Articles | Volume 24, issue 23
https://doi.org/10.5194/acp-24-13833-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-24-13833-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Estimating the concentration of silver iodide needed to detect unambiguous signatures of glaciogenic cloud seeding
Jing Yang
Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD)/China Meteorological Administration Aerosol-Cloud and Precipitation Key Laboratory, Nanjing University of Information Science & Technology, Nanjing, 210044, China
CMA Key Laboratory of Cloud-Precipitation Physics and Weather Modification (CPML), Beijing, 100081, China
Jiaojiao Li
Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD)/China Meteorological Administration Aerosol-Cloud and Precipitation Key Laboratory, Nanjing University of Information Science & Technology, Nanjing, 210044, China
Meilian Chen
Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD)/China Meteorological Administration Aerosol-Cloud and Precipitation Key Laboratory, Nanjing University of Information Science & Technology, Nanjing, 210044, China
Xiaoqin Jing
CORRESPONDING AUTHOR
Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD)/China Meteorological Administration Aerosol-Cloud and Precipitation Key Laboratory, Nanjing University of Information Science & Technology, Nanjing, 210044, China
Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD)/China Meteorological Administration Aerosol-Cloud and Precipitation Key Laboratory, Nanjing University of Information Science & Technology, Nanjing, 210044, China
Bart Geerts
Department of Atmospheric Science, University of Wyoming, Laramie, WY 82071, USA
Zhien Wang
School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794, USA
Yubao Liu
Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD)/China Meteorological Administration Aerosol-Cloud and Precipitation Key Laboratory, Nanjing University of Information Science & Technology, Nanjing, 210044, China
Baojun Chen
CMA Key Laboratory of Cloud-Precipitation Physics and Weather Modification (CPML), Beijing, 100081, China
Shaofeng Hua
CMA Key Laboratory of Cloud-Precipitation Physics and Weather Modification (CPML), Beijing, 100081, China
Hao Hu
Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD)/China Meteorological Administration Aerosol-Cloud and Precipitation Key Laboratory, Nanjing University of Information Science & Technology, Nanjing, 210044, China
Xiaobo Dong
Hebei Provincial Weather Modification Center, Shijiazhuang, 050021, China
Ping Tian
Beijing Weather Modification Center, Beijing, 100089, China
Qian Chen
Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD)/China Meteorological Administration Aerosol-Cloud and Precipitation Key Laboratory, Nanjing University of Information Science & Technology, Nanjing, 210044, China
Yang Gao
CMA Key Laboratory of Cloud-Precipitation Physics and Weather Modification (CPML), Beijing, 100081, China
Related authors
Shiye Huang, Jing Yang, Qian Chen, Jiaojiao Li, Qilin Zhang, and Fengxia Guo
EGUsphere, https://doi.org/10.5194/egusphere-2024-2013, https://doi.org/10.5194/egusphere-2024-2013, 2024
Short summary
Short summary
Aerosol and secondary ice production are both vital to charge separation in thunderstorms, but the relative importance of different SIP processes to cloud electrification under different aerosol conditions is not well understood. In this study, we show in a clean environment, the shattering of freezing drops has the greatest effect on the charging rate, while in a polluted environment, both rime splintering and the shattering of freezing drops have a significant effect on cloud electrification.
Jing Yang, Shiye Huang, Tianqi Yang, Qilin Zhang, Yuting Deng, and Yubao Liu
Atmos. Chem. Phys., 24, 5989–6010, https://doi.org/10.5194/acp-24-5989-2024, https://doi.org/10.5194/acp-24-5989-2024, 2024
Short summary
Short summary
This study contributes to filling the dearth of understanding the impacts of different secondary ice production (SIP) processes on the cloud electrification in cold-season thunderstorms. The results suggest that SIP, especially the rime-splintering process and the shattering of freezing drops, has significant impacts on the charge structure of the storm. In addition, the modeled radar composite reflectivity and flash rate are improved after implementing the SIP processes in the model.
Yuanmou Du, Dantong Liu, Delong Zhao, Mengyu Huang, Ping Tian, Dian Wen, Wei Xiao, Wei Zhou, Hui He, Baiwan Pan, Dongfei Zuo, Xiange Liu, Yingying Jing, Rong Zhang, Jiujiang Sheng, Fei Wang, Yu Huang, Yunbo Chen, and Deping Ding
Atmos. Chem. Phys., 24, 13429–13444, https://doi.org/10.5194/acp-24-13429-2024, https://doi.org/10.5194/acp-24-13429-2024, 2024
Short summary
Short summary
By conducting in situ measurements, we investigated ice production processes in stratiform clouds with embedded convection over the North China Plain. The results show that the ice number concentration is strongly related to the distance to the cloud top, and the level with a larger distance to the cloud top has more graupel falling from upper levels, which promotes collision and coalescence between graupel and droplets and enhances secondary ice production.
Yongbo Zhou, Yubao Liu, Wei Han, Yuefei Zeng, Haofei Sun, Peilong Yu, and Lijian Zhu
Atmos. Meas. Tech., 17, 6659–6675, https://doi.org/10.5194/amt-17-6659-2024, https://doi.org/10.5194/amt-17-6659-2024, 2024
Short summary
Short summary
The study explored differences between the visible reflectance provided by the Fengyun-4A satellite and its equivalent derived from the China Meteorological Administration Mesoscale model using a forward operator. The observation-minus-simulation biases were able to monitor the performance of the satellite visible instrument. The biases were corrected based on a first-order approximation method, which promotes the data assimilation of satellite visible reflectance in real-world cases.
Kang Hu, Hong Liao, Dantong Liu, Jianbing Jin, Lei Chen, Siyuan Li, Yangzhou Wu, Changhao Wu, Shitong Zhao, Xiaotong Jiang, Ping Tian, Kai Bi, Ye Wang, and Delong Zhao
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-157, https://doi.org/10.5194/gmd-2024-157, 2024
Preprint under review for GMD
Short summary
Short summary
This study combines Machine Learning with Concentration-Weighted Trajectory Analysis to quantify regional transport PM2.5. From 2013–2020, local emissions dominated Beijing's pollution events. The Air Pollution Prevention and Control Action Plan reduced regional transport pollution, but the eastern region showed the smallest decrease. Beijing should prioritize local emission reduction while considering the east region's contributions in future strategies.
Shiye Huang, Jing Yang, Qian Chen, Jiaojiao Li, Qilin Zhang, and Fengxia Guo
EGUsphere, https://doi.org/10.5194/egusphere-2024-2013, https://doi.org/10.5194/egusphere-2024-2013, 2024
Short summary
Short summary
Aerosol and secondary ice production are both vital to charge separation in thunderstorms, but the relative importance of different SIP processes to cloud electrification under different aerosol conditions is not well understood. In this study, we show in a clean environment, the shattering of freezing drops has the greatest effect on the charging rate, while in a polluted environment, both rime splintering and the shattering of freezing drops have a significant effect on cloud electrification.
Jing Yang, Shiye Huang, Tianqi Yang, Qilin Zhang, Yuting Deng, and Yubao Liu
Atmos. Chem. Phys., 24, 5989–6010, https://doi.org/10.5194/acp-24-5989-2024, https://doi.org/10.5194/acp-24-5989-2024, 2024
Short summary
Short summary
This study contributes to filling the dearth of understanding the impacts of different secondary ice production (SIP) processes on the cloud electrification in cold-season thunderstorms. The results suggest that SIP, especially the rime-splintering process and the shattering of freezing drops, has significant impacts on the charge structure of the storm. In addition, the modeled radar composite reflectivity and flash rate are improved after implementing the SIP processes in the model.
Ping Tian, Dantong Liu, Kang Hu, Yangzhou Wu, Mengyu Huang, Hui He, Jiujiang Sheng, Chenjie Yu, Dawei Hu, and Deping Ding
Atmos. Chem. Phys., 24, 5149–5164, https://doi.org/10.5194/acp-24-5149-2024, https://doi.org/10.5194/acp-24-5149-2024, 2024
Short summary
Short summary
The results provide direct evidence of efficient droplet activation of black carbon (BC). The cloud condensation nuclei (CCN) activation fraction of BC was higher than for all particles, suggesting higher CCN activity of BC, even though its hygroscopicity is lower. Our research reveals that the evolution of BC's hygroscopicity and its CCN activation properties through atmospheric aging can be effectively characterized by the photochemical age.
Naifu Shao, Chunsong Lu, Xingcan Jia, Yuan Wang, Yubin Li, Yan Yin, Bin Zhu, Tianliang Zhao, Duanyang Liu, Shengjie Niu, Shuxian Fan, Shuqi Yan, and Jingjing Lv
Atmos. Chem. Phys., 23, 9873–9890, https://doi.org/10.5194/acp-23-9873-2023, https://doi.org/10.5194/acp-23-9873-2023, 2023
Short summary
Short summary
Fog is an important meteorological phenomenon that affects visibility. Aerosols and the planetary boundary layer (PBL) play critical roles in the fog life cycle. In this study, aerosol-induced changes in fog properties become more remarkable in the second fog (Fog2) than in the first fog (Fog1). The reason is that aerosol–cloud interaction (ACI) delays Fog1 dissipation, leading to the PBL meteorological conditions being more conducive to Fog2 formation and to stronger ACI in Fog2.
Qian Li, Dantong Liu, Xiaotong Jiang, Ping Tian, Yangzhou Wu, Siyuan Li, Kang Hu, Quan Liu, Mengyu Huang, Ruijie Li, Kai Bi, Shaofei Kong, Deping Ding, and Chenjie Yu
Atmos. Chem. Phys., 23, 9439–9453, https://doi.org/10.5194/acp-23-9439-2023, https://doi.org/10.5194/acp-23-9439-2023, 2023
Short summary
Short summary
By attributing the shortwave absorption from black carbon, primary organic aerosol and secondary organic aerosol in a suburban environment, we firstly observed that the photochemically produced nitrogen-containing secondary organic aerosol may contribute to the enhancement of brown carbon absorption, partly compensating for some bleaching effect on the absorption of primary organic aerosol, hereby exerting radiative impacts.
Joschka Pfeifer, Naser G. A. Mahfouz, Benjamin C. Schulze, Serge Mathot, Dominik Stolzenburg, Rima Baalbaki, Zoé Brasseur, Lucia Caudillo, Lubna Dada, Manuel Granzin, Xu-Cheng He, Houssni Lamkaddam, Brandon Lopez, Vladimir Makhmutov, Ruby Marten, Bernhard Mentler, Tatjana Müller, Antti Onnela, Maxim Philippov, Ana A. Piedehierro, Birte Rörup, Meredith Schervish, Ping Tian, Nsikanabasi S. Umo, Dongyu S. Wang, Mingyi Wang, Stefan K. Weber, André Welti, Yusheng Wu, Marcel Zauner-Wieczorek, Antonio Amorim, Imad El Haddad, Markku Kulmala, Katrianne Lehtipalo, Tuukka Petäjä, António Tomé, Sander Mirme, Hanna E. Manninen, Neil M. Donahue, Richard C. Flagan, Andreas Kürten, Joachim Curtius, and Jasper Kirkby
Atmos. Chem. Phys., 23, 6703–6718, https://doi.org/10.5194/acp-23-6703-2023, https://doi.org/10.5194/acp-23-6703-2023, 2023
Short summary
Short summary
Attachment rate coefficients between ions and charged aerosol particles determine their lifetimes and may also influence cloud dynamics and aerosol processing. Here we present novel experiments that measure ion–aerosol attachment rate coefficients for multiply charged aerosol particles under atmospheric conditions in the CERN CLOUD chamber. Our results provide experimental discrimination between various theoretical models.
Lucía Caudillo, Mihnea Surdu, Brandon Lopez, Mingyi Wang, Markus Thoma, Steffen Bräkling, Angela Buchholz, Mario Simon, Andrea C. Wagner, Tatjana Müller, Manuel Granzin, Martin Heinritzi, Antonio Amorim, David M. Bell, Zoé Brasseur, Lubna Dada, Jonathan Duplissy, Henning Finkenzeller, Xu-Cheng He, Houssni Lamkaddam, Naser G. A. Mahfouz, Vladimir Makhmutov, Hanna E. Manninen, Guillaume Marie, Ruby Marten, Roy L. Mauldin, Bernhard Mentler, Antti Onnela, Tuukka Petäjä, Joschka Pfeifer, Maxim Philippov, Ana A. Piedehierro, Birte Rörup, Wiebke Scholz, Jiali Shen, Dominik Stolzenburg, Christian Tauber, Ping Tian, António Tomé, Nsikanabasi Silas Umo, Dongyu S. Wang, Yonghong Wang, Stefan K. Weber, André Welti, Marcel Zauner-Wieczorek, Urs Baltensperger, Richard C. Flagan, Armin Hansel, Jasper Kirkby, Markku Kulmala, Katrianne Lehtipalo, Douglas R. Worsnop, Imad El Haddad, Neil M. Donahue, Alexander L. Vogel, Andreas Kürten, and Joachim Curtius
Atmos. Chem. Phys., 23, 6613–6631, https://doi.org/10.5194/acp-23-6613-2023, https://doi.org/10.5194/acp-23-6613-2023, 2023
Short summary
Short summary
In this study, we present an intercomparison of four different techniques for measuring the chemical composition of nanoparticles. The intercomparison was performed based on the observed chemical composition, calculated volatility, and analysis of the thermograms. We found that the methods generally agree on the most important compounds that are found in the nanoparticles. However, they do see different parts of the organic spectrum. We suggest potential explanations for these differences.
