Articles | Volume 23, issue 15
https://doi.org/10.5194/acp-23-8837-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-8837-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Chemically distinct particle-phase emissions from highly controlled pyrolysis of three wood types
Center for Aerosol and Cloud Chemistry, Aerodyne Research, Inc.,
Billerica, MA 01821, USA
Mariam Fawaz
Department of Civil and Environmental Engineering, University of
Illinois Urbana-Champaign, Urbana, IL 61801, USA
Leah R. Williams
Center for Aerosol and Cloud Chemistry, Aerodyne Research, Inc.,
Billerica, MA 01821, USA
Tami Bond
Department of Mechanical Engineering, Colorado State University, Fort
Collins, CO 80523, USA
Department of Civil and Environmental Engineering, Colorado State
University, Fort Collins, CO 80521, USA
Timothy B. Onasch
Center for Sensor Systems and Technology, Aerodyne Research, Inc.,
Billerica, MA 01821, USA
Related authors
Mariam Fawaz, Anita Avery, Timothy B. Onasch, Leah R. Williams, and Tami C. Bond
Atmos. Chem. Phys., 21, 15605–15618, https://doi.org/10.5194/acp-21-15605-2021, https://doi.org/10.5194/acp-21-15605-2021, 2021
Short summary
Short summary
Biomass burning is responsible for 90 % of the emissions of primary organic aerosols to the atmosphere. Emissions from biomass burning sources are considered chaotic. In this work, we developed a controlled experimental approach to understand the controlling factors in emission. Our results showed that emissions are repeatable and deterministic and that emissions from wood can be constrained.
Dongwook Kim, Pedro Campuzano-Jost, Hongyu Guo, Douglas A. Day, Da Yang, Suresh Dhaniyala, Leah Williams, Philip Croteau, John Jayne, Douglas Worsnop, Rainer Volkamer, and Jose L. Jimenez
Aerosol Research, 3, 371–404, https://doi.org/10.5194/ar-3-371-2025, https://doi.org/10.5194/ar-3-371-2025, 2025
Short summary
Short summary
Quantitative real-time aerosol sampling on board aircraft platforms is challenging, especially at higher altitudes. Herein, we present comprehensive analyses of a new aircraft inlet system and tools for aerosol beam diagnostics for aerosol mass spectrometers (AMSs). The beam focusing of aerodynamic lenses and the thermal decomposition on the vaporizer were investigated. The new inlet system can be operated at higher altitudes while sampling aerosols over a broader size range than previous versions.
Chenjie Yu, Edouard Pangui, Kevin Tu, Mathieu Cazaunau, Maxime Feingesicht, Landsheere Xavier, Thierry Bourrianne, Vincent Michoud, Christopher Cantrell, Timothy B. Onasch, Andrew Freedman, and Paola Formenti
Atmos. Meas. Tech., 17, 3419–3437, https://doi.org/10.5194/amt-17-3419-2024, https://doi.org/10.5194/amt-17-3419-2024, 2024
Short summary
Short summary
To meet the requirements for measuring aerosol optical properties on airborne platforms and conducting dual-wavelength measurements, we introduced A2S2, an airborne dual-wavelength cavity-attenuated phase-shift single monitor. This study reports the results in the laboratory and an aircraft campaign over Paris and its surrounding regions. The results demonstrate A2S2's reliability in measuring aerosol optical properties at both wavelengths and its suitability for future aircraft campaigns.
Ryan N. Farley, Sonya Collier, Christopher D. Cappa, Leah R. Williams, Timothy B. Onasch, Lynn M. Russell, Hwajin Kim, and Qi Zhang
Atmos. Chem. Phys., 23, 15039–15056, https://doi.org/10.5194/acp-23-15039-2023, https://doi.org/10.5194/acp-23-15039-2023, 2023
Short summary
Short summary
Soot particles, also known as black carbon (BC), have important implications for global climate and regional air quality. After the particles are emitted, BC can be coated with other material, impacting the aerosol properties. We selectively measured the composition of particles containing BC to explore their sources and chemical transformations in the atmosphere. We focus on a persistent, multiday fog event in order to study the effects of chemical reactions occurring within liquid droplets.
