Energy – Brazil, National Agency of Petroleum, https://www.in.gov.br/en/web/dou/-/resolucao-anp-n-968-de-30-de-abril-de-2024-557405632 (last access: 1 July 2024), 2024.
Monteiro dos Santos, D. A., Brito, J. F., Godoy, J. M., and Artaxo, P.: Ambient concentrations and insights on organic and elemental carbon dynamics in São Paulo, Brazil, Atmos. Environ., 144, 226–233, https://doi.org/10.1016/j.atmosenv.2016.08.081, 2016.
Monteiro dos Santos, D., Rizzo, L. V., Carbone, S., Schlag, P., and Artaxo, P.: Physical and chemical properties of urban aerosols in São Paulo, Brazil: links between composition and size distribution of submicron particles, Atmos. Chem. Phys., 21, 8761–8773, https://doi.org/10.5194/acp-21-8761-2021, 2021.
Nava, S., Calzolai, G., Chiari, M., Giannoni, M., Giardi, F., Becagli, S., Severi, M., Traversi, R., Lucarelli, F.: Source Apportionment of PM2.5 in Florence (Italy) by PMF Analysis of Aerosol Composition Records, Atmosphere, 11, 484, https://doi.org/10.3390/atmos11050484, 2020.
Norris, G., Duvall, R., Brown, S., and Bai, S.: EPA Positive Matrix Factorization (PMF) 5.0 Fundamentals and User Guide, U.S. Environmental Protection Agency, Office of Research and Development Washington, DC, USA, https://www.epa.gov/sites/default/files/2015-02/documents/pmf_5.0_user_guide.pdf (last access: 1 February 2024), 2014.
Oduber, F., Calvo, A. I., Castro, A., Alves, C., Blanco-Alegre, C., Fernández-González, D., Barata, J., Calzolai, G., Nava, S., Lucarelli, F., Nunes, T., Rodríguez, A., Vega-Maray, A. M., Valencia-Barrera, R. M., and Fraile, R.: One-year study of airborne sugar compounds: Cross-interpretation with other chemical species and meteorological conditions, Atmos. Res., 251, 105417, https://doi.org/10.1016/j.atmosres.2020.105417, 2021.
Paatero, P. and Hopke, P. K.: Discarding or downweighting high-noise variables in factor analytic models, Anal. Chim. Acta, 490, 277–289, https://doi.org/10.1016/S0003-2670(02)01643-4, 2003.
Paatero, P. and Tapper, U.: Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values, Environmetrics, 5, 111–126, https://doi.org/10.1002/env.3170050203, 1994.
Pacheco, M. T., Parmigiani, M. M. M., de Fatima Andrade, M., Morawska, L., and Kumar, P.: A review of emissions and concentrations of particulate matter in the three major metropolitan areas of Brazil, J. Transp. Health, 4, 53–72, https://doi.org/10.1016/j.jth.2017.01.008, 2017.
Parra, Y. J., Pereira, G. M., Custódio, D., de Figueiredo, S. B., Alves C., and Vasconcellos P. C.: Aerosol characterization in a Central-West site of Brazil: influence of farming activities and toxicity, Air Qual. Atmos. Health, 17, 599–620, https://doi.org/10.1007/s11869-023-01467-1, 2024.
Pereira, G. M., De Oliveira Alves, N., Caumo, S. E. S., Soares, S., Teinilä, K., Custódio, D., Hillamo, R., Alves, C., and Vasconcellos, P. C.: Chemical composition of aerosol in São Paulo, Brazil: influence of the transport of pollutants, Air Qual. Atmos. Health, 10, 457–468, https://doi.org/10.1007/s11869-016-0437-9, 2017a.
Pereira, G. M., Teinilä, K., Custódio, D., Gomes Santos, A., Xian, H., Hillamo, R., Alves, C. A., Bittencourt de Andrade, J., Olímpio da Rocha, G., Kumar, P., Balasubramanian, R., Andrade, M. D. F., and de Castro Vasconcellos, P.: Particulate pollutants in the Brazilian city of São Paulo: 1-year investigation for the chemical composition and source apportionment, Atmos. Chem. Phys., 17, 11943–11969, https://doi.org/10.5194/acp-17-11943-2017, 2017b.