Xiumei Zhang, Ronald van der A, Jieying Ding, Xin Zhang, and Yan Yin
Atmos. Chem. Phys., 23, 5587–5604, https://doi.org/10.5194/acp-23-5587-2023, https://doi.org/10.5194/acp-23-5587-2023, 2023
Short summary
Short summary
We compiled a ship emission inventory based on automatic identification system (AIS) signals in the Jiangsu section of the Yangtze River. This ship emission inventory was compared with Chinese bottom-up inventories and the satellite-derived emissions from TROPOMI. The result shows a consistent spatial distribution, with riverine cities having high NOx emissions. Inland ship emissions of NOx are shown to contribute at least 40 % to air pollution along the river.
Anbao Zhu, Haiming Xu, Jiechun Deng, Jing Ma, and Shaofeng Hua
Atmos. Chem. Phys., 22, 15425–15447, https://doi.org/10.5194/acp-22-15425-2022, https://doi.org/10.5194/acp-22-15425-2022, 2022
Short summary
Short summary
This study demonstrates the instant and delayed effects of biomass burning (BB) aerosols on precipitation over the Indochina Peninsula (ICP). The convection suppression due to the BB aerosol-induced stabilized atmosphere dominates over the favorable water-vapor condition induced by large-scale circulation responses, leading to an overall reduced precipitation in March, while the delayed effect promotes precipitation from early April to mid April due to the anomalous atmospheric circulations.
Yongbo Zhou, Yubao Liu, Zhaoyang Huo, and Yang Li
Geosci. Model Dev., 15, 7397–7420, https://doi.org/10.5194/gmd-15-7397-2022, https://doi.org/10.5194/gmd-15-7397-2022, 2022
Short summary
Short summary
The study evaluates the performance of the Data Assimilation Research Testbed (DART), equipped with the recently added forward operator Radiative Transfer for TOVS (RTTOV), in assimilating FY-4A visible images into the Weather Research and Forecasting (WRF) model. The ability of the WRF-DART/RTTOV system to improve the forecasting skills for a tropical storm over East Asia and the Western Pacific is demonstrated in an Observing System Simulation Experiment framework.
Cuiqi Zhang, Zhijun Wu, Jingchuan Chen, Jie Chen, Lizi Tang, Wenfei Zhu, Xiangyu Pei, Shiyi Chen, Ping Tian, Song Guo, Limin Zeng, Min Hu, and Zamin A. Kanji
Atmos. Chem. Phys., 22, 7539–7556, https://doi.org/10.5194/acp-22-7539-2022, https://doi.org/10.5194/acp-22-7539-2022, 2022
Short summary
Short summary
The immersion ice nucleation effectiveness of aerosols from multiple sources in the urban environment remains elusive. In this study, we demonstrate that the immersion ice-nucleating particle (INP) concentration increased dramatically during a dust event in an urban atmosphere. Pollutant aerosols, including inorganic salts formed through secondary transformation (SIA) and black carbon (BC), might not act as effective INPs under mixed-phase cloud conditions.
Siyuan Li, Dantong Liu, Shaofei Kong, Yangzhou Wu, Kang Hu, Huang Zheng, Yi Cheng, Shurui Zheng, Xiaotong Jiang, Shuo Ding, Dawei Hu, Quan Liu, Ping Tian, Delong Zhao, and Jiujiang Sheng
Atmos. Chem. Phys., 22, 6937–6951, https://doi.org/10.5194/acp-22-6937-2022, https://doi.org/10.5194/acp-22-6937-2022, 2022
Short summary
Short summary
The understanding of secondary organic aerosols is hindered by the aerosol–gas evolution by different oxidation mechanisms. By concurrently measuring detailed mass spectra of aerosol and gas phases in a megacity online, we identified the primary and secondary source sectors and investigated the transformation between gas and aerosol phases influenced by photooxidation and moisture. The results will help us to understand the respective evolution of major sources in a typical urban environment.
Xin Zhang, Yan Yin, Ronald van der A, Henk Eskes, Jos van Geffen, Yunyao Li, Xiang Kuang, Jeff L. Lapierre, Kui Chen, Zhongxiu Zhen, Jianlin Hu, Chuan He, Jinghua Chen, Rulin Shi, Jun Zhang, Xingrong Ye, and Hao Chen
Atmos. Chem. Phys., 22, 5925–5942, https://doi.org/10.5194/acp-22-5925-2022, https://doi.org/10.5194/acp-22-5925-2022, 2022
Short summary
Short summary
The importance of convection to the ozone and nitrogen oxides (NOx) produced from lightning has long been an open question. We utilize the high-resolution chemistry model with ozonesondes and space observations to discuss the effects of convection over southeastern China, where few studies have been conducted. Our results show the transport and chemistry contributions for various storms and demonstrate the ability of TROPOMI to estimate the lightning NOx production over small-scale convection.
Chenjie Yu, Dantong Liu, Kang Hu, Ping Tian, Yangzhou Wu, Delong Zhao, Huihui Wu, Dawei Hu, Wenbo Guo, Qiang Li, Mengyu Huang, Deping Ding, and James D. Allan
Atmos. Chem. Phys., 22, 4375–4391, https://doi.org/10.5194/acp-22-4375-2022, https://doi.org/10.5194/acp-22-4375-2022, 2022
Short summary
Short summary
In this study, we applied a new technique to investigate the aerosol properties on both a mass and number basis and CCN abilities in Beijing suburban regions. The size-resolved aerosol chemical compositions and CCN activation measurement enable a detailed analysis of BC-containing particle hygroscopicity and its size-dependent contribution to the CCN activation. The results presented in this study will affect future models and human health studies.
Yulu Qiu, Zhiqiang Ma, Ke Li, Mengyu Huang, Jiujiang Sheng, Ping Tian, Jia Zhu, Weiwei Pu, Yingxiao Tang, Tingting Han, Huaigang Zhou, and Hong Liao
Atmos. Chem. Phys., 21, 17995–18010, https://doi.org/10.5194/acp-21-17995-2021, https://doi.org/10.5194/acp-21-17995-2021, 2021
Short summary
Short summary
Photochemical pollution over the North China Plain (NCP) is attracting much concern. Our observations at a rural site in the NCP identified high peroxyacetyl nitrate (PAN) concentrations, even on cold days. Increased acetaldehyde concentration and hydroxyl radical production rates drive fast PAN formation. Moreover, our study emphasizes the importance of formaldehyde photolysis in PAN formation and calls for implementing strict volatile organic compound controls after summer over the NCP.
Lucía Caudillo, Birte Rörup, Martin Heinritzi, Guillaume Marie, Mario Simon, Andrea C. Wagner, Tatjana Müller, Manuel Granzin, Antonio Amorim, Farnoush Ataei, Rima Baalbaki, Barbara Bertozzi, Zoé Brasseur, Randall Chiu, Biwu Chu, Lubna Dada, Jonathan Duplissy, Henning Finkenzeller, Loïc Gonzalez Carracedo, Xu-Cheng He, Victoria Hofbauer, Weimeng Kong, Houssni Lamkaddam, Chuan P. Lee, Brandon Lopez, Naser G. A. Mahfouz, Vladimir Makhmutov, Hanna E. Manninen, Ruby Marten, Dario Massabò, Roy L. Mauldin, Bernhard Mentler, Ugo Molteni, Antti Onnela, Joschka Pfeifer, Maxim Philippov, Ana A. Piedehierro, Meredith Schervish, Wiebke Scholz, Benjamin Schulze, Jiali Shen, Dominik Stolzenburg, Yuri Stozhkov, Mihnea Surdu, Christian Tauber, Yee Jun Tham, Ping Tian, António Tomé, Steffen Vogt, Mingyi Wang, Dongyu S. Wang, Stefan K. Weber, André Welti, Wang Yonghong, Wu Yusheng, Marcel Zauner-Wieczorek, Urs Baltensperger, Imad El Haddad, Richard C. Flagan, Armin Hansel, Kristina Höhler, Jasper Kirkby, Markku Kulmala, Katrianne Lehtipalo, Ottmar Möhler, Harald Saathoff, Rainer Volkamer, Paul M. Winkler, Neil M. Donahue, Andreas Kürten, and Joachim Curtius
Atmos. Chem. Phys., 21, 17099–17114, https://doi.org/10.5194/acp-21-17099-2021, https://doi.org/10.5194/acp-21-17099-2021, 2021
Short summary
Short summary
We performed experiments in the CLOUD chamber at CERN at low temperatures to simulate new particle formation in the upper free troposphere (at −30 ºC and −50 ºC). We measured the particle and gas phase and found that most of the compounds present in the gas phase are detected as well in the particle phase. The major compounds in the particles are C8–10 and C18–20. Specifically, we showed that C5 and C15 compounds are detected in a mixed system with isoprene and α-pinene at −30 ºC, 20 % RH.
Quan Liu, Dantong Liu, Yangzhou Wu, Kai Bi, Wenkang Gao, Ping Tian, Delong Zhao, Siyuan Li, Chenjie Yu, Guiqian Tang, Yunfei Wu, Kang Hu, Shuo Ding, Qian Gao, Fei Wang, Shaofei Kong, Hui He, Mengyu Huang, and Deping Ding
Atmos. Chem. Phys., 21, 14749–14760, https://doi.org/10.5194/acp-21-14749-2021, https://doi.org/10.5194/acp-21-14749-2021, 2021
Short summary
Short summary
Through simultaneous online measurements of detailed aerosol compositions at both surface and surface-influenced mountain sites, the evolution of aerosol composition during daytime vertical transport was investigated. The results show that, from surface to the top of the planetary boundary layer, the oxidation state of organic aerosol had been significantly enhanced due to evaporation and further oxidation of these evaporated gases.
Dongfei Zuo, Deping Ding, Yichen Chen, Ling Yang, Delong Zhao, Mengyu Huang, Ping Tian, Wei Xiao, Wei Zhou, Yuanmou Du, and Dantong Liu
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-221, https://doi.org/10.5194/amt-2021-221, 2021
Publication in AMT not foreseen
Short summary
Short summary
According to the echo attenuation analysis of mixed precipitation, the melting layer is found to be the key factor affecting the attenuation correction. This study hereby proposes an adaptive echo attenuation correction method based on the melting layer, and uses the ground-based S-band radar to extract the echo on the aircraft trajectory to verify the correction results. The results show that the echo attenuation correction value above the melting layer is related to the flight position.
Zhuozhi Shu, Yubao Liu, Tianliang Zhao, Junrong Xia, Chenggang Wang, Le Cao, Haoliang Wang, Lei Zhang, Yu Zheng, Lijuan Shen, Lei Luo, and Yueqing Li
Atmos. Chem. Phys., 21, 9253–9268, https://doi.org/10.5194/acp-21-9253-2021, https://doi.org/10.5194/acp-21-9253-2021, 2021
Short summary
Short summary
Focusing on a heavy haze pollution event in the Sichuan Basin (SCB), we investigated the elevated 3D structure of PM2.5 and trans-boundary transport with the WRF-Chem simulation. It is remarkable for vertical PM2.5 that the unique hollows were structured, which which occurred by the interaction of vortex circulations and topographic effects. The SCB was regarded as the major air pollutant source with the trans-boundary transport of PM2.5 affecting atmospheric environment changes.
Chuanyang Shen, Gang Zhao, Weilun Zhao, Ping Tian, and Chunsheng Zhao
Atmos. Chem. Phys., 21, 1375–1388, https://doi.org/10.5194/acp-21-1375-2021, https://doi.org/10.5194/acp-21-1375-2021, 2021
Short summary
Short summary
Submicron particles larger than 300 nm dominate the aerosol light extinction and mass concentration in the urban environment. Aerosol hygroscopic properties extended to 600 nm were investigated at an urban site. Our results find that there exists a large fraction of a less hygroscopic group above 300 nm, and the hygroscopicity in this size range is enhanced significantly with the development of pollution levels. The hygroscopicity variation contributes greatly to the low visibility.
Shuo Ding, Dantong Liu, Kang Hu, Delong Zhao, Ping Tian, Fei Wang, Ruijie Li, Yichen Chen, Hui He, Mengyu Huang, and Deping Ding
Atmos. Chem. Phys., 21, 681–694, https://doi.org/10.5194/acp-21-681-2021, https://doi.org/10.5194/acp-21-681-2021, 2021
Short summary
Short summary
In this study, we for the first time characterized the detailed black carbon (BC) microphysics at a mountain site located at the top of the planetary boundary layer (PBL) influenced by surface emission over the North China Plain. We investigated the optical and hygroscopic properties of BC at this level as influenced by microphysical properties. Such information will constrain the impacts of BC in influencing the PBL dynamics and low-level cloud formation over anthropogenically polluted regions.