Paul A. Barrett, Steven J. Abel, Hugh Coe, Ian Crawford, Amie Dobracki, James Haywood, Steve Howell, Anthony Jones, Justin Langridge, Greg M. McFarquhar, Graeme J. Nott, Hannah Price, Jens Redemann, Yohei Shinozuka, Kate Szpek, Jonathan W. Taylor, Robert Wood, Huihui Wu, Paquita Zuidema, Stéphane Bauguitte, Ryan Bennett, Keith Bower, Hong Chen, Sabrina Cochrane, Michael Cotterell, Nicholas Davies, David Delene, Connor Flynn, Andrew Freedman, Steffen Freitag, Siddhant Gupta, David Noone, Timothy B. Onasch, James Podolske, Michael R. Poellot, Sebastian Schmidt, Stephen Springston, Arthur J. Sedlacek III, Jamie Trembath, Alan Vance, Maria A. Zawadowicz, and Jianhao Zhang
Atmos. Meas. Tech., 15, 6329–6371, https://doi.org/10.5194/amt-15-6329-2022, https://doi.org/10.5194/amt-15-6329-2022, 2022
Short summary
Short summary
To better understand weather and climate, it is vital to go into the field and collect observations. Often measurements take place in isolation, but here we compared data from two aircraft and one ground-based site. This was done in order to understand how well measurements made on one platform compared to those made on another. Whilst this is easy to do in a controlled laboratory setting, it is more challenging in the real world, and so these comparisons are as valuable as they are rare.
Patrick Weber, Andreas Petzold, Oliver F. Bischof, Benedikt Fischer, Marcel Berg, Andrew Freedman, Timothy B. Onasch, and Ulrich Bundke
Atmos. Meas. Tech., 15, 3279–3296, https://doi.org/10.5194/amt-15-3279-2022, https://doi.org/10.5194/amt-15-3279-2022, 2022
Short summary
Short summary
In our laboratory closure study, we measured the full set of aerosol optical properties for different light-absorbing aerosols using a set of instruments.
Our key finding is that the extensive and intensive aerosol optical properties obtained agree with data from reference instruments, except the absorption Ångström exponent of externally mixed aerosols. The reported uncertainty in the single-scattering albedo fulfils the defined goals for Global Climate Observing System applications of 10 %.
Mariam Fawaz, Anita Avery, Timothy B. Onasch, Leah R. Williams, and Tami C. Bond
Atmos. Chem. Phys., 21, 15605–15618, https://doi.org/10.5194/acp-21-15605-2021, https://doi.org/10.5194/acp-21-15605-2021, 2021
Short summary
Short summary
Biomass burning is responsible for 90 % of the emissions of primary organic aerosols to the atmosphere. Emissions from biomass burning sources are considered chaotic. In this work, we developed a controlled experimental approach to understand the controlling factors in emission. Our results showed that emissions are repeatable and deterministic and that emissions from wood can be constrained.
Evelyn Freney, Karine Sellegri, Alessia Nicosia, Leah R. Williams, Matteo Rinaldi, Jonathan T. Trueblood, André S. H. Prévôt, Melilotus Thyssen, Gérald Grégori, Nils Haëntjens, Julie Dinasquet, Ingrid Obernosterer, France Van Wambeke, Anja Engel, Birthe Zäncker, Karine Desboeufs, Eija Asmi, Hilkka Timonen, and Cécile Guieu
Atmos. Chem. Phys., 21, 10625–10641, https://doi.org/10.5194/acp-21-10625-2021, https://doi.org/10.5194/acp-21-10625-2021, 2021
Short summary
Short summary
In this work, we present observations of the organic aerosol content in primary sea spray aerosols (SSAs) continuously generated along a 5-week cruise in the Mediterranean. This information is combined with seawater biogeochemical properties also measured continuously along the ship track to develop a number of parametrizations that can be used in models to determine SSA organic content in oligotrophic waters that represent 60 % of the oceans from commonly measured seawater variables.
Anna L. Hodshire, Emily Ramnarine, Ali Akherati, Matthew L. Alvarado, Delphine K. Farmer, Shantanu H. Jathar, Sonia M. Kreidenweis, Chantelle R. Lonsdale, Timothy B. Onasch, Stephen R. Springston, Jian Wang, Yang Wang, Lawrence I. Kleinman, Arthur J. Sedlacek III, and Jeffrey R. Pierce
Atmos. Chem. Phys., 21, 6839–6855, https://doi.org/10.5194/acp-21-6839-2021, https://doi.org/10.5194/acp-21-6839-2021, 2021
Short summary
Short summary
Biomass burning emits particles and vapors that can impact both health and climate. Here, we investigate the role of dilution in the evolution of aerosol size and composition in observed US wildfire smoke plumes. Centers of plumes dilute more slowly than edges. We see differences in concentrations and composition between the centers and edges both in the first measurement and in subsequent measurements. Our findings support the hypothesis that plume dilution influences smoke aging.