Pereira, G. M., Oraggio, B., Teinilä, K., Custódio, D., Huang, X., Hillamo, R., Alves, C. A., Balasubramanian, R., Rojas, N. Y., Sanchez-Ccoyllo, O. R., and Vasconcellos, P. C.: A comparative chemical study of PM10 in three Latin American cities: Lima, Medellín, and São Paulo, Air Qual. Atmos. Health, 12, 1141–1152, https://doi.org/10.1007/s11869-019-00735-3, 2019.
Pereira, G. M., da Silva Caumo, S. E., Grandis, A., do Nascimento, E. Q. M., Correia, A. L., de Melo Jorge Barbosa, H., Marcondes, M. A., Buckeridge, M. S., and de Castro Vasconcellos, P.: Physical and chemical characterization of the 2019 “black rain” event in the Metropolitan Area of São Paulo, Brazil, Atmos. Environ., 248, 118229, https://doi.org/10.1016/j.atmosenv.2021.118229, 2021.
Pereira, G. M., Kamigauti, L. Y., Nogueira, T., Gavidia-Calderón, M. E., Monteiro Dos Santos, D., Evtyugina, M., Alves, C., Vasconcellos, P. d. C., Freitas, E. D., and Andrade, M. d. F.: Emission factors for a biofuel impacted fleet in South America's largest metropolitan area, Environ. Pollut., 331, 121826, https://doi.org/10.1016/j.envpol.2023.121826, 2023a.
Pereira, G. M., Nogueira, T., Kamigauti, L. Y., Monteiro Dos Santos, D., Nascimento, E. Q. M., Martins, J. V., Vicente, A., Artaxo, P., Alves, C., de Castro Vasconcellos, P., and de Fatima Andrade, M.: Particulate matter fingerprints in biofuel impacted tunnels in South America's largest metropolitan area, Sci. Total Environ., 856, 159006, https://doi.org/10.1016/j.scitotenv.2022.159006, 2023b.
Pereira, P. A. d. P., Lopes, W. A., Carvalho, L. S., da Rocha, G. O., Carvalho, N. De, Loyola, J., Quiterio, S. L., Escaleira, V., Arbilla, G., and de Andrade, J. B.: Atmospheric concentrations and dry deposition fluxes of particulate trace metals in Salvador, Bahia, Brazil, Atmos. Environ., 41, 7837–7850, https://doi.org/10.1016/j.atmosenv.2007.06.013, 2007.
Pio, C. A., Legrand, M., Oliveira, T., Afonso, J., Santos, C., Caseiro, A., Fialho, P., Barata, F., Puxbaum, H., Sanchez-Ochoa, A., Kasper-Giebl, A., Gelencsér, A., Preunkert, S., and Schock, M.: Climatology of aerosol composition (organic versus inorganic) at nonurban sites on a west-east transect across Europe, J. Geophys. Res., 112, D23S02, https://doi.org/10.1029/2006JD008038, 2007.
Pöschl, U.: Atmospheric aerosols: composition, transformation, climate and health effects, Angew. Chem. Int. Ed., 44, 7520–7540, https://doi.org/10.1002/anie.200501122, 2005.
Ravindra, K., Sokhi, R., and Vangrieken, R.: Atmospheric polycyclic aromatic hydrocarbons: Source attribution, emission factors and regulation, Atmos. Environ., 42, 2895–2921, https://doi.org/10.1016/j.atmosenv.2007.12.010, 2008.
Ribeiro, F. N. D., de Oliveira, A. P., Soares, J., de Miranda, R. M., Barlage, M., and Chen, F.: Effect of sea breeze propagation on the urban boundary layer of the metropolitan region of Sao Paulo, Brazil, Atmos. Res., 214, 174–188, https://doi.org/10.1016/j.atmosres.2018.07.015, 2018.
Sánchez-Ccoyllo, O. R. and Andrade, M. F.: The influence of meteorological conditions on the behavior of pollutants concentrations in São Paulo, Brazil, Environ. Pollut., 116, 257–263, https://doi.org/10.1016/s0269-7491(01)00129-4, 2002.
Santos, T. C. d., Reboita, M. S., and Carvalho, V. S. B.: Investigação da Relação entre Variáveis Atmosféricas e a Concentração de MP10 E O3 no Estado de São Paulo, Rev. Bras. Meteorol., 33, 631–645, https://doi.org/10.1590/0102-7786334006, 2018.
Satsangi, A., Mangal, A., Agarwal, A., Lakhani, A., and Kumari, K. M.: Variation of carbonaceous aerosols and water soluble inorganic ions during winter haze in two consecutive years, Atmos. Pollut. Res., 12, 242–251, https://doi.org/10.1016/j.apr.2020.12.011, 2021.