Xiaolin Zhang, Mao Mao, Yan Yin, and Shihao Tang
Atmos. Chem. Phys., 20, 9701–9711, https://doi.org/10.5194/acp-20-9701-2020, https://doi.org/10.5194/acp-20-9701-2020, 2020
Short summary
Short summary
The understanding of the absorption Ångstrom exponent (AAE) of aged black carbon (BC) particles affected by their microphysics is numerically evaluated. With key sensitive microphysical parameters, a simple parameterization of the AAE of coated BC with a size distribution is proposed. It is found that BC coated by thin brown carbon with more large particles shows an AAE smaller than pure BC particles. Our findings improve the understanding and application of the AAE of BC with brown coatings.
Xin Zhang, Yan Yin, Ronald van der A, Jeff L. Lapierre, Qian Chen, Xiang Kuang, Shuqi Yan, Jinghua Chen, Chuan He, and Rulin Shi
Atmos. Meas. Tech., 13, 1709–1734, https://doi.org/10.5194/amt-13-1709-2020, https://doi.org/10.5194/amt-13-1709-2020, 2020
Short summary
Short summary
Lightning NOx has a strong impact on ozone and the hydroxyl radical production. However, the production efficiency of lightning NOx is still quite uncertain. This work develops the algorithm of estimating lightning NOx for both clean and polluted regions and evaluates the sensitivity of estimates to the model setting of lightning NO. Results reveal that our method reduces the sensitivity to the background NO2 and includes much of the below-cloud LNO2.
Quan Liu, Dantong Liu, Qian Gao, Ping Tian, Fei Wang, Delong Zhao, Kai Bi, Yangzhou Wu, Shuo Ding, Kang Hu, Jiale Zhang, Deping Ding, and Chunsheng Zhao
Atmos. Chem. Phys., 20, 3931–3944, https://doi.org/10.5194/acp-20-3931-2020, https://doi.org/10.5194/acp-20-3931-2020, 2020
Short summary
Short summary
We present a series of aircraft-based in situ measurements of aerosol chemical components and size distributions over the North China Plain, and the hygroscopicity is derived from aerosol chemical composition. These results reveal the vertical characteristics of aerosol hygroscopicity, and we investigated their impacts on optical properties and activation under different moisture and pollution conditions over this polluted region.
Yifan Huang, Chao Liu, Bin Yao, Yan Yin, and Lei Bi
Atmos. Chem. Phys., 20, 2865–2876, https://doi.org/10.5194/acp-20-2865-2020, https://doi.org/10.5194/acp-20-2865-2020, 2020
Short summary
Short summary
Dust optical properties are necessary to quantify aerosol radiative effects and to retrieve their properties. This study reveals the importance of the dust refractive index (RI) for the model development of its optical properties. Our results indicate that the scattering matrix elements of different dust particles can be reasonably reproduced by choosing appropriate RIs but a fixed particle geometry, and the RI influences the scattering matrix elements differently from geometric factors.
Bin Yao, Chao Liu, Yan Yin, Zhiquan Liu, Chunxiang Shi, Hironobu Iwabuchi, and Fuzhong Weng
Atmos. Meas. Tech., 13, 1033–1049, https://doi.org/10.5194/amt-13-1033-2020, https://doi.org/10.5194/amt-13-1033-2020, 2020
Short summary
Short summary
Due to the complex spatiotemporal and physical properties of clouds, their quantitative depictions in different atmospheric reanalysis datasets are still highly uncertain. A radiance-based evaluation approach is developed to evaluate the quality of cloud properties by directly comparing them with satellite radiance observations. ERA5 and CRA are found to have great capability in representing the cloudy atmosphere over East Asia, and MERRA-2 tends to slightly overestimate clouds over the region.
Ping Tian, Dantong Liu, Delong Zhao, Chenjie Yu, Quan Liu, Mengyu Huang, Zhaoze Deng, Liang Ran, Yunfei Wu, Shuo Ding, Kang Hu, Gang Zhao, Chunsheng Zhao, and Deping Ding
Atmos. Chem. Phys., 20, 2603–2622, https://doi.org/10.5194/acp-20-2603-2020, https://doi.org/10.5194/acp-20-2603-2020, 2020
Short summary
Short summary
This study paints a full picture of the evolution of vertical characteristics of aerosol optical properties and shortwave heating impacts of carbonaceous aerosols during different stages of pollution events over the Beijing region and highlights the increased contribution of brown carbon absorption, especially at higher levels, during pollution.
Gang Zhao, Tianyi Tan, Weilun Zhao, Song Guo, Ping Tian, and Chunsheng Zhao
Atmos. Chem. Phys., 19, 12875–12885, https://doi.org/10.5194/acp-19-12875-2019, https://doi.org/10.5194/acp-19-12875-2019, 2019
Short summary
Short summary
Traditionally, the real part of the refractive index (RRI) of ambient aerosols is calculated by their chemical components. In this study, we demonstrate that the RRI is highly related to effective density rather than chemical components using field measurements. For the first time, a parameterization scheme for ambient aerosol RRI using effective density is proposed. This simple scheme is more reliable and ready to use in the calculation of aerosol optics and radiation.
Yunfei Wu, Yunjie Xia, Rujin Huang, Zhaoze Deng, Ping Tian, Xiangao Xia, and Renjian Zhang
Atmos. Meas. Tech., 12, 4347–4359, https://doi.org/10.5194/amt-12-4347-2019, https://doi.org/10.5194/amt-12-4347-2019, 2019
Short summary
Short summary
The morphology and effective density of externally mixed black carbon (extBC) aerosols were studied using a tandem technique coupling a DMA with a SP2. The study extended the mass–mobility relationship to large extBC with a mobility diameter larger than 350 nm, a size range seldom included in previous tandem measurements of BC aggregates. On this basis, quantities such as the mass–mobility scaling exponent were revealed for extBC in urban Beijing.
Hailing Jia, Xiaoyan Ma, Johannes Quaas, Yan Yin, and Tom Qiu
Atmos. Chem. Phys., 19, 8879–8896, https://doi.org/10.5194/acp-19-8879-2019, https://doi.org/10.5194/acp-19-8879-2019, 2019
Short summary
Short summary
We systematically assess how and to what extent satellite retrieval biases may affect correlations, as well as explore the underlying physical mechanisms. It is noted that the retrieval biases of both cloud and aerosol can result in a serious overestimation of the slope of CER–AI. Positive correlations more likely to occur in the case of drier cloud top and stronger turbulence in clouds, implying entrainment mixing might be a possible physical interpretation for such a positive CER–AI slope.
Xiaolin Zhang, Mao Mao, and Yan Yin
Atmos. Chem. Phys., 19, 7507–7518, https://doi.org/10.5194/acp-19-7507-2019, https://doi.org/10.5194/acp-19-7507-2019, 2019
Short summary
Short summary
The understanding of the exactly retrieved optically effective aerosol complex refractive index (ACRI) of aged BC affected by their microphysics is numerically evaluated. A simple new ACRI parameterization for heavily coated BC in coarse mode is then proposed. We suggest that, to produce reliable estimates of BC radiative forcing in aerosol–climate models, the optically effective ACRI, rather than the ACRI given by the VWA, appears to be essential, especially for coarse coated BC particles.
Fei Wang, Zhanqing Li, Xinrong Ren, Qi Jiang, Hao He, Russell R. Dickerson, Xiaobo Dong, and Feng Lv
Atmos. Chem. Phys., 18, 8995–9010, https://doi.org/10.5194/acp-18-8995-2018, https://doi.org/10.5194/acp-18-8995-2018, 2018
Short summary
Short summary
Aerosol optical profiles are characterized for the first time over the North China Plain by aircraft measurements. Statistical summaries of the vertical distributions of aerosol optical properties focused on four target areas in the NCP region. Three typical PBL structures were found and the aerosol scattering coefficients showed different correlations with ambient RH during the field campaign. The air mass back trajectories of three PBL structures were also discussed.
Chao Liu, Chul Eddy Chung, Yan Yin, and Martin Schnaiter
Atmos. Chem. Phys., 18, 6259–6273, https://doi.org/10.5194/acp-18-6259-2018, https://doi.org/10.5194/acp-18-6259-2018, 2018
Short summary
Short summary
The absorption Ångström exponent (AAE) of black carbon (BC) is widely accepted to be 1.0, although observational estimates give a quite wide range of 0.6–1.1. This study investigates BC AAE numerically using realistic particle properties and accurate numerical models. The significantly influence of BC microphysical properties on BC AAE is revealed by simple linear formulas, and the widely accepted BC AAE value of 1.0 is not correct for even small BC with wavelength-independent refractive index.
Damao Zhang, Zhien Wang, Pavlos Kollias, Andrew M. Vogelmann, Kang Yang, and Tao Luo
Atmos. Chem. Phys., 18, 4317–4327, https://doi.org/10.5194/acp-18-4317-2018, https://doi.org/10.5194/acp-18-4317-2018, 2018
Short summary
Short summary
Ice production in atmospheric clouds is important for global water cycle and radiation budget. Active satellite remote sensing measurements are analyzed to quantitatively study primary ice particle production in stratiform mixed-phase clouds on a global scale. We quantify the geographic and seasonal variations of ice production and their correlations with aerosol, especially mineral dust activities. The results can be used to evaluate mixed-phased clouds simulations by global climate models.
Delong Zhao, Mengyu Huang, Dantong Liu, Deping Ding, Ping Tian, Quan Liu, Wei Zhou, Jiujiang Sheng, Fei Wang, Kai Bi, Yan Yang, Xia Li, Yaqiong Hu, Xin Guo, Yang Gao, Hui He, Yunbo Chen, Shaofei Kong, and Jiayi Huang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-1118, https://doi.org/10.5194/acp-2017-1118, 2018
Preprint withdrawn
Short summary
Short summary
This study for the first time reports the 3D distributions of black carbon and detailed physical properties in the boundary layer over the North China Plain, using intensive aircraft measurements in both hot and cold seasons. The BC mass in the planetary boundary layer (PBL) was found to be largely influenced by meteorology which modulated the local emission and regional transport.
Jing Yang, Zhien Wang, and Andrew Heymsfield
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-714, https://doi.org/10.5194/acp-2017-714, 2017
Revised manuscript not accepted
Short summary
Short summary
This study shows the freezing time is longer for large drops than small drops. Due to instrumental limitations, freezing drops cannot be identified until they exhibit obvious shape deformation. In models, drop freezing is assumed to be instantaneous, which is not realistic; thus, the model yields a broader
first icePSD than is observed. This study allows us to interpret the observed ice PSDs in developing convective clouds, and notes the deficiency of instantaneous drop freezing in models.
Qian Chen, Ilan Koren, Orit Altaratz, Reuven H. Heiblum, Guy Dagan, and Lital Pinto
Atmos. Chem. Phys., 17, 9585–9598, https://doi.org/10.5194/acp-17-9585-2017, https://doi.org/10.5194/acp-17-9585-2017, 2017
Yunfei Wu, Xiaojia Wang, Jun Tao, Rujin Huang, Ping Tian, Junji Cao, Leiming Zhang, Kin-Fai Ho, Zhiwei Han, and Renjian Zhang
Atmos. Chem. Phys., 17, 7965–7975, https://doi.org/10.5194/acp-17-7965-2017, https://doi.org/10.5194/acp-17-7965-2017, 2017
Short summary
Short summary
As black carbon (BC) aerosols play an important role in the climate and environment, the size distribution of refractory BC (rBC) was investigated. On this basis, the source of rBC was further analyzed. The local traffic exhausts contributed greatly to the rBC in urban areas. However, its contribution decreased significantly in the polluted period compared to the clean period, implying the increasing contribution of other sources, e.g., coal combustion or biomass burning, in the polluted period.
Yinghui Liu, Matthew D. Shupe, Zhien Wang, and Gerald Mace
Atmos. Chem. Phys., 17, 5973–5989, https://doi.org/10.5194/acp-17-5973-2017, https://doi.org/10.5194/acp-17-5973-2017, 2017
Short summary
Short summary
Detailed and accurate vertical distributions of cloud properties are essential to accurately calculate the surface radiative flux and to depict the mean climate state, and such information is more desirable in the Arctic due to its recent rapid changes and the challenging observation conditions. This study presents a feasible way to provide such information by blending cloud observations from surface and space-based instruments with the understanding of their respective strength and limitations.
Ulrich Schumann, Robert Baumann, Darrel Baumgardner, Sarah T. Bedka, David P. Duda, Volker Freudenthaler, Jean-Francois Gayet, Andrew J. Heymsfield, Patrick Minnis, Markus Quante, Ehrhard Raschke, Hans Schlager, Margarita Vázquez-Navarro, Christiane Voigt, and Zhien Wang
Atmos. Chem. Phys., 17, 403–438, https://doi.org/10.5194/acp-17-403-2017, https://doi.org/10.5194/acp-17-403-2017, 2017
Short summary
Short summary
The initially linear clouds often seen behind aircraft are known as contrails. Contrails are prototype cirrus clouds forming under well-known conditions, but with less certain life cycle and climate effects. This paper collects contrail data from a large set of measurements and compares them among each other and with models. The observations show consistent contrail properties over a wide range of aircraft and atmosphere conditions. The dataset is available for further research.
