Articles | Volume 25, issue 20
https://doi.org/10.5194/acp-25-13053-2025
https://doi.org/10.5194/acp-25-13053-2025
Research article
 | Highlight paper
 | 
21 Oct 2025
Research article | Highlight paper |  | 21 Oct 2025

The role of the tropical carbon balance in determining the large atmospheric CO2 growth rate in 2023

Liang Feng, Paul I. Palmer, Luke Smallman, Jingfeng Xiao, Paolo Cristofanelli, Ove Hermansen, John Lee, Casper Labuschagne, Simonetta Montaguti, Steffen M. Noe, Stephen M. Platt, Xinrong Ren, Martin Steinbacher, and Irène Xueref-Remy

Related authors

Significant response of methane in the upper troposphere to subseasonal variability in the Asian monsoon anticyclone
Sihong Zhu, Mengchu Tao, Zhaonan Cai, Yi Liu, Liang Feng, Pubu Sangmu, Zhongshui Yu, and Junji Cao
Atmos. Chem. Phys., 25, 9843–9857, https://doi.org/10.5194/acp-25-9843-2025,https://doi.org/10.5194/acp-25-9843-2025, 2025
Short summary
Using Geostationary-Derived Sub-Daily FRP Variability vs. Prescribed Diurnal Cycles: Impact of African Fires on Tropospheric Ozone
Haolin Wang, William Maslanka, Paul I. Palmer, Martin J. Wooster, Haofan Wang, Fei Yao, Liang Feng, Kai Wu, Xiao Lu, and Shaojia Fan
EGUsphere, https://doi.org/10.5194/egusphere-2025-2594,https://doi.org/10.5194/egusphere-2025-2594, 2025
Short summary
Strong relation between atmospheric CO2 growth rate and terrestrial water storage in tropical forests on interannual timescales
Samantha Petch, Liang Feng, Paul Palmer, Robert P. King, Tristan Quaife, and Keith Haines
EGUsphere, https://doi.org/10.22541/essoar.173343481.12875858/v1,https://doi.org/10.22541/essoar.173343481.12875858/v1, 2025
Short summary
The Greenhouse gas Emission Monitoring network to Inform Net-zero Initiatives UK (GEMINI-UK): network design, theoretical performance, and initial data
Alexander Kurganskiy, Liang Feng, Neil Humpage, Paul I. Palmer, A. Jerome P. Woodwark, Stamatia Doniki, and Damien Weidmann
EGUsphere, https://doi.org/10.5194/egusphere-2025-94,https://doi.org/10.5194/egusphere-2025-94, 2025
Short summary
Greenhouse gas column observations from a portable spectrometer in Uganda
Neil Humpage, Hartmut Boesch, William Okello, Jia Chen, Florian Dietrich, Mark F. Lunt, Liang Feng, Paul I. Palmer, and Frank Hase
Atmos. Meas. Tech., 17, 5679–5707, https://doi.org/10.5194/amt-17-5679-2024,https://doi.org/10.5194/amt-17-5679-2024, 2024
Short summary

Cited articles

Ainsworth, E. A. and Rogers, A.: The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions, Plant Cell & Environment, 30, 258–270, https://doi.org/10.1111/j.1365-3040.2007.01641.x, 2007. 
Armstrong McKay, D. I., Staal, A., Abrams, J. F., Winkelmann, R., Sakschewski, B., Loriani, S., Fetzer, I., Cornell, S. E., Rockström, J., and Lenton, T. M.: Exceeding 1.5 °C global warming could trigger multiple climate tipping points, Science, 377, eabn7950, https://doi.org/10.1126/science.abn7950, 2022. 
Baker, D. F., Law, R. M., Gurney, K. R., Rayner, P., Peylin, P., Denning, A. S., Bousquet, P., Bruhwiler, L., Chen, Y. -H., Ciais, P., Fung, I. Y., Heimann, M., John, J., Maki, T., Maksyutov, S., Masarie, K., Prather, M., Pak, B., Taguchi, S., and Zhu, Z.: TransCom 3 inversion intercomparison: Impact of transport model errors on the interannual variability of regional CO2 fluxes, 1988–2003, Global Biogeochemical Cycles, 20, 2004GB002439, https://doi.org/10.1029/2004GB002439, 2006. 
Baker, I. T., Denning, A. S., Prihodko, L., Schaefer, K., Berry, J. A., Collatz, G. J., Suits, N. S., Stocki, R., Philpott, A., and Leonard, O.: SiB3 Modeled Global 1-degree Hourly Biosphere-Atmosphere Carbon Flux, 1998–2006 (Version 1), ORNL Distributed Active Archive Center, https://doi.org/10.3334/ORNLDAAC/909, 2009. 
Barlow, J. M., Palmer, P. I., Bruhwiler, L. M., and Tans, P.: Analysis of CO2 mole fraction data: first evidence of large-scale changes in CO2 uptake at high northern latitudes, Atmos. Chem. Phys., 15, 13739–13758, https://doi.org/10.5194/acp-15-13739-2015, 2015. 
Download
Executive editor
Feng et al. use a Bayesian inverse method to interpret global-scale atmospheric CO2 data from the NASA Orbiting Carbon Observatory. They find that the global annual mean atmospheric CO2 growth rate in 2023 was one of the highest since records began in 1958. Their analysis suggest that ongoing environmental degradation of the Amazon is now playing a substantial role in increasing the global atmospheric CO2 growth rate. This findings emphasize how important continues measurements and regularly reporting of regional CO2 fluxes are to better understand changes in the CO2 cycle and be able deliver frequent actionable information for policy makers.
Short summary
The year 2023 saw unexpectedly large global atmospheric CO2 growth. Satellite data reveal a role for increased tropical emissions. Larger emissions over eastern Brazil can be explained by warmer temperatures, which has led to exceptional drought, while hydrological changes play more of a role in emission increases elsewhere in the tropics. Broadly, we find that this situation continues into 2024.
Share
Altmetrics
Final-revised paper
Preprint