Julia Perim de Faria, Ulrich Bundke, Andrew Freedman, Timothy B. Onasch, and Andreas Petzold
Atmos. Meas. Tech., 14, 1635–1653, https://doi.org/10.5194/amt-14-1635-2021, https://doi.org/10.5194/amt-14-1635-2021, 2021
Short summary
Short summary
An evaluation of the performance and accuracy of a Cavity Attenuated Phase-Shift Single Scattering Albedo Monitor (CAPS PMSSA; Aerodyne Research, Inc.) was conducted in an optical-closure study with proven technologies for aerosol particle optical-property measurements. This study demonstrates that the CAPS PMSSA is a robust and reliable instrument for the direct measurement of the particle scattering and extinction coefficients and thus single-scattering albedo.
Cited articles
Aiken, A. C., DeCarlo, P. F., Kroll, J. H., Worsnop, D. R., Huffman, J. A.,
Docherty, K. S., Ulbrich, I. M., Mohr, C., Kimmel, J. R., Sueper, D., Sun,
Y., Zhang, Q., Trimborn, A., Northway, M., Ziemann, P. J., Canagaratna, M.
R., Onasch, T. B., Alfarra, M. R., Prevot, A. S. H., Dommen, J., Duplissy,
J., Metzger, A., Baltensperger, U., and Jimenez, J. L.: and ratios
of primary, secondary, and ambient organic aerosols with high-resolution
time-of-flight aerosol mass spectrometry, Environ. Sci.
Technol., 42, 4478–4485, https://doi.org/10.1021/es703009q, 2008.
Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S., Karl, T., Crounse, J. D., and Wennberg, P. O.: Emission factors for open and domestic biomass burning for use in atmospheric models, Atmos. Chem. Phys., 11, 4039–4072, https://doi.org/10.5194/acp-11-4039-2011, 2011.
Allan, J. D., Delia, A. E., Coe, H., Bower, K. N., Alfarra, M. R., Jimenez,
J. L., Middlebrook, A. M., Drewnick, F., Onasch, T. B., Canagaratna, M. R.,
Jayne, J. T., and Worsnop, D. R.: A generalised method for the extraction of
chemically resolved mass spectra from Aerodyne aerosol mass spectrometer
data, J. Aerosol Sci., 35, 909–922,
https://doi.org/10.1016/j.jaerosci.2004.02.007, 2004.
Avery, A. M., Fawaz, M., Williams, L. R., Bond, T., and Onasch, T. B.: Data from: Chemically distinct particle phase emissions from highly controlled pyrolysis of three wood types, Dryad [data set], https://doi.org/10.5061/dryad.pk0p2ngt6, 2023.
Bai, X., Johnston, P., Sadula, S., and Brown, R. C.: Role of levoglucosan
physiochemistry in cellulose pyrolysis, J. Anal. Appl.
Pyrolys., 99, 58–65, https://doi.org/10.1016/j.jaap.2012.10.028, 2013.
Bhattarai, H., Saikawa, E., Wan, X., Zhu, H., Ram, K., Gao, S., Kang, S.,
Zhang, Q., Zhang, Y., Wu, G., Wang, X., Kawamura, K., Fu, P., and Cong, Z.:
Levoglucosan as a tracer of biomass burning: Recent progress and
perspectives, Atmos. Res., 220, 20–33,
https://doi.org/10.1016/j.atmosres.2019.01.004, 2019.
Bahreini, R. Ervens., B., Middlebrook, A. M., Warneke, C., de Gouw, J. A.,
DeCarlo, P. F., Jimenez, Brock, C. A., Neuman, J. A., Ryerson, T. B., Stark, H.,
Atlas, E., Brioude, J., Fried, A., Holloway, J. S., Peischl, J., Richter, D.,
Walega, J., Weibring, P., Wollny, A. G., and Fehsenfeld., F. C.: Organic aerosol
formation in urban and industrial plumes near Houston and Dallas, Texas,
J. Geophys. Res., 114, D00F16, https://doi.org/10.1029/2008JD011493, 2009.
Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T.,
Deangelo, B. J., Flanner, M. G., Ghan, S., Kärcher, B., Koch, D., Kinne,
S., Kondo, Y., Quinn, P. K., Sarofim, M. C., Schultz, M. G., Schulz, M.,
Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S. K.,
Hopke, P. K., Jacobson, M. Z., Kaiser, J. W., Klimont, Z., Lohmann, U.,
Schwarz, J. P., Shindell, D., Storelvmo, T., Warren, S. G., and Zender, C.
S.: Bounding the role of black carbon in the climate system: A scientific
assessment, J. Geophys. Res.-Atmos., 118, 5380–5552,
https://doi.org/10.1002/jgrd.50171, 2013.