Liang Ran, Zhaoze Deng, Xiaobin Xu, Peng Yan, Weili Lin, Ying Wang, Ping Tian, Pucai Wang, Weilin Pan, and Daren Lu
Atmos. Chem. Phys., 16, 10441–10454, https://doi.org/10.5194/acp-16-10441-2016, https://doi.org/10.5194/acp-16-10441-2016, 2016
Short summary
Short summary
Vertical profiles of black carbon within 1 km above the ground were measured using a micro-aethalometer attached to a tethered balloon during the VOGA field campaign in summer 2014 at a semirural site in the North China Plain. The diurnal cycle of black carbon vertical distributions following the development of the mixing layer was analyzed for a selected dataset of 67 profiles.
Jing Yang, Zhien Wang, Andrew J. Heymsfield, and Jeffrey R. French
Atmos. Chem. Phys., 16, 10159–10173, https://doi.org/10.5194/acp-16-10159-2016, https://doi.org/10.5194/acp-16-10159-2016, 2016
Short summary
Short summary
This study provides statistics of the vertical air motion characteristics in convective clouds using aircraft in situ measurements from three field campaigns. Small-scale drafts are frequently observed and make important contributions to total air mass flux. The probability density functions and profiles of the observed vertical velocity and air mass flux are provided. The differences among the three field campaigns are compared. Factors influencing the vertical air motions are discussed.
Tao Luo, Zhien Wang, Damao Zhang, and Bing Chen
Atmos. Chem. Phys., 16, 5891–5903, https://doi.org/10.5194/acp-16-5891-2016, https://doi.org/10.5194/acp-16-5891-2016, 2016
Short summary
Short summary
With a new 4-year satellite-based data set, the cloud-free marine boundary layer (MBL) structure characteristics over the eastern Pacific region were presented and analyzed together with the stratiform cloud top as the cloudy MBL top. Results showed that the behavior of MBL decouple structure and drizzling and non-drizzling stratiform cloud tops was mainly controlled by the inversion near the MBL top. Results in this paper will be valuable to evaluate and improve model simulation.
Renmin Yuan, Tao Luo, Jianning Sun, Hao Liu, Yunfei Fu, and Zhien Wang
Atmos. Meas. Tech., 9, 1925–1937, https://doi.org/10.5194/amt-9-1925-2016, https://doi.org/10.5194/amt-9-1925-2016, 2016
Short summary
Short summary
Atmospheric aerosol has a great influence on the natural environment. Despite consistent research efforts, there are still uncertainties in our understanding of its effects due to poor knowledge of aerosol vertical transport. In this paper, a new method for measuring atmospheric aerosol mass vertical transport flux is developed based on the similarity theory, the theory of light propagation, and the observations and studies of the atmospheric equivalent refractive index.
Z. Wang, D. Liu, Y. Wang, Z. Wang, and G. Shi
Atmos. Meas. Tech., 8, 2901–2907, https://doi.org/10.5194/amt-8-2901-2015, https://doi.org/10.5194/amt-8-2901-2015, 2015
L. Peng, J. R. Snider, and Z. Wang
Atmos. Chem. Phys., 15, 6113–6125, https://doi.org/10.5194/acp-15-6113-2015, https://doi.org/10.5194/acp-15-6113-2015, 2015
Short summary
Short summary
The study analyzes a novel set of cloud measurements relevant to the genesis of atmospheric ice particles. Issues addressed are 1) the DeMott et al. (2010) formula describing the abundance of ice nucleating particles and the degree to which that formula is consistent with our in situ measurements, 2) the discrepancy between the DeMott et al. formula and measurements made in the AIDA chamber in Karlsruhe, Germany (Niemand et al., 2012), and 3) the time dependence of atmospheric ice nucleation.
Q. Jiang, Y. L. Sun, Z. Wang, and Y. Yin
Atmos. Chem. Phys., 15, 6023–6034, https://doi.org/10.5194/acp-15-6023-2015, https://doi.org/10.5194/acp-15-6023-2015, 2015
Short summary
Short summary
Aerosol composition and sources during the Chinese spring festival are characterized in detail. The roles of fireworks and secondary aerosol in fine particle pollution were elucidated. We observed large reductions of primary species, whereas changes of secondary aerosol during the holiday period were minor. This has significant implications; reducing primary emissions on a local scale during severe haze episodes might have a limited effect on improving air quality in megacities.
S. F. Kong, L. Li, X. X. Li, Y. Yin, K. Chen, D. T. Liu, L. Yuan, Y. J. Zhang, Y. P. Shan, and Y. Q. Ji
Atmos. Chem. Phys., 15, 2167–2184, https://doi.org/10.5194/acp-15-2167-2015, https://doi.org/10.5194/acp-15-2167-2015, 2015
P. J. DeMott, A. J. Prenni, G. R. McMeeking, R. C. Sullivan, M. D. Petters, Y. Tobo, M. Niemand, O. Möhler, J. R. Snider, Z. Wang, and S. M. Kreidenweis
Atmos. Chem. Phys., 15, 393–409, https://doi.org/10.5194/acp-15-393-2015, https://doi.org/10.5194/acp-15-393-2015, 2015
Short summary
Short summary
Laboratory and field data are used together to develop an empirical relation between the concentrations of mineral dust particles at sizes above 0.5 microns, approximated as a single compositional type, and ice nucleating particle concentrations measured versus temperature. This should be useful in global modeling of ice cloud formation. The utility of laboratory data for parameterization development is reinforced, and the need for careful interpretation of ice nucleation data is emphasized.
T. Luo, R. Yuan, and Z. Wang
Atmos. Meas. Tech., 7, 173–182, https://doi.org/10.5194/amt-7-173-2014, https://doi.org/10.5194/amt-7-173-2014, 2014
Related subject area
Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Ice-nucleating particle concentration impacts cloud properties over Dronning Maud Land, East Antarctica, in COSMO-CLM2
Numerical simulation of aerosol concentration effects on cloud droplet size spectrum evolutions of warm stratiform clouds in Jiangxi, China
The impact of aerosol on cloud water: a heuristic perspective
The presence of clouds lowers climate sensitivity in the MPI-ESM1.2 climate model
Diurnal variation in an amplified canopy urban heat island during heat wave periods in the megacity of Beijing: roles of mountain–valley breeze and urban morphology
Diurnal evolution of non-precipitating marine stratocumuli in a large-eddy simulation ensemble
High ice water content in tropical mesoscale convective systems (a conceptual model)
Evolution of cloud droplet temperature and lifetime in spatiotemporally varying subsaturated environments with implications for ice nucleation at cloud edges
Effect of secondary ice production processes on the simulation of ice pellets using the Predicted Particle Properties microphysics scheme
Simulated particle evolution within a winter storm: contributions of riming to radar moments and precipitation fallout
A thermal-driven graupel generation process to explain dry-season convective vigor over the Amazon
Modeling homogeneous ice nucleation from drop-freezing experiments: impact of droplet volume dispersion and cooling rates
Cloud water adjustments to aerosol perturbations are buffered by solar heating in non-precipitating marine stratocumuli
Glaciation of mixed-phase clouds: insights from bulk model and bin-microphysics large-eddy simulation informed by laboratory experiment
Microphysical processes involving the vapour phase dominate in simulated low-level Arctic clouds
Understanding aerosol–cloud interactions using a single-column model for a cold-air outbreak case during the ACTIVATE campaign
On the sensitivity of aerosol–cloud interactions to changes in sea surface temperature in radiative–convective equilibrium
The role of ascent timescale for WCB moisture transport into the UTLS
Exploring aerosol–cloud interactions in liquid-phase clouds over eastern China and its adjacent ocean using the WRF-Chem–SBM model
Impact of secondary ice production on thunderstorm electrification under different aerosol conditions
The impact of mesh size and microphysics scheme on the representation of mid-level clouds in the ICON model in hilly and complex terrain
Finite domains cause bias in measured and modeled distributions of cloud sizes
A systematic evaluation of high-cloud controlling factors
Tracking precipitation features and associated large-scale environments over southeastern Texas
Revisiting the evolution of downhill thunderstorms over Beijing: a new perspective from a radar wind profiler mesonet
How well can persistent contrails be predicted? An update
Model analysis of biases in satellite diagnosed aerosol effect on cloud liquid water path
Dynamical imprints on precipitation cluster statistics across a hierarchy of high-resolution simulations
Potential impacts of marine fuel regulations on Arctic clouds and radiative feedbacks
Present-day correlations are insufficient to predict cloud albedo change by anthropogenic aerosols in E3SM v2
Simulations of primary and secondary ice production during an Arctic mixed-phase cloud case from the Ny-Ålesund Aerosol Cloud Experiment (NASCENT) campaign
Microphysical characteristics of precipitation within convective overshooting over East China observed by GPM DPR and ERA5
Effects of radiative cooling on advection fog over the northwest Pacific Ocean: observations and large-eddy simulations
Evaluating the Wegener–Bergeron–Findeisen process in ICON in large-eddy mode with in situ observations from the CLOUDLAB project
Aerosol-induced closure of marine cloud cells: enhanced effects in the presence of precipitation
Impact of ice multiplication on the cloud electrification of a cold-season thunderstorm: a numerical case study
Developing a climatological simplification of aerosols to enter the cloud microphysics of a global climate model
Interactions between trade wind clouds and local forcings over the Great Barrier Reef: a case study using convection-permitting simulations
Variability in the properties of the distribution of the relative humidity with respect to ice: implications for contrail formation
Simulating the seeder–feeder impacts on cloud ice and precipitation over the Alps
Can pollen affect precipitation?
Cloud response to co-condensation of water and organic vapors over the boreal forest
Distribution and morphology of non-persistent contrail and persistent contrail formation areas in ERA5
Connection of Surface Snowfall Bias to Cloud Phase Bias – Satellite Observations, ERA5, and CMIP6
Above-cloud concentrations of cloud condensation nuclei help to sustain some Arctic low-level clouds
Contrail formation on ambient aerosol particles for aircraft with hydrogen combustion: a box model trajectory study
Effects of intermittent aerosol forcing on the stratocumulus-to-cumulus transition
Cloud properties and their projected changes in CMIP models with low to high climate sensitivity
Water isotopic characterisation of the cloud–circulation coupling in the North Atlantic trades – Part 2: The imprint of the atmospheric circulation at different scales
Impact of urban land use on mean and heavy rainfall during the Indian summer monsoon
Florian Sauerland, Niels Souverijns, Anna Possner, Heike Wex, Preben Van Overmeiren, Alexander Mangold, Kwinten Van Weverberg, and Nicole van Lipzig
Atmos. Chem. Phys., 24, 13751–13768, https://doi.org/10.5194/acp-24-13751-2024, https://doi.org/10.5194/acp-24-13751-2024, 2024
Short summary
Short summary
We use a regional climate model, COSMO-CLM², enhanced with a module resolving aerosol processes, to study Antarctic clouds. We prescribe different concentrations of ice-nucleating particles to our model to assess how these clouds respond to concentration changes, validating results with cloud and aerosol observations from the Princess Elisabeth Antarctica station. Our results show that aerosol–cloud interactions vary with temperature, providing valuable insights into Antarctic cloud dynamics.
Yi Li, Xiaoli Liu, and Hengjia Cai
Atmos. Chem. Phys., 24, 13525–13540, https://doi.org/10.5194/acp-24-13525-2024, https://doi.org/10.5194/acp-24-13525-2024, 2024
Short summary
Short summary
The influence of different aerosol modes on cloud processes remains controversial. We modified the aerosol spectra and concentrations to simulate a warm stratiform cloud process in Jiangxi, China, using the WRF-SBM scheme. Research shows that different aerosol spectra have diverse effects on cloud droplet spectra, cloud development, and the correlation between dispersion (ε) and cloud physics quantities. Compared to cloud droplet concentration, ε is more sensitive to the volume radius.
Fabian Hoffmann, Franziska Glassmeier, and Graham Feingold
Atmos. Chem. Phys., 24, 13403–13412, https://doi.org/10.5194/acp-24-13403-2024, https://doi.org/10.5194/acp-24-13403-2024, 2024
Short summary
Short summary
Clouds constitute a major cooling influence on Earth's climate system by reflecting a large fraction of the incident solar radiation back to space. This ability is controlled by the number of cloud droplets, which is governed by the number of aerosol particles in the atmosphere, laying the foundation for so-called aerosol–cloud–climate interactions. In this study, a simple model to understand the effect of aerosol on cloud water is developed and applied.
Andrea Mosso, Thomas Hocking, and Thorsten Mauritsen
Atmos. Chem. Phys., 24, 12793–12806, https://doi.org/10.5194/acp-24-12793-2024, https://doi.org/10.5194/acp-24-12793-2024, 2024
Short summary
Short summary
Clouds play a crucial role in the Earth's energy balance, as they can either warm up or cool down the area they cover depending on their height and depth. They are expected to alter their behaviour under climate change, affecting the warming generated by greenhouse gases. This paper proposes a new method to estimate their overall effect on this warming by simulating a climate where clouds are transparent. Results show that with the model used, clouds have a stabilising effect on climate.