Scaramboni, C.: Impacto da queima de biomassa na concentração de compostos policíclicos aromáticos e na toxicidade in vitro do material particulado atmosférico de Ribeirão Preto-SP. Doctoral thesis , University of São Paulo, https://doi.org/10.11606/T.59.2023.tde-23012024-144513, 2023.
Scaramboni, C., Farias, C. N., Vasconcellos, P. C., Levi, M., Sadiktsis, I., Pozza, S. A., Umbuzeiro, G. A., Watanabe, T., Rodrigues, P. C. O., Grandis, A., Pagliuso, D., Buckeridge, M. S., Campos, M. L. A. M., Kippler, M. Dreij, K., and Galvão, M. F. O.: Characterization of cross-continental PM2.5: Insights into emissions and chemical composition, Atmos. Res., 305, 107423, https://doi.org/10.1016/j.atmosres.2024.107423, 2024.
Schraufnagel, D. E.: The health effects of ultrafine particles, Exp. Mol. Med., 52, 311–317, https://doi.org/10.1038/s12276-020-0403-3, 2020.
SEADE: Fundação Sistema Estadual de Análise de Dados – São Paulo State Data Analysis System Foundation, https://www.seade.gov.br/wp-content/uploads/2021/09/MapaIndustria_abril2019.pdf (last access: 15 January 2024), 2019.
Serafeim, E., Besis, A., Kouras, A., Farias, C. N., Yera, A. B., Pereira, G. M., Samara, C., and de Castro Vasconcellos, P.: Oxidative potential of ambient PM2.5 from São Paulo, Brazil: Variations, associations with chemical components and source apportionment, Atmos. Environ., 298, 119593, https://doi.org/10.1016/j.atmosenv.2023.119593, 2023.
Shen, H., Tao, S., Wang, R., Wang, B., Shen, G., Li, W., Su, S., Huang, Y., Wang, X., Liu, W., Li, B., and Sun, K.: Global time trends in PAH emissions from motor vehicles, Atmos. Environ., 45, 2067–2073, https://doi.org/10.1016/j.atmosenv.2011.01.054, 2011.
Simoneit, B. R. T.: Biomass burning – a review of organic tracers for smoke from incomplete combustion, Appl. Geochem., 17, 129–162, https://doi.org/10.1016/S0883-2927(01)00061-0, 2002.
Souto-Oliveira, C. E., Babinski, M., Araújo, D. F., and Andrade, M. F.: Multi-isotopic fingerprints (Pb, Zn, Cu) applied for urban aerosol source apportionment and discrimination, Sci. Total Environ., 626, 1350–1366, https://doi.org/10.1016/j.scitotenv.2018.01.192, 2018.
Souto-Oliveira, C. E., Kamigauti, L. Y., Andrade, M. F., and Babinski, M.: Improving Source Apportionment of Urban Aerosol Using Multi-Isotopic Fingerprints (MIF) and Positive Matrix Factorization (PMF): Cross-Validation and New Insights, Front. Environ. Sci., 9, 623915, https://doi.org/10.3389/fenvs.2021.623915, 2021.
Souto-Oliveira, C. E., Marques, M. T. A., Nogueira, T., Lopes, F. J. S., Medeiros, J. A. G., Medeiros, I. M. M. A., Moreira, G. A., da Silva Dias, P. L., Landulfo, E., and Andrade, M. d. F.: Impact of extreme wildfires from the Brazilian Forests and sugarcane burning on the air quality of the biggest megacity on South America, Sci. Total Environ., 888, 163439, https://doi.org/10.1016/j.scitotenv.2023.163439, 2023.
Souza, D. Z., Vasconcellos, P. C., Lee, H., Aurela, M., Saarnio, K., Teinilä, K., and Hillamo, R.: Composition of PM2.5 and PM10 collected at urban sites in Brazil, Aerosol Air Qual. Res., 14, 168–176, https://doi.org/10.4209/aaqr.2013.03.0071, 2014.
Srivastava, D., Xu, J., Vu, T. V., Liu, D., Li, L., Fu, P., Hou, S., Moreno Palmerola, N., Shi, Z., and Harrison, R. M.: Insight into PM2.5 sources by applying positive matrix factorization (PMF) at urban and rural sites of Beijing, Atmos. Chem. Phys., 21, 14703–14724, https://doi.org/10.5194/acp-21-14703-2021, 2021.