Bressi, M., Cavalli, F., Belis, C. A., Putaud, J.-P., Fröhlich, R., Martins dos Santos, S., Petralia, E., Prévôt, A. S. H., Berico, M., Malaguti, A., and Canonaco, F.: Variations in the chemical composition of the submicron aerosol and in the sources of the organic fraction at a regional background site of the Po Valley (Italy), Atmos. Chem. Phys., 16, 12875–12896, https://doi.org/10.5194/acp-16-12875-2016, 2016.
Brown, H., Liu, X., Pokhrel, R., Murphy, S., Lu, Z., Saleh, R., Mielonen,
T., Kokkola, H., Bergman, T., Myhre, G., Skeie, R. B., Watson-Paris, D.,
Stier, P., Johnson, B., Bellouin, N., Schulz, M., Vakkari, V., Beukes, J.
P., Gideon Van Zyl, P., Liu, S., and Chand, D.: Biomass burning aerosols in
most climate models are too absorbing, Nat. Commun., 12, 277,
https://doi.org/10.1038/s41467-020-20482-9, 2021.
Canagaratna, M. R., Jayne, J. T., Jimenez, J. L., Allan, J. D., Alfarra, M.
R., Zhang, Q., Onasch, T. B., Drewnick, F., Coe, H., Middlebrook, A., Delia,
A., Williams, L. R., Trimborn, A. M., Northway, M. J., DeCarlo, P. F., Kolb,
C. E., Davidovits, P., and Worsnop, D. R.: Chemical and microphysical
characterization of ambient aerosols with the Aerodyne aerosol mass
spectrometer, Mass Spectrom. Rev., 26, 185–222,
https://doi.org/10.1002/mas.20115, 2007.
Canagaratna, M. R., Jimenez, J. L., Kroll, J. H., Chen, Q., Kessler, S. H., Massoli, P., Hildebrandt Ruiz, L., Fortner, E., Williams, L. R., Wilson, K. R., Surratt, J. D., Donahue, N. M., Jayne, J. T., and Worsnop, D. R.: Elemental ratio measurements of organic compounds using aerosol mass spectrometry: characterization, improved calibration, and implications, Atmos. Chem. Phys., 15, 253–272, https://doi.org/10.5194/acp-15-253-2015, 2015.
Chen, J., Li, C., Ristovski, Z., Milic, A., Gu, Y., Islam, M. S., Wang, S.,
Hao, J., Zhang, H., He, C., Guo, H., Fu, H., Miljevic, B., Morawska, L.,
Thai, P., LAM, Y. F., Pereira, G., Ding, A., Huang, X., and Dumka, U. C.: A
review of biomass burning: Emissions and impacts on air quality, health and
climate in China, Sci. Total Environ., 579, 1000–1034,
https://doi.org/10.1016/j.scitotenv.2016.11.025, 2017.
Chen, L., Zhao, J., Pradhan, S., Brinson, B. E., Scuseria, G. E., Conrad
Zhang, Z., and Wong, M. S.: Ring-locking enables selective anhydrosugar
synthesis from carbohydrate pyrolysis, Green Chemistry, 18, 5438–5447,
https://doi.org/10.1039/c6gc01600f, 2016.
Collard, F.-X. and Blin, J.: A review on pyrolysis of biomass constituents:
Mechanisms and composition of the products obtained from the conversion of
cellulose, hemicelluloses and lignin, Renewable and Sustainable Energy
Reviews, 38, 594–608, https://doi.org/10.1016/j.rser.2014.06.013, 2014.
Collier, S., Zhou, S., Onasch, T. B., Jaffe, D. A., Kleinman, L., Sedlacek
III, A. J., Briggs, N. L., Hee, J., Fortner, E., Shilling, J. E., Worsnop,
D., Yokelson, R. J., Parworth, C., Ge, X., Xu, J., Butterfield, Z., Chand,
D., Dubey, M. K., Pekour, M. S., Springston, S., and Zhang, Q.: Regional
Influence of Aerosol Emissions from Wildfires Driven by Combustion
Efficiency: Insights from the BBOP Campaign, Environ. Sci.
Technol., 50, 8613–8622, https://doi.org/10.1021/acs.est.6b01617, 2016.
Corbin, J. C., Keller, A., Lohmann, U., Burtscher, H., Sierau, B., and
Mensah, A. A.: Organic Emissions from a Wood Stove and a Pellet Stove Before
and After Simulated Atmospheric Aging, Aerosol Sci. Technol., 49,
1037–1050, https://doi.org/10.1080/02786826.2015.1079586, 2015.
