Articles | Volume 24, issue 10
https://doi.org/10.5194/acp-24-5935-2024
https://doi.org/10.5194/acp-24-5935-2024
Research article
 | Highlight paper
 | 
24 May 2024
Research article | Highlight paper |  | 24 May 2024

Extensive coverage of ultrathin tropical tropopause layer cirrus clouds revealed by balloon-borne lidar observations

Thomas Lesigne, François Ravetta, Aurélien Podglajen, Vincent Mariage, and Jacques Pelon

Related authors

Measuring cloud optical depth with a balloonborne microlidar operated from the stratosphere
François Ravetta, Thomas Lesigne, Vincent Mariage, and Jacques Pelon
EGUsphere, https://doi.org/10.5194/egusphere-2025-5905,https://doi.org/10.5194/egusphere-2025-5905, 2026
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary

Cited articles

Bramberger, M., Alexander, M. J., Davis, S., Podglajen, A., Hertzog, A., Kalnajs, L., Deshler, T., Goetz, J. D., and Khaykin, S.: First Super-Pressure Balloon-Borne Fine-Vertical-Scale Profiles in the Upper TTL: Impacts of Atmospheric Waves on Cirrus Clouds and the QBO, Geophys. Res. Lett., 49, e2021GL097596, https://doi.org/10.1029/2021GL097596, 2022. a, b, c, d
Braun, B. M., Sweetser, T. H., Graham, C., and Bartsch, J.: CloudSat's A-Train Exit and the Formation of the C-Train: An Orbital Dynamics Perspective, in: 2019 IEEE Aerospace Conference, 2–9 March 2019, Big Sky, MT, USA, IEEE, ISBN 978-1-5386-6854-2, 1–10, https://doi.org/10.1109/AERO.2019.8741958, 2019.​​​​​​​ a
Brewer, A. W.: Evidence for a world circulation provided by the measurements of helium and water vapour distribution in the stratosphere, Q. J.Roy. Meteor. Soc., 75, 351–363, https://doi.org/10.1002/qj.49707532603, 1949. a
Chang, K.-W. and L'Ecuyer, T.: Influence of gravity wave temperature anomalies and their vertical gradients on cirrus clouds in the tropical tropopause layer – a satellite-based view, Atmos. Chem. Phys., 20, 12499–12514, https://doi.org/10.5194/acp-20-12499-2020, 2020. a, b, c, d, e
Corcos, M., Hertzog, A., Plougonven, R., and Podglajen, A.: Observation of Gravity Waves at the Tropical Tropopause Using Superpressure Balloons, J. Geophys. Res.-Atmos., 126, e2021JD035165, https://doi.org/10.1029/2021JD035165, 2021. a
Download
Executive editor
The tropical tropopause region (14-18km altitude) plays an important role in the climate system, but the technical difficulties of making measurements in this region are severe. This paper reports observations of very thin tropical tropopause cirrus clouds made using a new lidar instrument carried on long-duration balloon flights, lasting several weeks and travelling about 20000km, from the Indian Ocean to the Central Pacific. The sensitivity of the new instrument reveals that clouds are much more frequent in this part of the atmosphere than had been identified previously. The quantitative significance for the large-scale climate system, e.g. for the radiation balance, is yet to be assessed, but it is clear that these observations will be a valuable resource for scientists studying this truly remote part of the atmosphere.
Short summary
Upper tropical clouds have a strong impact on Earth's climate but are challenging to observe. We report the first long-duration observations of tropical clouds from lidars flying on board stratospheric balloons. Comparisons with spaceborne observations reveal the enhanced sensitivity of balloon-borne lidar to optically thin cirrus. These clouds, which have a significant coverage and lie in the uppermost troposphere, are linked with the dehydration of air masses on their way to the stratosphere.
Share
Altmetrics
Final-revised paper
Preprint