Sun, J., Shen, Z., Zhang, Y., Zhang, Q., Lei, Y., Huang, Y., Niu, X., Xu, H., Cao, J., Ho, S. S. H., and Li, X.: Characterization of PM2.5 source profiles from typical biomass burning of maize straw, wheat straw, wood branch, and their processed products (briquette and charcoal) in China, Atmos. Environ. 205, 36–45, https://doi.org/10.1016/j.atmosenv.2019.02.038, 2019.
Tang, X., Zhang, X., Ci, Z., Guo, J., and Wang, J.: Speciation of the major inorganic salts in atmospheric aerosols of Beijing, China: Measurements and comparison with model, Atmos. Environ., 133, 123–134, https://doi.org/10.1016/j.atmosenv.2016.03.013, 2016.
Thorpe, A. and Harrison, R. M.: Sources and properties of non-exhaust particulate matter from road traffic: A review, Sci. Total Environ., 400, 270–282, https://doi.org/10.1016/j.scitotenv.2008.06.007, 2008.
Tobiszewski, M. and Namieœnik, J.: PAH diagnostic ratios for the identification of pollution emission sources, Environ. Pollut., 162, 110–119, https://doi.org/10.1016/j.envpol.2011.10.025, 2012.
Turpin, B. J. and Lim, H.: Species contributions to PM2.5 mass concentrations: revisiting common assumptions for estimating organic mass, Aerosol Sci. Tech., 35, 602–610, 2001.
Urban, R. C., Lima-Souza, M., Caetano-Silva, L., Queiroz, M. E. C., Nogueira, R. F. P., Allen, A. G., Cardoso, A. A., Held, G., and Campos, M. L. A. M.: Use of levoglucosan, potassium, and water-soluble organic carbon to characterize the origins of biomass-burning aerosols, Atmos. Environ., 61, 562–569, https://doi.org/10.1016/j.atmosenv.2012.07.082, 2012.
Urban, R. C., Alves, C. A., Allen, A. G., Cardoso, A. A., Queiroz, M. E. C., and Campos, M. L. A. M.: Sugar markers in aerosol particles from an agro-industrial region in Brazil, Atmos. Environ., 90, 106–112, https://doi.org/10.1016/j.atmosenv.2014.03.034, 2014.
Valente, F. and Laurini, M.: Pre-harvest sugarcane burning: A statistical analysis of the environmental impacts of a regulatory change in the energy sector, Cleaner Engineering and Technology, 4, 100255, https://doi.org/10.1016/j.clet.2021.100255, 2021.
Vara-Vela, A., Andrade, M. F., Kumar, P., Ynoue, R. Y., and Muñoz, A. G.: Impact of vehicular emissions on the formation of fine particles in the Sao Paulo Metropolitan Area: a numerical study with the WRF-Chem model, Atmos. Chem. Phys., 16, 777–797, https://doi.org/10.5194/acp-16-777-2016, 2016.
Vasconcellos, P. C., Souza, D. Z., Sanchez-Ccoyllo, O., Bustillos, J. O. V, Lee, H., Santos, F. C., Nascimento, K. H., Araújo, M. P., Saarnio, K., Teinilä, K., and Hillamo, R.: Determination of anthropogenic and biogenic compounds on atmospheric aerosol collected in urban, biomass burning and forest areas in São Paulo, Brazil, Sci. Total Environ., 408, 5836–5844, https://doi.org/10.1016/j.scitotenv.2010.08.012, 2010.
Vieira, E. V. R., do Rosario, N. E., Yamasoe, M. A., Morais, F. G., Martinez, P. J. P., Landulfo, E., and Maura de Miranda, R.: Chemical characterization and optical properties of the aerosol in São Paulo, Brazil, Atmosphere, 14, 1460, https://doi.org/10.3390/atmos14091460, 2023.
Vieira-Filho, M. S., Ito, D. T., Pedrotti, J. J., Coelho, L. H. G., and Fornaro, A.: Gas-phase ammonia and water-soluble ions in particulate matter analysis in an urban vehicular tunnel., Environ. Sci. Pollut. Res. Int., 23, 19876–19886, https://doi.org/10.1007/s11356-016-7177-0, 2016a.