Cubison, M. J., Ortega, A. M., Hayes, P. L., Farmer, D. K., Day, D., Lechner, M. J., Brune, W. H., Apel, E., Diskin, G. S., Fisher, J. A., Fuelberg, H. E., Hecobian, A., Knapp, D. J., Mikoviny, T., Riemer, D., Sachse, G. W., Sessions, W., Weber, R. J., Weinheimer, A. J., Wisthaler, A., and Jimenez, J. L.: Effects of aging on organic aerosol from open biomass burning smoke in aircraft and laboratory studies, Atmos. Chem. Phys., 11, 12049–12064, https://doi.org/10.5194/acp-11-12049-2011, 2011.
Dauenhauer, P. J., Colby, J. L., Balonek, C. M., Suszynski, W. J., and
Schmidt, L. D.: Reactive boiling of cellulose for integrated catalysis
through an intermediate liquid, Green Chemistry, 11, 1555,
https://doi.org/10.1039/b915068b, 2009.
David, L. M., Ravishankara, A. R., Brey, S. J., Fischer, E. V., Volckens,
J., and Kreidenweis, S.: Could the exception become the rule?
“Uncontrollable” air pollution events in the US due to wildland fires,
Environ. Res. Lett., 16, 034029,
https://doi.org/10.1088/1748-9326/abe1f3, 2021.
DeCarlo, P. F., Kimmel, J. R., Trimborn, A., Northway, M. J., Jayne, J. T.,
Aiken, A. C., Gonin, M., Fuhrer, K., Horvath, T., Docherty, K. S., Worsnop,
D. R., and Jimenez, J. L.: Field-Deployable, High-Resolution, Time-of-Flight
Aerosol Mass Spectrometer, Anal. Chem., 78, 8281–8289,
https://doi.org/10.1021/ac061249n, 2006.
de Gouw, J. and Jimenez, J. L.: Organic Aerosols in the Earth's Atmosphere,
Environ. Sci. Technol., 43, 7614–7618, https://doi.org/10.1021/es9006004,
2009.
Donahue, N. M., Robinson, A. L., Stanier, C. O., and Pandis, S. N.: Coupled
partitioning, dilution, and chemical aging of semivolatile organics,
Environ. Sci. Technol., 40, 2635–2643,
https://doi.org/10.1021/es052297c, 2006.
Fawaz, M., Lautenberger, C., and Bond, T. C.: Prediction of organic aerosol
precursor emission from the pyrolysis of thermally thick wood, Fuel, 269, 117333, https://doi.org/10.1016/j.fuel.2020.117333,
2020.
Fawaz, M., Avery, A., Onasch, T. B., Williams, L. R., and Bond, T. C.: Technical note: Pyrolysis principles explain time-resolved organic aerosol release from biomass burning, Atmos. Chem. Phys., 21, 15605–15618, https://doi.org/10.5194/acp-21-15605-2021, 2021.
Fleming, L. T., Lin, P., Laskin, A., Laskin, J., Weltman, R., Edwards, R. D., Arora, N. K., Yadav, A., Meinardi, S., Blake, D. R., Pillarisetti, A., Smith, K. R., and Nizkorodov, S. A.: Molecular composition of particulate matter emissions from dung and brushwood burning household cookstoves in Haryana, India, Atmos. Chem. Phys., 18, 2461–2480, https://doi.org/10.5194/acp-18-2461-2018, 2018.
Gilardoni, S., Massoli, P., Paglione, M., Giulianelli, L., Carbone, C.,
Rinaldi, M., Decesari, S., Sandrini, S., Costabile, F., Gobbi, G. P.,
Pietrogrande, M. C., Visentin, M., Scotto, F., Fuzzi, S., and Facchini, M.
C.: Direct observation of aqueous secondary organic aerosol from
biomass-burning emissions, P. Natl. Acad. Sci. USA,
113, 10013–10018, https://doi.org/10.1073/pnas.1602212113, 2016.
Goetz, J. D., Giordano, M. R., Stockwell, C. E., Christian, T. J., Maharjan, R., Adhikari, S., Bhave, P. V., Praveen, P. S., Panday, A. K., Jayarathne, T., Stone, E. A., Yokelson, R. J., and DeCarlo, P. F.: Speciated online PM1 from South Asian combustion sources – Part 1: Fuel-based emission factors and size distributions, Atmos. Chem. Phys., 18, 14653–14679, https://doi.org/10.5194/acp-18-14653-2018, 2018.
Gronli, M. G. and Melaaen, M. C.: Mathematical model for wood
pyrolysis-comparison of experimental measurements with model predictions,
Energy and Fuels, 14, 791–800, https://doi.org/10.1021/ef990176q, 2000.
Grønli, M. G., Várhegyi, G., and Di Blasi, C.: Thermogravimetric
Analysis and Devolatilization Kinetics of Wood, Industrial and Engineering
Chemistry Research, 41, 4201–4208, https://doi.org/10.1021/IE0201157, 2002.