Tao Shi, Yuanjian Yang, Ping Qi, and Simone Lolli
Atmos. Chem. Phys., 24, 12807–12822, https://doi.org/10.5194/acp-24-12807-2024, https://doi.org/10.5194/acp-24-12807-2024, 2024
Short summary
Short summary
This paper explored the formation mechanisms of the amplified canopy urban heat island intensity (ΔCUHII) during heat wave (HW) periods in the megacity of Beijing from the perspectives of mountain–valley breeze and urban morphology. During the mountain breeze phase, high-rise buildings with lower sky view factors (SVFs) had a pronounced effect on the ΔCUHII. During the valley breeze phase, high-rise buildings exerted a dual influence on the ΔCUHII.
Yao-Sheng Chen, Jianhao Zhang, Fabian Hoffmann, Takanobu Yamaguchi, Franziska Glassmeier, Xiaoli Zhou, and Graham Feingold
Atmos. Chem. Phys., 24, 12661–12685, https://doi.org/10.5194/acp-24-12661-2024, https://doi.org/10.5194/acp-24-12661-2024, 2024
Short summary
Short summary
Marine stratocumulus cloud is a type of shallow cloud that covers the vast areas of Earth's surface. It plays an important role in Earth's energy balance by reflecting solar radiation back to space. We used numerical models to simulate a large number of marine stratocumuli with different characteristics. We found that how the clouds develop throughout the day is affected by the level of humidity in the air above the clouds and how closely the clouds connect to the ocean surface.
Alexei Korolev, Zhipeng Qu, Jason Milbrandt, Ivan Heckman, Mélissa Cholette, Mengistu Wolde, Cuong Nguyen, Greg M. McFarquhar, Paul Lawson, and Ann M. Fridlind
Atmos. Chem. Phys., 24, 11849–11881, https://doi.org/10.5194/acp-24-11849-2024, https://doi.org/10.5194/acp-24-11849-2024, 2024
Short summary
Short summary
The phenomenon of high ice water content (HIWC) occurs in mesoscale convective systems (MCSs) when a large number of small ice particles with typical sizes of a few hundred micrometers is found at high altitudes. It was found that secondary ice production in the vicinity of the melting layer plays a key role in the formation and maintenance of HIWC. This study presents a conceptual model of the formation of HIWC in tropical MCSs based on in situ observations and numerical simulation.
Puja Roy, Robert M. Rauber, and Larry Di Girolamo
Atmos. Chem. Phys., 24, 11653–11678, https://doi.org/10.5194/acp-24-11653-2024, https://doi.org/10.5194/acp-24-11653-2024, 2024
Short summary
Short summary
Cloud droplet temperature and lifetime impact cloud microphysical processes such as the activation of ice-nucleating particles. We investigate the thermal and radial evolution of supercooled cloud droplets and their surrounding environments with an aim to better understand observed enhanced ice formation at supercooled cloud edges. This analysis shows that the magnitude of droplet cooling during evaporation is greater than estimated from past studies, especially for drier environments.
Mathieu Lachapelle, Mélissa Cholette, and Julie M. Thériault
Atmos. Chem. Phys., 24, 11285–11304, https://doi.org/10.5194/acp-24-11285-2024, https://doi.org/10.5194/acp-24-11285-2024, 2024
Short summary
Short summary
Hazardous precipitation types such as ice pellets and freezing rain are difficult to predict because they are associated with complex microphysical processes. Using Predicted Particle Properties (P3), this work shows that secondary ice production processes increase the amount of ice pellets simulated while decreasing the amount of freezing rain. Moreover, the properties of the simulated precipitation compare well with those that were measured.
Andrew DeLaFrance, Lynn A. McMurdie, Angela K. Rowe, and Andrew J. Heymsfield
Atmos. Chem. Phys., 24, 11191–11206, https://doi.org/10.5194/acp-24-11191-2024, https://doi.org/10.5194/acp-24-11191-2024, 2024
Short summary
Short summary
Using a numerical model, the process whereby falling ice crystals accumulate supercooled liquid water droplets is investigated to elucidate its effects on radar-based measurements and surface precipitation. We demonstrate that this process accounted for 55% of the precipitation during a wintertime storm and is uniquely discernable from other ice crystal growth processes in Doppler velocity measurements. These results have implications for measurements from airborne and spaceborne platforms.
Toshi Matsui, Daniel Hernandez-Deckers, Scott E. Giangrande, Thiago S. Biscaro, Ann Fridlind, and Scott Braun
Atmos. Chem. Phys., 24, 10793–10814, https://doi.org/10.5194/acp-24-10793-2024, https://doi.org/10.5194/acp-24-10793-2024, 2024
Short summary
Short summary
Using computer simulations and real measurements, we discovered that storms over the Amazon were narrower but more intense during the dry periods, producing heavier rain and more ice particles in the clouds. Our research showed that cumulus bubbles played a key role in creating these intense storms. This study can improve the representation of the effect of continental and ocean environments on tropical regions' rainfall patterns in simulations.
Ravi Kumar Reddy Addula, Ingrid de Almeida Ribeiro, Valeria Molinero, and Baron Peters
Atmos. Chem. Phys., 24, 10833–10848, https://doi.org/10.5194/acp-24-10833-2024, https://doi.org/10.5194/acp-24-10833-2024, 2024
Short summary
Short summary
Ice nucleation from supercooled droplets is important in many weather and climate modeling efforts. For experiments where droplets are steadily supercooled from the freezing point, our work combines nucleation theory and survival probability analysis to predict the nucleation spectrum, i.e., droplet freezing probabilities vs. temperature. We use the new framework to extract approximately consistent rate parameters from experiments with different cooling rates and droplet sizes.
Jianhao Zhang, Yao-Sheng Chen, Takanobu Yamaguchi, and Graham Feingold
Atmos. Chem. Phys., 24, 10425–10440, https://doi.org/10.5194/acp-24-10425-2024, https://doi.org/10.5194/acp-24-10425-2024, 2024
Short summary
Short summary
Quantifying cloud response to aerosol perturbations presents a major challenge in understanding the human impact on climate. Using a large number of process-resolving simulations of marine stratocumulus, we show that solar heating drives a negative feedback mechanism that buffers the persistent negative trend in cloud water adjustment after sunrise. This finding has implications for the dependence of the cloud cooling effect on the timing of deliberate aerosol perturbations.
Aaron Wang, Steve Krueger, Sisi Chen, Mikhail Ovchinnikov, Will Cantrell, and Raymond A. Shaw
Atmos. Chem. Phys., 24, 10245–10260, https://doi.org/10.5194/acp-24-10245-2024, https://doi.org/10.5194/acp-24-10245-2024, 2024
Short summary
Short summary
We employ two methods to examine a laboratory experiment on clouds with both ice and liquid phases. The first assumes well-mixed properties; the second resolves the spatial distribution of turbulence and cloud particles. Results show that while the trends in mean properties generally align, when turbulence is resolved, liquid droplets are not fully depleted by ice due to incomplete mixing. This underscores the threshold of ice mass fraction in distinguishing mixed-phase clouds from ice clouds.
Theresa Kiszler, Davide Ori, and Vera Schemann
Atmos. Chem. Phys., 24, 10039–10053, https://doi.org/10.5194/acp-24-10039-2024, https://doi.org/10.5194/acp-24-10039-2024, 2024
Short summary
Short summary
Microphysical processes impact the phase-partitioning of clouds. In this study we evaluate these processes while focusing on low-level Arctic clouds. To achieve this we used an extensive simulation set in combination with a new diagnostic tool. This study presents our findings on the relevance of these processes and their behaviour under different thermodynamic regimes.
Shuaiqi Tang, Hailong Wang, Xiang-Yu Li, Jingyi Chen, Armin Sorooshian, Xubin Zeng, Ewan Crosbie, Kenneth L. Thornhill, Luke D. Ziemba, and Christiane Voigt
Atmos. Chem. Phys., 24, 10073–10092, https://doi.org/10.5194/acp-24-10073-2024, https://doi.org/10.5194/acp-24-10073-2024, 2024
Short summary
Short summary
We examined marine boundary layer clouds and their interactions with aerosols in the E3SM single-column model (SCM) for a case study. The SCM shows good agreement when simulating the clouds with high-resolution models. It reproduces the relationship between cloud droplet and aerosol particle number concentrations as produced in global models. However, the relationship between cloud liquid water and droplet number concentration is different, warranting further investigation.
Suf Lorian and Guy Dagan
Atmos. Chem. Phys., 24, 9323–9338, https://doi.org/10.5194/acp-24-9323-2024, https://doi.org/10.5194/acp-24-9323-2024, 2024
Short summary
Short summary
We examine the combined effect of aerosols and sea surface temperature (SST) on clouds under equilibrium conditions in cloud-resolving radiative–convective equilibrium simulations. We demonstrate that the aerosol–cloud interaction's effect on top-of-atmosphere energy gain strongly depends on the underlying SST, while the shortwave part of the spectrum is significantly more sensitive to SST. Furthermore, increasing aerosols influences upper-troposphere stability and thus anvil cloud fraction.
Cornelis Schwenk and Annette Miltenberger
EGUsphere, https://doi.org/10.5194/egusphere-2024-2402, https://doi.org/10.5194/egusphere-2024-2402, 2024
Short summary
Short summary
Warm conveyor belts (WCBs) transport moisture into the upper atmosphere, where it acts as a greenhouse gas. This transport is not well understood, and the role of rapidly rising air is unclear. We simulate a WCB and look at fast and slow rising air to see how moisture is (differently) transported. We find that for fast ascending air more ice particles reach higher into the atmosphere, and that frozen cloud particles are removed differently than during slow ascent, which has more water vapour.
Jianqi Zhao, Xiaoyan Ma, Johannes Quaas, and Hailing Jia
Atmos. Chem. Phys., 24, 9101–9118, https://doi.org/10.5194/acp-24-9101-2024, https://doi.org/10.5194/acp-24-9101-2024, 2024
Short summary
Short summary
We explore aerosol–cloud interactions in liquid-phase clouds over eastern China and its adjacent ocean in winter based on the WRF-Chem–SBM model, which couples a spectral-bin microphysics scheme and an online aerosol module. Our study highlights the differences in aerosol–cloud interactions between land and ocean and between precipitation clouds and non-precipitation clouds, and it differentiates and quantifies their underlying mechanisms.
Shiye Huang, Jing Yang, Qian Chen, Jiaojiao Li, Qilin Zhang, and Fengxia Guo
EGUsphere, https://doi.org/10.5194/egusphere-2024-2013, https://doi.org/10.5194/egusphere-2024-2013, 2024
Short summary
Short summary
Aerosol and secondary ice production are both vital to charge separation in thunderstorms, but the relative importance of different SIP processes to cloud electrification under different aerosol conditions is not well understood. In this study, we show in a clean environment, the shattering of freezing drops has the greatest effect on the charging rate, while in a polluted environment, both rime splintering and the shattering of freezing drops have a significant effect on cloud electrification.
Nadja Omanovic, Brigitta Goger, and Ulrike Lohmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-1989, https://doi.org/10.5194/egusphere-2024-1989, 2024
Short summary
Short summary
We evaluated the numerical weather model ICON in two horizontal resolutions with two bulk microphysics schemes over hilly and complex terrain in Switzerland and Austria, respectively. We focused on the model's ability of simulating mid-level clouds in summer and winter. By combining observational data from two different field campaigns we show that both an increase in horizontal resolution and a more advanced cloud microphysics scheme is strongly beneficial for the cloud representation.
Thomas D. DeWitt and Timothy J. Garrett
Atmos. Chem. Phys., 24, 8457–8472, https://doi.org/10.5194/acp-24-8457-2024, https://doi.org/10.5194/acp-24-8457-2024, 2024
Short summary
Short summary
There is considerable disagreement on mathematical parameters that describe the number of clouds of different sizes as well as the size of the largest clouds. Both are key defining characteristics of Earth's atmosphere. A previous study provided an incorrect explanation for the disagreement. Instead, the disagreement may be explained by prior studies not properly accounting for the size of their measurement domain. We offer recommendations for how the domain size can be accounted for.
Sarah Wilson Kemsley, Paulo Ceppi, Hendrik Andersen, Jan Cermak, Philip Stier, and Peer Nowack
Atmos. Chem. Phys., 24, 8295–8316, https://doi.org/10.5194/acp-24-8295-2024, https://doi.org/10.5194/acp-24-8295-2024, 2024
Short summary
Short summary
Aiming to inform parameter selection for future observational constraint analyses, we incorporate five candidate meteorological drivers specifically targeting high clouds into a cloud controlling factor framework within a range of spatial domain sizes. We find a discrepancy between optimal domain size for predicting locally and globally aggregated cloud radiative anomalies and identify upper-tropospheric static stability as an important high-cloud controlling factor.