Vieira-Filho, M. S., Pedrotti, J. J., and Fornaro, A.: Water-soluble ions species of size-resolved aerosols: Implications for the atmospheric acidity in São Paulo megacity, Brazil, Atmos. Res., 181, 281–287, https://doi.org/10.1016/j.atmosres.2016.07.006, 2016b.
Wang, Q. Q., Qiao, L. P., Zhou, M., Zhu, S. H., Griffith, S., Li, L., and Yu, J. Z.: Source Apportionment of PM2.5 Using Hourly Measurements of Elemental Tracers and Major Constituents in an Urban Environment: investigation of Time-Resolution Influence, J. Geophys. Res.-Atmos., 123, 5284–5300, https://doi.org/10.1029/2017JD027877, 2018.
Watson, J. G., Chow, J. C., and Houck, J. E.: PM2.5 chemical source profiles for vehicle exhaust, vegetative burning, geological material, and coal burning in Northwestern Colorado during 1995, Chemosphere, 43, 1141–1151, https://doi.org/10.1016/S0045-6535(00)00171-5, 2001.
WHO: WHO global air quality guidelines: Particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide, World Health Organization, Geneva, ISBN 9789240034228, 2021.
Wu, X., Vu, T. V., Shi, Z., Harrison, R. M., Liu, D., and Cen, K.: Characterization and source apportionment of carbonaceous PM2.5 particles in China – A review, Atmos. Environ., 189, 187–212, https://doi.org/10.1016/j.atmosenv.2018.06.025, 2018.
Yamagami, M., Ikemori, F., Nakashima, H., Hisatsune, K., and Osada, K.: Decreasing trend of elemental carbon concentration with changes in major sources at Mega city Nagoya, Central Japan, Atmos. Environ., 199, 155–163, https://doi.org/10.1016/j.atmosenv.2018.11.014, 2019.
Yassaa, N., Meklati, B. Y., Cecinato, A., and Marino, F.: Organic aerosols in urban and waste landfill of Algiers metropolitan area: occurrence and sources, Environ. Sci. Technol. 35, 306–311, https://doi.org/10.1021/es991316d, 2001.
Yu, J. Z., Xu, J., and Yang, H.: Charring characteristics of atmospheric organic particulate matter in thermal analysis., Environ. Sci. Technol., 36, 754–761, https://doi.org/10.1021/es015540q, 2002.
Yuan, H., Zhuang, G., Li, J., Wang, Z., and Li, J.: Mixing of mineral with pollution aerosols in dust season in Beijing: Revealed by source apportionment study, Atmos. Environ., 42, 2141–2157, https://doi.org/10.1016/j.atmosenv.2007.11.048, 2008.
Yunker, M. B., Macdonald, R. W., Vingarzan, R., Mitchell, R. H., Goyette, D., and Sylvestre, S.: PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition, Org. Geochem., 33, 489–515, https://doi.org/10.1016/S0146-6380(02)00002-5, 2002.
Zhang, W., Zhang, S., Wan, C., Yue, D., Ye, Y., and Wang, X.: Source diagnostics of polycyclic aromatic hydrocarbons in urban road runoff, dust, rain and canopy throughfall, Environ. Pollut., 153, 594–601, https://doi.org/10.1016/j.envpol.2007.09.004, 2008.
Zhu, C., Kawamura, K., and Kunwar, B.: Effect of biomass burning over the western North Pacific Rim: wintertime maxima of anhydrosugars in ambient aerosols from Okinawa, Atmos. Chem. Phys., 15, 1959–1973, https://doi.org/10.5194/acp-15-1959-2015, 2015.
Zhu, C.-S., Cao, J.-J., Tsai, C.-J., Shen, Z.-X., Han, Y.-M., Liu, S.-X., and Zhao, Z.-Z.: Comparison and implications of PM2.5 carbon fractions in different environments, Sci. Total Environ., 466–467, 203–209, https://doi.org/10.1016/j.scitotenv.2013.07.029, 2014.
Short summary
The chemical composition of fine particulate matter was studied in the megacity of São Paulo (Brazil) during a polluted period. Vehicular-related sources remain relevant; however, a high contribution of biomass burning was observed and correlated with sample ecotoxicity. Emerging biomass burning sources, such as forest fires and sugarcane-bagasse-based power plants, highlight the need for additional control measures alongside stricter rules concerning vehicular emissions.
The chemical composition of fine particulate matter was studied in the megacity of São Paulo...
Altmetrics
Final-revised paper
Preprint