Gu, X., Ma, X., Li, L., Liu, C., Cheng, K., and Li, Z.: Pyrolysis of poplar
wood sawdust by TG-FTIR and Py–GC/MS, J. Anal. Appl.
Pyrol., 102, 16–23, https://doi.org/10.1016/J.JAAP.2013.04.009, 2013.
Heald, C. L., Kroll, J. H., Jimenez, J. L., Docherty, K. S., DeCarlo, P. F.,
Aiken, A. C., Chen, Q., Martin, S. T., Farmer, D. K., and Artaxo, P.: A
simplified description of the evolution of organic aerosol composition in
the atmosphere, Geophys. Res. Lett., 37, L08803,
https://doi.org/10.1029/2010GL042737, 2010.
Hosoya, T., Kawamoto, H., and Saka, S.: Solid/liquid-and vapor-phase
interactions between cellulose-and lignin-derived pyrolysis products,
J. Anal. Appl. Pyrol., 85, 237–246, 2009.
Jacobson, M. Z.: Effects of biomass burning on climate, accounting for heat
and moisture fluxes, black and brown carbon, and cloud absorption effects,
J. Geophys. Res., 119, 8980–9002,
https://doi.org/10.1002/2014JD021861, 2014.
Jimenez, J. L., Canagaratna, M. R., Donahue, N. M., Prevot, A. S. H., Zhang,
Q., Kroll, J. H., DeCarlo, P. F., Allan, J. D., Coe, H., Ng, N. L., Aiken,
A. C., Docherty, K. S., Ulbrich, I. M., Grieshop, A. P., Robinson, A. L.,
Duplissy, J., Smith, J. D., Wilson, K. R., Lanz, V. A., Hueglin, C., Sun, Y.
L., Tian, J., Laaksonen, A., Raatikainen, T., Rautiainen, J., Vaattovaara,
P., Ehn, M., Kulmala, M., Tomlinson, J. M., Collins, D. R., Cubison, M. J.,
Dunlea, E. J., Huffman, J. A., Onasch, T. B., Alfarra, M. R., Williams, P.
I., Bower, K., Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., Weimer,
S., Demerjian, K., Salcedo, D., Cottrell, L., Griffin, R., Takami, A.,
Miyoshi, T., Hatakeyama, S., Shimono, A., Sun, J. Y., Zhang, Y. M., Dzepina,
K., Kimmel, J. R., Sueper, D., Jayne, J. T., Herndon, S. C., Trimborn, A.
M., Williams, L. R., Wood, E. C., Middlebrook, A. M., Kolb, C. E.,
Baltensperger, U., and Worsnop, D. R.: Evolution of Organic Aerosols in the
Atmosphere, Science, 326, 1525–1529,
https://doi.org/10.1126/science.1180353, 2009.
Keywood, M., Kanakidou, M., Stohl, A., Dentener, F., Grassi, G., Meyer, C.
P., Torseth, K., Edwards, D., Thompson, A. M., Lohmann, U., and Burrows, J.:
Fire in the Air: Biomass Burning Impacts in a Changing Climate, Crit.
Rev. Env. Sci. Tec., 43, 40–83,
https://doi.org/10.1080/10643389.2011.604248, 2012.
Kroll, J. H., Donahue, N. M., Jimenez, J. L., Kessler, S. H., Canagaratna,
M. R., Wilson, K. R., Altieri, K. E., Mazzoleni, L. R., Wozniak, A. S.,
Bluhm, H., Mysak, E. R., Smith, J. D., Kolb, C. E., and Worsnop, D. R.:
Carbon oxidation state as a metric for describing the chemistry of
atmospheric organic aerosol, Nat. Chem., 3, 133–139,
https://doi.org/10.1038/nchem.948, 2011.
Lee, T., Sullivan, A. P., MacK, L., Jimenez, J. L., Kreidenweis, S. M.,
Onasch, T. B., Worsnop, D. R., Malm, W., Wold, C. E., Hao, W. M., and
Collett, J. L.: Chemical smoke marker emissions during flaming and
smoldering phases of laboratory open burning of wildland fuels, Aerosol
Sci. Technol., 44, i–v, https://doi.org/10.1080/02786826.2010.499884,
2010.
Li, Y., Lattimer, B. Y., and Case, S. W.: Measurement and modelling of
thermal and physical properties of wood construction materials, Constr. Build. Mater., 284, 122780,
https://doi.org/10.1016/j.conbuildmat.2021.122780, 2021.