Ye Liu, Yun Qian, Larry K. Berg, Zhe Feng, Jianfeng Li, Jingyi Chen, and Zhao Yang
Atmos. Chem. Phys., 24, 8165–8181, https://doi.org/10.5194/acp-24-8165-2024, https://doi.org/10.5194/acp-24-8165-2024, 2024
Short summary
Short summary
Deep convection under various large-scale meteorological patterns (LSMPs) shows distinct precipitation features. In southeastern Texas, mesoscale convective systems (MCSs) contribute significantly to precipitation year-round, while isolated deep convection (IDC) is prominent in summer and fall. Self-organizing maps (SOMs) reveal convection can occur without large-scale lifting or moisture convergence. MCSs and IDC events have distinct life cycles influenced by specific LSMPs.
Xiaoran Guo, Jianping Guo, Tianmeng Chen, Ning Li, Fan Zhang, and Yuping Sun
Atmos. Chem. Phys., 24, 8067–8083, https://doi.org/10.5194/acp-24-8067-2024, https://doi.org/10.5194/acp-24-8067-2024, 2024
Short summary
Short summary
The prediction of downhill thunderstorms (DSs) remains elusive. We propose an objective method to identify DSs, based on which enhanced and dissipated DSs are discriminated. A radar wind profiler (RWP) mesonet is used to derive divergence and vertical velocity. The mid-troposphere divergence and prevailing westerlies enhance the intensity of DSs, whereas low-level divergence is observed when the DS dissipates. The findings highlight the key role that an RWP mesonet plays in the evolution of DSs.
Sina Hofer, Klaus Gierens, and Susanne Rohs
Atmos. Chem. Phys., 24, 7911–7925, https://doi.org/10.5194/acp-24-7911-2024, https://doi.org/10.5194/acp-24-7911-2024, 2024
Short summary
Short summary
We try to improve the forecast of ice supersaturation (ISS) and potential persistent contrails using data on dynamical quantities in addition to temperature and relative humidity in a modern kind of regression model. Although the results are improved, they are not good enough for flight routing. The origin of the problem is the strong overlap of probability densities conditioned on cases with and without ice-supersaturated regions (ISSRs) in the important range of 70–100 %.
Harri Kokkola, Juha Tonttila, Silvia Calderón, Sami Romakkaniemi, Antti Lipponen, Aapo Peräkorpi, Tero Mielonen, Edward Gryspeerdt, Timo H. Virtanen, Pekka Kolmonen, and Antti Arola
EGUsphere, https://doi.org/10.5194/egusphere-2024-1964, https://doi.org/10.5194/egusphere-2024-1964, 2024
Short summary
Short summary
Understanding how atmospheric aerosols affect clouds is a scientific challenge. One question is how aerosols affects the amount cloud water. We used a cloud-scale model to study these effects on marine clouds. The study showed that variations in cloud properties and instrument noise can cause bias in satellite derived cloud water content. However, our results suggest that for similar weather conditions with well-defined aerosol concentrations, satellite data can reliably track these effects.
Claudia Christine Stephan and Bjorn Stevens
EGUsphere, https://doi.org/10.5194/egusphere-2024-2020, https://doi.org/10.5194/egusphere-2024-2020, 2024
Short summary
Short summary
Tropical precipitation cluster area and intensity distributions follow power laws, but the physical processes responsible for this behavior remain unknown. We analyze global simulations that realistically represent precipitation processes. We consider Earth-like planets as well as virtual planets to realize different types of large-scale dynamics. Our finding is that power laws in Earth’s precipitation cluster statistics stem from the robust power laws in Earth’s atmospheric wind field.
Luís Filipe Escusa dos Santos, Hannah C. Frostenberg, Alejandro Baró Pérez, Annica M. L. Ekman, Luisa Ickes, and Erik S. Thomson
EGUsphere, https://doi.org/10.5194/egusphere-2024-1891, https://doi.org/10.5194/egusphere-2024-1891, 2024
Short summary
Short summary
The Arctic is experiencing enhanced surface warming. The observed decline in Arctic sea-ice extent is projected to lead to an increase in Arctic shipping activity which may lead to further climatic feedbacks. We investigate, using an atmospheric model and results from marine engine experiments which focused on fuel sulfur content reduction and exhaust wet scrubbing, how ship exhaust particles influence the properties of Arctic clouds. Implications for radiative surface processes are discussed.
Naser Mahfouz, Johannes Mülmenstädt, and Susannah Burrows
Atmos. Chem. Phys., 24, 7253–7260, https://doi.org/10.5194/acp-24-7253-2024, https://doi.org/10.5194/acp-24-7253-2024, 2024
Short summary
Short summary
Climate models are our primary tool to probe past, present, and future climate states unlike the more recent observation record. By constructing a hypothetical model configuration, we show that present-day correlations are insufficient to predict a persistent uncertainty in climate projection (how much sun because clouds will reflect in a changing climate). We hope our result will contribute to the scholarly conversation on better utilizing observations to constrain climate uncertainties.
Britta Schäfer, Robert Oscar David, Paraskevi Georgakaki, Julie Thérèse Pasquier, Georgia Sotiropoulou, and Trude Storelvmo
Atmos. Chem. Phys., 24, 7179–7202, https://doi.org/10.5194/acp-24-7179-2024, https://doi.org/10.5194/acp-24-7179-2024, 2024
Short summary
Short summary
Mixed-phase clouds, i.e., clouds consisting of ice and supercooled water, are very common in the Arctic. However, how these clouds form is often not correctly represented in standard weather models. We show that both ice crystal concentrations in the cloud and precipitation from the cloud can be improved in the model when aerosol concentrations are prescribed from observations and when more processes for ice multiplication, i.e., the production of new ice particles from existing ice, are added.
Nan Sun, Gaopeng Lu, and Yunfei Fu
Atmos. Chem. Phys., 24, 7123–7135, https://doi.org/10.5194/acp-24-7123-2024, https://doi.org/10.5194/acp-24-7123-2024, 2024
Short summary
Short summary
Microphysical characteristics of convective overshooting are essential but poorly understood, and we examine them by using the latest data. (1) Convective overshooting events mainly occur over NC (Northeast China) and northern MEC (Middle and East China). (2) Radar reflectivity of convective overshooting over NC accounts for a higher proportion below the zero level, while the opposite is the case for MEC and SC (South China). (3) Droplets of convective overshooting are large but sparse.
Liu Yang, Saisai Ding, Jing-Wu Liu, and Su-Ping Zhang
Atmos. Chem. Phys., 24, 6809–6824, https://doi.org/10.5194/acp-24-6809-2024, https://doi.org/10.5194/acp-24-6809-2024, 2024
Short summary
Short summary
Advection fog occurs when warm and moist air moves over a cold sea surface. In this situation, the temperature of the foggy air usually drops below the sea surface temperature (SST), particularly at night. High-resolution simulations show that the cooling effect of longwave radiation from the top of the fog layer permeates through the fog, resulting in a cooling of the surface air below SST. This study emphasizes the significance of monitoring air temperature to enhance sea fog forecasting.
Nadja Omanovic, Sylvaine Ferrachat, Christopher Fuchs, Jan Henneberger, Anna J. Miller, Kevin Ohneiser, Fabiola Ramelli, Patric Seifert, Robert Spirig, Huiying Zhang, and Ulrike Lohmann
Atmos. Chem. Phys., 24, 6825–6844, https://doi.org/10.5194/acp-24-6825-2024, https://doi.org/10.5194/acp-24-6825-2024, 2024
Short summary
Short summary
We present simulations with a high-resolution numerical weather prediction model to study the growth of ice crystals in low clouds following glaciogenic seeding. We show that the simulated ice crystals grow slower than observed and do not consume as many cloud droplets as measured in the field. This may have implications for forecasting precipitation, as the ice phase is crucial for precipitation at middle and high latitudes.
Matthew W. Christensen, Peng Wu, Adam C. Varble, Heng Xiao, and Jerome D. Fast
Atmos. Chem. Phys., 24, 6455–6476, https://doi.org/10.5194/acp-24-6455-2024, https://doi.org/10.5194/acp-24-6455-2024, 2024
Short summary
Short summary
Clouds are essential to keep Earth cooler by reflecting sunlight back to space. We show that an increase in aerosol concentration suppresses precipitation in clouds, causing them to accumulate water and expand in a polluted environment with stronger turbulence and radiative cooling. This process enhances their reflectance by 51 %. It is therefore prudent to account for cloud fraction changes in assessments of aerosol–cloud interactions to improve predictions of climate change.
Jing Yang, Shiye Huang, Tianqi Yang, Qilin Zhang, Yuting Deng, and Yubao Liu
Atmos. Chem. Phys., 24, 5989–6010, https://doi.org/10.5194/acp-24-5989-2024, https://doi.org/10.5194/acp-24-5989-2024, 2024
Short summary
Short summary
This study contributes to filling the dearth of understanding the impacts of different secondary ice production (SIP) processes on the cloud electrification in cold-season thunderstorms. The results suggest that SIP, especially the rime-splintering process and the shattering of freezing drops, has significant impacts on the charge structure of the storm. In addition, the modeled radar composite reflectivity and flash rate are improved after implementing the SIP processes in the model.
Ulrike Proske, Sylvaine Ferrachat, and Ulrike Lohmann
Atmos. Chem. Phys., 24, 5907–5933, https://doi.org/10.5194/acp-24-5907-2024, https://doi.org/10.5194/acp-24-5907-2024, 2024
Short summary
Short summary
Climate models include treatment of aerosol particles because these influence clouds and radiation. Over time their representation has grown increasingly detailed. This complexity may hinder our understanding of model behaviour. Thus here we simplify the aerosol representation of our climate model by prescribing mean concentrations, which saves run time and helps to discover unexpected model behaviour. We conclude that simplifications provide a new perspective for model study and development.
Wenhui Zhao, Yi Huang, Steven Siems, Michael Manton, and Daniel Harrison
Atmos. Chem. Phys., 24, 5713–5736, https://doi.org/10.5194/acp-24-5713-2024, https://doi.org/10.5194/acp-24-5713-2024, 2024
Short summary
Short summary
We studied how shallow clouds and rain behave over the Great Barrier Reef (GBR) using a detailed weather model. We found that the shape of the land, especially mountains, and particles in the air play big roles in influencing these clouds. Surprisingly, the sea's temperature had a smaller effect. Our research helps us understand the GBR's climate and how various factors can influence it, where the importance of the local cloud in thermal coral bleaching has recently been identified.
Sidiki Sanogo, Olivier Boucher, Nicolas Bellouin, Audran Borella, Kevin Wolf, and Susanne Rohs
Atmos. Chem. Phys., 24, 5495–5511, https://doi.org/10.5194/acp-24-5495-2024, https://doi.org/10.5194/acp-24-5495-2024, 2024
Short summary
Short summary
Relative humidity relative to ice (RHi) is a key variable in the formation of cirrus clouds and contrails. This study shows that the properties of the probability density function of RHi differ between the tropics and higher latitudes. In line with RHi and temperature variability, aircraft are likely to produce more contrails with bioethanol and liquid hydrogen as fuel. The impact of this fuel change decreases with decreasing pressure levels but increases from high latitudes to the tropics.
Zane Dedekind, Ulrike Proske, Sylvaine Ferrachat, Ulrike Lohmann, and David Neubauer
Atmos. Chem. Phys., 24, 5389–5404, https://doi.org/10.5194/acp-24-5389-2024, https://doi.org/10.5194/acp-24-5389-2024, 2024
Short summary
Short summary
Ice particles precipitating into lower clouds from an upper cloud, the seeder–feeder process, can enhance precipitation. A numerical modeling study conducted in the Swiss Alps found that 48 % of observed clouds were overlapping, with the seeder–feeder process occurring in 10 % of these clouds. Inhibiting the seeder–feeder process reduced the surface precipitation and ice particle growth rates, which were further reduced when additional ice multiplication processes were included in the model.
Marje Prank, Juha Tonttila, Xiaoxia Shang, Sami Romakkaniemi, and Tomi Raatikainen
EGUsphere, https://doi.org/10.5194/egusphere-2024-876, https://doi.org/10.5194/egusphere-2024-876, 2024
Short summary
Short summary
Large primary bioparticles such as pollen can be abundant in the atmosphere. In humid conditions pollens can rupture and release a large number of fine sub-pollen particles (SPPs). The paper investigates what kind of birch pollen concentrations are needed for the pollen and SPPs to start playing a noticeable role in cloud processes and alter precipitation formation. In the studied cases only the largest observed pollen concentrations were able to noticeably alter the precipitation formation.
Liine Heikkinen, Daniel G. Partridge, Sara Blichner, Wei Huang, Rahul Ranjan, Paul Bowen, Emanuele Tovazzi, Tuukka Petäjä, Claudia Mohr, and Ilona Riipinen
Atmos. Chem. Phys., 24, 5117–5147, https://doi.org/10.5194/acp-24-5117-2024, https://doi.org/10.5194/acp-24-5117-2024, 2024
Short summary
Short summary
The organic vapor condensation with water vapor (co-condensation) in rising air below clouds is modeled in this work over the boreal forest because the forest air is rich in organic vapors. We show that the number of cloud droplets can increase by 20 % if considering co-condensation. The enhancements are even larger if the air contains many small, naturally produced aerosol particles. Such conditions are most frequently met in spring in the boreal forest.
