Articles | Volume 24, issue 10
https://doi.org/10.5194/acp-24-5935-2024
https://doi.org/10.5194/acp-24-5935-2024
Research article
 | Highlight paper
 | 
24 May 2024
Research article | Highlight paper |  | 24 May 2024

Extensive coverage of ultrathin tropical tropopause layer cirrus clouds revealed by balloon-borne lidar observations

Thomas Lesigne, François Ravetta, Aurélien Podglajen, Vincent Mariage, and Jacques Pelon

Related authors

Analysis of the day-to-day variability of ozone vertical profiles in the lower troposphere during the 2022 Paris ACROSS campaign
Gérard Ancellet, Camille Viatte, Anne Boynard, François Ravetta, Jacques Pelon, Cristelle Cailteau-Fischbach, Pascal Genau, Julie Capo, Axel Roy, and Philippe Nédélec
Atmos. Chem. Phys., 24, 12963–12983, https://doi.org/10.5194/acp-24-12963-2024,https://doi.org/10.5194/acp-24-12963-2024, 2024
Short summary
Influence of atmospheric waves and deep convection on water vapour in the equatorial lower stratosphere seen from long-duration balloon measurements
Sullivan Carbone, Emmanuel D. Riviere, Mélanie Ghysels, Jérémie Burgalat, Georges Durry, Nadir Amarouche, Aurélien Podglajen, and Albert Hertzog
EGUsphere, https://doi.org/10.5194/egusphere-2024-3249,https://doi.org/10.5194/egusphere-2024-3249, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
The optical properties of stratospheric aerosol layer perturbation of the Hunga volcano eruption of January 15th, 2022
Pasquale Sellitto, Redha Belhadji, Bernard Legras, Aurélien Podglajen, and Clair Duchamp
EGUsphere, https://doi.org/10.5194/egusphere-2024-1433,https://doi.org/10.5194/egusphere-2024-1433, 2024
Short summary
Evaluation and development of surface layer scheme representation of temperature inversions over boreal forests in Arctic wintertime conditions
Julia Maillard, Jean-Christophe Raut, and François Ravetta
Geosci. Model Dev., 17, 3303–3320, https://doi.org/10.5194/gmd-17-3303-2024,https://doi.org/10.5194/gmd-17-3303-2024, 2024
Short summary
Transport into the polar stratosphere from the Asian monsoon region
Xiaolu Yan, Paul Konopka, Felix Ploeger, and Aurélien Podglajen
EGUsphere, https://doi.org/10.5194/egusphere-2024-782,https://doi.org/10.5194/egusphere-2024-782, 2024
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Observing convective activities in complex convective organizations and their contributions to precipitation and anvil cloud amounts
Zhenquan Wang and Jian Yuan
Atmos. Chem. Phys., 24, 13811–13831, https://doi.org/10.5194/acp-24-13811-2024,https://doi.org/10.5194/acp-24-13811-2024, 2024
Short summary
Weak liquid water path response in ship tracks
Anna Tippett, Edward Gryspeerdt, Peter Manshausen, Philip Stier, and Tristan W. P. Smith
Atmos. Chem. Phys., 24, 13269–13283, https://doi.org/10.5194/acp-24-13269-2024,https://doi.org/10.5194/acp-24-13269-2024, 2024
Short summary
Air mass history linked to the development of Arctic mixed-phase clouds
Rebecca J. Murray-Watson and Edward Gryspeerdt
Atmos. Chem. Phys., 24, 11115–11132, https://doi.org/10.5194/acp-24-11115-2024,https://doi.org/10.5194/acp-24-11115-2024, 2024
Short summary
Post-Return Stroke VHF Electromagnetic Activity in North-Western Mediterranean Cloud-to-Ground Lightning Flashes
Andrea Kolínská, Ivana Kolmašová, Eric Defer, Ondřej Santolík, and Stéphane Pédeboy
EGUsphere, https://doi.org/10.5194/egusphere-2024-2489,https://doi.org/10.5194/egusphere-2024-2489, 2024
Short summary
Distinct structure, radiative effects, and precipitation characteristics of deep convection systems in the Tibetan Plateau compared to the tropical Indian Ocean
Yuxin Zhao, Jiming Li, Deyu Wen, Yarong Li, Yuan Wang, and Jianping Huang
Atmos. Chem. Phys., 24, 9435–9457, https://doi.org/10.5194/acp-24-9435-2024,https://doi.org/10.5194/acp-24-9435-2024, 2024
Short summary

Cited articles

Bramberger, M., Alexander, M. J., Davis, S., Podglajen, A., Hertzog, A., Kalnajs, L., Deshler, T., Goetz, J. D., and Khaykin, S.: First Super-Pressure Balloon-Borne Fine-Vertical-Scale Profiles in the Upper TTL: Impacts of Atmospheric Waves on Cirrus Clouds and the QBO, Geophys. Res. Lett., 49, e2021GL097596, https://doi.org/10.1029/2021GL097596, 2022. a, b, c, d
Braun, B. M., Sweetser, T. H., Graham, C., and Bartsch, J.: CloudSat's A-Train Exit and the Formation of the C-Train: An Orbital Dynamics Perspective, in: 2019 IEEE Aerospace Conference, 2–9 March 2019, Big Sky, MT, USA, IEEE, ISBN 978-1-5386-6854-2, 1–10, https://doi.org/10.1109/AERO.2019.8741958, 2019.​​​​​​​ a
Brewer, A. W.: Evidence for a world circulation provided by the measurements of helium and water vapour distribution in the stratosphere, Q. J.Roy. Meteor. Soc., 75, 351–363, https://doi.org/10.1002/qj.49707532603, 1949. a
Chang, K.-W. and L'Ecuyer, T.: Influence of gravity wave temperature anomalies and their vertical gradients on cirrus clouds in the tropical tropopause layer – a satellite-based view, Atmos. Chem. Phys., 20, 12499–12514, https://doi.org/10.5194/acp-20-12499-2020, 2020. a, b, c, d, e
Corcos, M., Hertzog, A., Plougonven, R., and Podglajen, A.: Observation of Gravity Waves at the Tropical Tropopause Using Superpressure Balloons, J. Geophys. Res.-Atmos., 126, e2021JD035165, https://doi.org/10.1029/2021JD035165, 2021. a
Download
Executive editor
The tropical tropopause region (14-18km altitude) plays an important role in the climate system, but the technical difficulties of making measurements in this region are severe. This paper reports observations of very thin tropical tropopause cirrus clouds made using a new lidar instrument carried on long-duration balloon flights, lasting several weeks and travelling about 20000km, from the Indian Ocean to the Central Pacific. The sensitivity of the new instrument reveals that clouds are much more frequent in this part of the atmosphere than had been identified previously. The quantitative significance for the large-scale climate system, e.g. for the radiation balance, is yet to be assessed, but it is clear that these observations will be a valuable resource for scientists studying this truly remote part of the atmosphere.
Short summary
Upper tropical clouds have a strong impact on Earth's climate but are challenging to observe. We report the first long-duration observations of tropical clouds from lidars flying on board stratospheric balloons. Comparisons with spaceborne observations reveal the enhanced sensitivity of balloon-borne lidar to optically thin cirrus. These clouds, which have a significant coverage and lie in the uppermost troposphere, are linked with the dehydration of air masses on their way to the stratosphere.
Altmetrics
Final-revised paper
Preprint