Liu, P. S. K., Deng, R., Smith, K. A., Williams, L. R., Jayne, J. T.,
Canagaratna, M. R., Moore, K., Onasch, T. B., Worsnop, D. R., and Deshler,
T.: Transmission efficiency of an aerodynamic focusing lens system:
Comparison of model calculations and laboratory measurements for the
Aerodyne Aerosol Mass Spectrometer, Aerosol Sci. Technol., 41,
721–733, https://doi.org/10.1080/02786820701422278, 2007.
Liu, X., Huey, L. G., Yokelson, R. J., Selimovic, V., Simpson, I. J.,
Müller, M., Jimenez, J. L., Campuzano-Jost, P., Beyersdorf, A. J.,
Blake, D. R., Butterfield, Z., Choi, Y., Crounse, J. D., Day, D. A., Diskin,
G. S., Dubey, M. K., Fortner, E., Hanisco, T. F., Hu, W., King, L. E.,
Kleinman, L., Meinardi, S., Mikoviny, T., Onasch, T. B., Palm, B. B.,
Peischl, J., Pollack, I. B., Ryerson, T. B., Sachse, G. W., Sedlacek, A. J.,
Shilling, J. E., Springston, S., St. Clair, J. M., Tanner, D. J., Teng, A.
P., Wennberg, P. O., Wisthaler, A., and Wolfe, G. M.: Airborne measurements
of western U.S. wildfire emissions: Comparison with prescribed burning and
air quality implications, J. Geophys. Res., 122, 6108–6129,
https://doi.org/10.1002/2016JD026315, 2017.
Lu, H., Zhu, L., and Zhu, N.: Polycyclic aromatic hydrocarbon emission from
straw burning and the influence of combustion parameters, Atmos.
Environ., 43, 978–983, https://doi.org/10.1016/j.atmosenv.2008.10.022,
2009.
Maduskar, S., Maliekkal, V., Neurock, M., and Dauenhauer, P. J.: On the
Yield of Levoglucosan from Cellulose Pyrolysis, ACS Sustain. Chem. Eng., 6, 7017–7025,
https://doi.org/10.1021/acssuschemeng.8b00853, 2018.
Mallet, M., Nabat, P., Johnson, B., Michou, M., Haywood, J. M., Chen, C.,
and Dubovik, O.: Climate models generally underrepresent the warming by
Central Africa biomass-burning aerosols over the Southeast Atlantic, Sci.
Adv., 7, eabg9998, https://doi.org/10.1126/sciadv.abg9998, 2021.
Mettler, M. S., Mushrif, S. H., Paulsen, A. D., Javadekar, A. D., Vlachos,
D. G., and Dauenhauer, P. J.: Revealing pyrolysis chemistry for biofuels
production: Conversion of cellulose to furans and small oxygenates, Energy
Environ. Sci., 5, 5414–5424, https://doi.org/10.1039/c1ee02743c, 2012a.
Mettler, M. S., Paulsen, A. D., Vlachos, D. G., and Dauenhauer, P. J.: The
chain length effect in pyrolysis: bridging the gap between glucose and
cellulose, Green Chem., 14, 1284, https://doi.org/10.1039/c2gc35184f,
2012b.
Ng, N. L., Canagaratna, M. R., Jimenez, J. L., Chhabra, P. S., Seinfeld, J. H., and Worsnop, D. R.: Changes in organic aerosol composition with aging inferred from aerosol mass spectra, Atmos. Chem. Phys., 11, 6465–6474, https://doi.org/10.5194/acp-11-6465-2011, 2011.
Nielsen, I. E., Eriksson, A. C., Lindgren, R., Martinsson, J., Nyström,
R., Nordin, E. Z., Sadiktsis, I., Boman, C., Nøjgaard, J. K., and Pagels,
J.: Time-resolved analysis of particle emissions from residential biomass
combustion – Emissions of refractory black carbon, PAHs and organic
tracers, Atmos. Environ., 165, 179–190,
https://doi.org/10.1016/j.atmosenv.2017.06.033, 2017.
Onasch, T. B., Trimborn, A., Fortner, E. C., Jayne, J. T., Kok, G. L.,
Williams, L. R., Davidovits, P., and Worsnop, D. R.: Soot particle aerosol
mass spectrometer: Development, validation, and initial application, Aerosol
Sci. Technol., 46, 804–817,
https://doi.org/10.1080/02786826.2012.663948, 2012.
Ortega, A. M., Day, D. A., Cubison, M. J., Brune, W. H., Bon, D., de Gouw, J. A., and Jimenez, J. L.: Secondary organic aerosol formation and primary organic aerosol oxidation from biomass-burning smoke in a flow reactor during FLAME-3, Atmos. Chem. Phys., 13, 11551–11571, https://doi.org/10.5194/acp-13-11551-2013, 2013.