Kevin Wolf, Nicolas Bellouin, and Olivier Boucher
Atmos. Chem. Phys., 24, 5009–5024, https://doi.org/10.5194/acp-24-5009-2024, https://doi.org/10.5194/acp-24-5009-2024, 2024
Short summary
Short summary
The contrail formation potential and its tempo-spatial distribution are estimated for the North Atlantic flight corridor. Meteorological conditions of temperature and relative humidity are taken from the ERA5 re-analysis and IAGOS. Based on IAGOS flight tracks, crossing length, size, orientation, frequency of occurrence, and overlap of persistent contrail formation areas are determined. The presented conclusions might provide a guide for statistical flight track optimization to reduce contrails.
Franziska Hellmuth, Tim Carlsen, Anne Sophie Daloz, Robert Oscar David, and Trude Storelvmo
EGUsphere, https://doi.org/10.5194/egusphere-2024-754, https://doi.org/10.5194/egusphere-2024-754, 2024
Short summary
Short summary
This article compares the occurrence of supercooled liquid-containing clouds (sLCCs) and their link to surface snowfall in CloudSat-CALIPSO, ERA5, and CMIP6 models. Significant discrepancies were found, with ERA5 and CMIP6 consistently overestimating sLCC and snowfall frequency. This bias is likely due to cloud microphysics parameterization. This conclusion has implications for accurately representing cloud phase and snowfall in future climate projections.
Lucas J. Sterzinger and Adele L. Igel
Atmos. Chem. Phys., 24, 3529–3540, https://doi.org/10.5194/acp-24-3529-2024, https://doi.org/10.5194/acp-24-3529-2024, 2024
Short summary
Short summary
Using idealized large eddy simulations, we find that clouds forming in the Arctic in environments with low concentrations of aerosol particles may be sustained by mixing in new particles through the cloud top. Observations show that higher concentrations of these particles regularly exist above cloud top in concentrations that are sufficient to promote this sustenance.
Andreas Bier, Simon Unterstrasser, Josef Zink, Dennis Hillenbrand, Tina Jurkat-Witschas, and Annemarie Lottermoser
Atmos. Chem. Phys., 24, 2319–2344, https://doi.org/10.5194/acp-24-2319-2024, https://doi.org/10.5194/acp-24-2319-2024, 2024
Short summary
Short summary
Using hydrogen as aviation fuel affects contrails' climate impact. We study contrail formation behind aircraft with H2 combustion. Due to the absence of soot emissions, contrail ice crystals are assumed to form only on ambient particles mixed into the plume. The ice crystal number, which strongly varies with temperature and aerosol number density, is decreased by more than 80 %–90 % compared to kerosene contrails. However H2 contrails can form at lower altitudes due to higher H2O emissions.
Prasanth Prabhakaran, Fabian Hoffmann, and Graham Feingold
Atmos. Chem. Phys., 24, 1919–1937, https://doi.org/10.5194/acp-24-1919-2024, https://doi.org/10.5194/acp-24-1919-2024, 2024
Short summary
Short summary
In this study, we explore the impact of deliberate aerosol perturbation in the northeast Pacific region using large-eddy simulations. Our results show that cloud reflectivity is sensitive to the aerosol sprayer arrangement in the pristine system, whereas in the polluted system it is largely proportional to the total number of aerosol particles injected. These insights would aid in assessing the efficiency of various aerosol injection strategies for climate intervention applications.
Lisa Bock and Axel Lauer
Atmos. Chem. Phys., 24, 1587–1605, https://doi.org/10.5194/acp-24-1587-2024, https://doi.org/10.5194/acp-24-1587-2024, 2024
Short summary
Short summary
Climate model simulations still show a large range of effective climate sensitivity (ECS) with high uncertainties. An important contribution to ECS is cloud climate feedback. We investigate the representation of cloud physical and radiative properties from Coupled Model Intercomparison Project models grouped by ECS. We compare the simulated cloud properties of today’s climate from three ECS groups and quantify how the projected changes in cloud properties and cloud radiative effects differ.
Leonie Villiger and Franziska Aemisegger
Atmos. Chem. Phys., 24, 957–976, https://doi.org/10.5194/acp-24-957-2024, https://doi.org/10.5194/acp-24-957-2024, 2024
Short summary
Short summary
Three numerical simulations performed with an isotope-enabled weather forecast model are used to investigate the cloud–circulation coupling between shallow trade-wind cumulus clouds and atmospheric circulations on different scales. It is shown that stable water isotopes near cloud base in the tropics reflect (1) the diel cycle of the atmospheric circulation, which drives the formation and dissipation of clouds, and (2) changes in the large-scale circulation over the North Atlantic.
Renaud Falga and Chien Wang
Atmos. Chem. Phys., 24, 631–647, https://doi.org/10.5194/acp-24-631-2024, https://doi.org/10.5194/acp-24-631-2024, 2024
Short summary
Short summary
The impact of urban land use on regional meteorology and rainfall during the Indian summer monsoon has been assessed in this study. Using a cloud-resolving model centered around Kolkata, we have shown that the urban heat island effect led to a rainfall enhancement via the amplification of convective activity, especially during the night. Furthermore, the results demonstrated that the kinetic effect of the city induced the initiation of a nighttime storm.
Cited articles
Bailey, M. P. and Hallett, J.: A comprehensive habit diagram for atmospheric ice crystals: Confirmation from the laboratory, AIRS II, and other field studies, J. Atmos. Sci., 66, 2888–2899, https://doi.org/10.1175/2009JAS2883.1, 2009.
Böhm, J. P.: A general hydrodynamic theory for mixed-phase microphysics. Part I: Drag and fall speed of hydrometeors, Atmos. Res., 27, 253–274, https://doi.org/10.1016/0169-8095(92)90035-9, 1992.
Breed, D., Rasmussen, R., Weeks, C., Boe, B., and Deshler, T.: Evaluating winter orographic cloud seeding: Design of the Wyoming Weather Modification Pilot Project (WWMPP), J. Appl. Meteorol. Clim., 53, 282–299, https://doi.org/10.1175/JAMC-D-13-0128.1, 2014.
Caro, D., Wobrock, W., Flossmann, A. I., and Chaumerliac, N.: A two-moment parameterization of aerosol nucleation and impaction scavenging for a warm cloud microphysics: Description and results from a two-dimensional simulation, Atmos. Res., 70, 171–208, 2004.
Chen, J.-P. and Lamb, D.: The theoretical basis for the parameterization of ice crystal habits: Growth by vapor deposition, J. Atmos. Sci., 51, 1206–1222, https://doi.org/10.1175/1520-0469(1994)051<1206:TTBFTP>2.0.CO;2, 1994.
Chu, X., Xue, L., Geerts, B., Rasmussen, R., and Breed, D.: A case study of radar observations and WRF LES simulations of the impact of ground-based glaciogenic seeding on orographic clouds and precipitation. Part I: Observations and model validations, J. Appl. Meteorol. Clim., 53, 2264–2286, https://doi.org/10.1175/JAMC-D-14-0017.1, 2014.
DeMott, P. J.: Quantitative descriptions of ice formation mechanisms of silver iodide-type aerosols, Atmos. Res., 38, 63–99, https://doi.org/10.1016/0169-8095(94)00088-U, 1995.
Deshler, T., Reynolds, D. W., and Huggins, A. W.: Physical response of winter orographic clouds over the Sierra Nevada to airborne seeding using dry ice or silver iodide, J. Appl. Meteor., 29, 288–330, https://doi.org/10.1175/1520-0450(1990)029<0288:PROWOC>2.0.CO;2, 1990.
Dong, X., Zhao, C., Yang, Y., Wang, Y., Sun, Y., and Fan, R.: Distinct change of supercooled liquid cloud properties by aerosols from an aircraft-based seeding experiment, Earth and Space Science, 7, e2020EA001196, https://doi.org/10.1029/2020EA001196, 2020.
Dong, X. B., Zhao, C. F., Huang, Z. C., Mai, R., Lv, F., Xue, X., Zhang, X., Hou, S., Yang, Y., Yang, Y., and Sun, Y.: Increase of precipitation by cloud seeding observed from a case study in November 2020 over Shijiazhuang, China, Atmos. Res., 262, 105766, https://doi.org/10.1016/j.atmosres.2021.105766, 2021.
French, J. R., Friedrich, K., Tessendorf, S. A., Rauber, R. M., Geerts, B., Rasmussen, R. M., Xue, L., Kunkel, M. L., and Blestrud, D. R.: Precipitation formation from orographic cloud seeding, P. Natl. Acad. Sci. USA, 115, 1168–1173, https://doi.org/10.1073/pnas.1716995115, 2018.
Friedrich, K., Ikeda K., Tessendorf S. A., French, J. R., Rauber, R., M., Geerts, B., Xue L., Rasmussen, R. M., Blestrud, D. R., Kunkel, M. L., Dawson, N., and Parkinson, S.: Quantifying snowfall from orographic cloud seeding, P. Natl. Acad. Sci. USA, 117, 5190–5195, https://doi.org/10.1073/pnas.1917204117, 2020.
Friedrich, K., French, J., Tessendorf, S., Hatt, M., Weeks, C., Rauber, R., Geerts, B., Xue, L., Rasmussen, R., Blestrud, D., Kunkel, M., Dawson, N., and Parkinson, S.: Microphysical characteristics and evolution of seeded orographic clouds, J. Appl. Meteorol. Clim., 60, 909–934, https://doi.org/10.1175/JAMC-D-20-0206.1, 2021.
Fukuta, N. and Takahashi, T. The growth of atmospheric ice crystals: A summary of findings in vertical supercooled cloud tunnel studies, J. Atmos. Sci., 56, 1963–1979, https://doi.org/10.1175/1520-0469(1999)056<1963:TGOAIC>2.0.CO;2, 1999.
Geerts, B. and Rauber, R. M.: Glaciogenic Seeding of Cold-Season Orographic Clouds to Enhance Precipitation: Status and Prospects, B. Am. Meteorol. Soc., 103, E2302–E2314, https://doi.org/10.1175/BAMS-D-21-0279.1, 2022.
Geerts, B., Pokharel, B., Friedrich, K., Breed, D., Rasmussen, R., Yang, Y., Miao, Q., Haimov, S., Boe, B., and Kalina, E.: The AgI Seeding Cloud Impact Investigation (ASCII) campaign 2012: Overview and preliminary results, J. Wea. Modif., 45, 24–43, https://doi.org/10.54782/jwm.v45i1.121, 2013.
Hall, W. D. and Pruppacher, H. R.: The survival of ice particles falling from cirrus clouds in subsaturated air, J. Atmos. Sci., 33, 1995–2006, https://doi.org/10.1175/1520-0469(1976)033<1995:TSOIPF>2.0.CO;2, 1976.
Harrington, J. Y., Sulia, K., and Morrison, H.: A method for adaptive habit prediction in bulk microphysical models. Part I: Theoretical development, J. Atmos. Sci., 70, 349–364, https://doi.org/10.1175/JAS-D-12-040.1, 2013.
Harrington, J. Y., Moyle, A., Hanson, L. E., and Morrison, H.: On Calculating Deposition Coefficients and Aspect-Ratio Evolution in Approximate Models of Ice Crystal Vapor Growth, J. Atmos. Sci., 76, 1609–1625, https://doi.org/10.1175/JAS-D-18-0319.1, 2019.
Henneberger, J., Ramelli, F., Spirig, R., Omanovic, N., Miller, A. J., Fuchs, C., Zhang, H., Bühl, J., Hervo, M., Kanji, Z. A., Ohneiser, K., Radenz, M., Rösch, M., Seifert, P., and Lohmann, U.: Seeding of Supercooled Low Stratus Clouds with a UAV to Study Microphysical Ice Processes: An Introduction to the CLOUDLAB Project, B. Am. Meteorol. Soc., 104, E1962–E1979, https://doi.org/10.1175/BAMS-D-22-0178.1, 2023.
Heymsfield, A. J.: A comparative study of the rates of development of potential graupel and hail embryos in High Plains storms, J. Atmos. Sci., 39, 2867–2897, https://doi.org/10.1175/1520-0469(1982)039<2867:ACSOTR>2.0.CO;2, 1982.
Heymsfield, A. J. and Westbrook, C. D.: Advances in the estimation of ice particle fall speeds using laboratory and field measurements, J. Atmos. Sci., 67, 2469–2482, https://doi.org/10.1175/2010JAS3379.1, 2010.
Hobbs, P. V., Lyons, J. H., Locatelli, J. D., Biswas, K. R., Radke, L. F., Weiss Sr., R. R., and Rangno, A. L.: Radar detection of cloud-seeding effects, Science, 213, 1250–1252, https://doi.org/10.1126/science.213.4513.1250, 1981.
Hua, S., Chen, B., He, H., Chen, Y., Liu, X., Yang, J.: Numerical simulation of the cloud seeding operation of a convective rainfall event occurred in Beijing, Atmos. Res., 304, 107386, https://doi.org/10.1016/j.atmosres.2024.107386, 2024.
Huggins, A. W.: Another wintertime cloud seeding case study with strong evidence of seeding effects, J. Wea. Modif., 39, 9–36, 2007.
Jiménez, P. A., Dudhia, J., González-Rouco, J. F., Navarro, J., Montávez, J. P., and García-Bustamante, E.: A Revised Scheme for the WRF Surface Layer Formulation, Mon. Weather Rev., 140, 898–918, https://doi.org/10.1175/MWR-D-11-00056.1, 2012.
Jing, X. and Geerts, B.: Dual-polarization radar data analysis of the impact of ground-based glaciogenic seeding on winter orographic clouds. Part II: Convective clouds, J. Appl. Meteorol. Clim., 54, 2099–2117, https://doi.org/10.1175/JAMC-D-15-0056.1, 2015.
Jing, X, Geerts, B., Friedrich, K., and Pokharel, B.: Dual-polarization radar data analysis of the impact of ground-based glaciogenic seeding on winter orographic clouds. Part I: Mostly stratiform clouds, J. Appl. Meteorol. Clim., 54, 1944–1969, https://doi.org/10.1175/JAMC-D-14-0257.1, 2015.
Jing, X., Geerts, B., and Boe, B.: The Extra-Area Effect of Orographic Cloud Seeding: Observational Evidence of Precipitation Enhancement Downwind of the Target Mountain, J. Appl. Meteorol. Clim., 55, 1409–1424, https://doi.org/10.1175/JAMC-D-15-0188.1, 2016.
Khain, A., Pokrovsky, A., Pinsky, M., Seifert, A., and Phillips, V.: Simulation of Effects of Atmospheric Aerosols on Deep Turbulent Convective Clouds Using a Spectral Microphysics Mixed-Phase Cumulus Cloud Model. Part I: Model Description and Possible Applications, J. Atmos. Sci., 61, 2963–2982, https://doi.org/10.1175/JAS-3350.1, 2004.
Korolev, A.: Limitations of the Wegener–Bergeron–Findeisen Mechanism in the Evolution of Mixed-Phase Clouds, J. Atmos. Sci., 64, 3372–3375, https://doi.org/10.1175/JAS4035.1, 2007.
Korolev, A. and Field, P. R.: The Effect of Dynamics on Mixed-Phase Clouds: Theoretical Considerations, J. Atmos. Sci., 65, 66–86, https://doi.org/10.1175/2007JAS2355.1, 2008.
Mace, G. Ackerman, G., T. P., Minnis, P., and Young, D. F.: Cirrus layer microphysical properties derived from surface-based millimeter radar and infrared interferometer data, J. Geophys. Res., 103, 23207–23216, https://doi.org/10.1029/98JD02117, 1998.
Manton, M. J. and Warren, L.: A confirmatory snowfall enhancement project in the snowy mountains of Australia. Part II: Primary and associated analyses, J. Appl. Meteorol. Clim., 50, 1448–1458, https://doi.org/10.1175/2011JAMC2660.1, 2011.
Marcolli, C., Nagare, B., Welti, A., and Lohmann, U.: Ice nucleation efficiency of AgI: review and new insights, Atmos. Chem. Phys., 16, 8915–8937, https://doi.org/10.5194/acp-16-8915-2016, 2016.
Mason, B. J.: The growth of ice crystals in a supercooled water cloud, Q., J. Roy. Meteor. Soc., 79, 104–111, https://doi.org/10.1002/qj.49707933909, 1953.
Meyers, M. P., DeMott, P. J., and Cotton, W. R.: A comparison of seeded and nonseeded orographic cloud simulations with an explicit cloud model, J. Appl. Meteor., 34, 834–846, 1995.
Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., and Clough, S. A.: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave, J. Geophys. Res.-Atmos., 102, 16663–16682, https://doi.org/10.1029/97JD00237, 1997.
NCAR MMM: Weather Research & Forecasting Model (WRF), UCAR [code], https://www2.mmm.ucar.edu/wrf/users/download/get_source.html (last access: 15 March 2023), 2023.
Omanovic, N., Ferrachat, S., Fuchs, C., Henneberger, J., Miller, A. J., Ohneiser, K., Ramelli, F., Seifert, P., Spirig, R., Zhang, H., and Lohmann, U.: Evaluating the Wegener–Bergeron–Findeisen process in ICON in large-eddy mode with in situ observations from the CLOUDLAB project, Atmos. Chem. Phys., 24, 6825–6844, https://doi.org/10.5194/acp-24-6825-2024, 2024.
Pinsky, M., Khain, A., and Korolev, A.: Theoretical Analysis of Liquid–Ice Interaction in the Unsaturated Environment with Application to the Problem of Homogeneous Mixing, J. Atmos. Sci., 75, 1045–1062, https://doi.org/10.1175/JAS-D-17-0228.1, 2018.
Pokharel, B., Geerts, B., and Jing, X.: The impact of ground-based glaciogenic seeding on orographic clouds and precipitation: A multisensor case study, J. Appl. Meteorol. Clim., 53, 890–909, https://doi.org/10.1175/JAMC-D-13-0290.1, 2014.
Qu, Y., Chen, B., Ming, J., Lynn, B. H., and Yang, M.-J.: Aerosol impacts on the structure, intensity, and precipitation of the landfalling Typhoon Saomai (2006), J. Geophys. Res.-Atmos., 122, 11825–11842, https://doi.org/10.1002/2017jd027151, 2017.
Ramelli, F., Henneberger, J., Fuchs, C., Miller, A. J., Omanovic, N., Spirig, R., Zhang, H., David, R. O., Ohneiser, K., Seifert, P., and Lohmann, U.: Repurposing weather modification for cloud research showcased by ice crystal growth, PNAS Nexus, 3, pgae402, https://doi.org/10.1093/pnasnexus/pgae402, 2024.
Rasmussen, R. M., Tessendorf, S. A., Xue, L., Weeks, C., Ikeda, K., Landolt, S., Breed, D., Deshler, T., and Lawrence, B.: Evaluation of the Wyoming Weather Modification Pilot Project (WWMPP) using two approaches: Traditional statistics and ensemble modeling, J. Appl. Meteorol. Clim., 57, 2639–2660, https://doi.org/10.1175/JAMC-D-17-0335.1, 2018.
Rauber, R. M., Geerts, B., Xue, L., French, J., Friedrich, K., Rasmussen, R. M., Tessendorf, S. A., Blestrud, D. R., Kunkel, M. L., and Parkinson, S.: Wintertime orographic cloud seeding-A review, J. Appl. Meteorol. Clim., 58, 2117–2140, https://doi.org/10.1175/JAMC-D-18-0341.1, 2019.
Takahashi, T., Endoh, T., Wakahama, G., and Fukuta, N.: Vapor diffusional growth of free-falling snow crystals between −3 °C and −23 °C, J. Meteorol. Soc. Jpn., 69, 15–30, 1991.
Tessendorf, S. A., French, J. R., Friedrich, K., Geerts, B., Rauber, R. M., Rasmussen, R. M., Xue, L., Ikeda, K., Blestrud, D. R., Kunkel, M. L., Parkinson, S., Snider, J. R., Aikins, J., Faber, S., Majewski, A., Grasmick, C., Bergmaier, P. T., Janiszeski, A., Springer, A., Weeks, C., Serke, D. J., and Bruintjes, R. : Transformational approach to winter orographic weather modification research: The SNOWIE project, B. Am. Meteorol. Soc., 100, 71–92, https://doi.org/10.1175/BAMS-D-17-0152.1, 2019.
Tewari, M., Chen, F., Wang, W., Dudhia, J., LeMone, M. A., Mitchell, K., Ek, M., Gayno, G., Wegiel, J., and Cuenca, R. H.: Implementation and verification of the unified NOAH land surface model in the WRF model, 20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction, 12–16 January 2004, Seattle, WA, USA, American Meteorological Society, 11–15, http://ams.confex.com/ams/84Annual/techprogram/paper_69061.htm (last access: 11 June 2024), 2004.
Wallace, J. M. and Hobbs, P. V.: Atmospheric Science, An Introductory Survey (International Geophysics), 2nd edn., Academic Press, 504 pp., ISBN 978-0127329505, 2006.
Wang, J., Yue, Z., Rosenfeld, D., Zhang, L., Zhu, Y., Dai, J., Yu, X., and Li, J.: The evolution of an AgI cloud-seeding track in central China as seen by a combination of radar, satellite, and disdrometer observations, J. Geophys. Res.-Atmos., 126, e2020JD033914, https://doi.org/10.1029/2020JD033914, 2021.
Wang, X., Dong, X., Yang, J., Wang, S., Hou, S., Zhang, X., and Yan, F.: Analysis of Physical Response to Cold Cloud Seeding over North China in Winter Based on Multisource Observations, Chinese Journal of Atmospheric Sciences, 48, 1–14, https://doi.org/10.3878/j.issn.1006-9895.2311.23061, 2024 (in Chinese).
Xue, L., Hashimoto, A., Murakami, M., Rasmussen, R., Tessendorf, S. A., Breed, D., Parkinson, S., Holbrook, P., and Blestrud, D.: Implementation of a silver iodide cloud seeding parameterization in WRF. Part I: Model description and idealized 2D sensitivity tests, J. Appl. Meteorol. Clim., 52, 1433–1457, https://doi.org/10.1175/JAMC-D-12-0148.1, 2013a.
Xue, L., Tessendorf, S. A., Nelson, E., Rasmussen, R., Breed, D., Parkinson, S., Holbrook, P., and Blestrud, D.: Implementation of a silver iodide cloud seeding parameterization in WRF. Part II: 3D simulations of actual seeding events and sensitivity tests, J. Appl. Meteorol. Clim., 52, 1458–1476, https://doi.org/10.1175/JAMC-D-12-0149.1, 2013b.
Xue, L., Weeks, C., Chen, S., Tessendorf, S. A., Rasmussen, R. M., Ikeda, K., Kosovic, B., Behringer, D., French, J. R., Friedrich, K., Zaremba, T. J., Rauber, R. M., Lackner, C. P., Geerts, B., Blestrud, D., Kunkel, M., Dawson, N., and Parkinson, S.: Comparison between Observed and Simulated AgI Seeding Impacts in a Well-Observed Case from the SNOWIE Field Program, J. Appl. Meteorol. Clim., 61, 345–367, https://doi.org/10.1175/JAMC-D-21-0103.1, 2022.
Yang, J.: Estimating AgI concentration, Zenodo [data set], https://doi.org/10.5281/zenodo.12798196, 2024
Yang, J., Wang, Z., Heymsfield, A., and Luo, T.: Liquid-ice mass partition in tropical maritime convective clouds, J. Atmos. Sci., 73, 4959–4978, https://doi.org/10.1175/JAS-D-15-0145.1, 2016a.
Yang, J., Wang, Z., Heymsfield, A. J., and French, J. R.: Characteristics of vertical air motion in isolated convective clouds, Atmos. Chem. Phys., 16, 10159–10173, https://doi.org/10.5194/acp-16-10159-2016, 2016b.
Yang, J., Qin, Z., Deng, Y., Chen, M., Jing, X., Yin, Y., Lu, C., Chen, B., Zhang, B., and Bao, X.: On the cluster scales of hydrometeors in mixed-phase stratiform clouds, Geophys. Res. Lett., 51, e2024GL108166, https://doi.org/10.1029/2024GL108166, 2024a.
Yang, J., Huang, S., Yang, T., Zhang, Q., Deng, Y., and Liu, Y.: Impact of ice multiplication on the cloud electrification of a cold-season thunderstorm: a numerical case study, Atmos. Chem. Phys., 24, 5989–6010, https://doi.org/10.5194/acp-24-5989-2024, 2024b.
Yue, Z., Yu, X., Liu, G., Wang, J., Dai, J., and Li, J.: Effect evaluation of an operational precipitation enhancement in cold clouds by aircraft, Acta Meteorol. Sin., 79, 853–863, https://doi.org/10.11676/qxxb2021.051, 2021 (in Chinese).
Zaremba, T. J., Rauber, R. M., Girolamo, L. D., Loveridge, J. R., and McFarquhar, G. M.: On the Radar Detection of Cloud Seeding Effects in Wintertime Orographic Cloud Systems, J. Appl. Meteorol. Clim., 63, 27–45, https://doi.org/10.1175/JAMC-D-22-0154.1, 2024.
Zhang, D., Wang, Z., Heymsfield, A., Fan, J., and Luo, T.: Ice Concentration Retrieval in Stratiform Mixed-Phase Clouds Using Cloud Radar Reflectivity Measurements and 1D Ice Growth Model Simulations, J. Atmos. Sci., 71, 3613–3635, https://doi.org/10.1175/JAS-D-13-0354.1, 2014.
Short summary
Detecting unambiguous signatures is vital for examining cloud-seeding impacts, but often, seeding signatures are immersed in natural variability. In this study, reflectivity changes induced by glaciogenic seeding using different AgI concentrations are investigated under various conditions, and a method is developed to estimate the AgI concentration needed to detect unambiguous seeding signatures. The results aid in operational seeding-based decision-making regarding the amount of AgI dispersed.
Detecting unambiguous signatures is vital for examining cloud-seeding impacts, but often,...
Altmetrics
Final-revised paper
Preprint