Paatero, P. and Tapper, U.: Positive Matrix Factorization: A non-negative
factor model with optimal utilization of erro estimates of data values,
Environmetrics, 5, 111–126, 1994.
Papari, S. and Hawboldt, K.: A review on the pyrolysis of woody biomass to
bio-oil: Focus on kinetic models, Renew. Sustain. Energ. Rev.,
52, 1580–1595, https://doi.org/10.1021/ef3018783, 2015.
Park, C., Atreya, A., and Baum, H. R.: Experimental and theoretical
investigation of heat and mass transfer processes during wood pyrolysis,
Combust. Flame, 157, 481–494,
https://doi.org/10.1016/j.combustflame.2009.10.006, 2010.
Richards, G. N.: Glycolaldehyde from pyrolysis of cellulose, J.
Anal. Appl. Pyrol., 10, 251–255,
https://doi.org/10.1016/0165-2370(87)80006-2, 1987.
Sekimoto, K., Koss, A. R., Gilman, J. B., Selimovic, V., Coggon, M. M., Zarzana, K. J., Yuan, B., Lerner, B. M., Brown, S. S., Warneke, C., Yokelson, R. J., Roberts, J. M., and de Gouw, J.: High- and low-temperature pyrolysis profiles describe volatile organic compound emissions from western US wildfire fuels, Atmos. Chem. Phys., 18, 9263–9281, https://doi.org/10.5194/acp-18-9263-2018, 2018.
Selimovic, V., Yokelson, R. J., Warneke, C., Roberts, J. M., de Gouw, J., Reardon, J., and Griffith, D. W. T.: Aerosol optical properties and trace gas emissions by PAX and OP-FTIR for laboratory-simulated western US wildfires during FIREX, Atmos. Chem. Phys., 18, 2929–2948, https://doi.org/10.5194/acp-18-2929-2018, 2018.
Shafizadeh, F., Furneaux, R. H., Cochran, T. G., Scholl, J. P., and Sakai,
Y.: Production of levoglucosan and glucose from pyrolysis of cellulosic
materials, J. Appl. Poly. Sci., 23, 3525–3539,
https://doi.org/10.1002/app.1979.070231209, 1979.
Sigsgaard, T., Forsberg, B., Annesi-Maesano, I., Blomberg, A., Bølling,
A., Boman, C., Bønløkke, J., Brauer, M., Bruce, N., Héroux, M.-E.,
Hirvonen, M.-R., Kelly, F., Künzli, N., Lundbäck, B., Moshammer, H.,
Noonan, C., Pagels, J., Sallsten, G., Sculier, J.-P., and Brunekreef, B.:
Health impacts of anthropogenic biomass burning in the developed world, Eur.
Respir. J., 46, 1577–1588, https://doi.org/10.1183/13993003.01865-2014, 2015.
Simoneit, B. R. T., Schauer, J. J., Nolte, C. G., Oros, D. R., Elias, V. O.,
Fraser, M. P., Rogge, W. F., and Cass, G. R.: Levoglucosan, a tracer for
cellulose in biomass burning and atmospheric particles, Atmos.
Environ., 33, 173–182, https://doi.org/10.1016/S1352-2310(98)00145-9,
1999.
Sueper, D. and collaborators, ToF-AMS Data Analysis Software, CU
Boulder, http://cires1.colorado.edu/jimenez-group/wiki/index.php/ToF-AMS_Analysis_Software (last access: 6 March 2023), 2023.
Ulbrich, I. M., Canagaratna, M. R., Zhang, Q., Worsnop, D. R., and Jimenez, J. L.: Interpretation of organic components from Positive Matrix Factorization of aerosol mass spectrometric data, Atmos. Chem. Phys., 9, 2891–2918, https://doi.org/10.5194/acp-9-2891-2009, 2009.
Linstrom, P. J. and Mallard, W. G. (Eds.): NIST Chemistry WebBook, NIST Standard Reference Database Number 69, National Institute of Standards and Technology, Gaithersburg MD, 20899, https://doi.org/10.18434/T4D303, 2019.
Weyant, C. L., Chen, P., Vaidya, A., Li, C., Zhang, Q., Thompson, R., Ellis,
J., Chen, Y., Kang, S., Ganesh, O., Shrestha, R., Yagnaraman, M.,
Arineitwe, J., Edwards, R., and Bond, T. C.: Emission Measurements from
Traditional Biomass Cookstoves in South Asia and Tibet, Environ.
Sci. Technol., 53, 3306–3314,
https://doi.org/10.1021/acs.est.8b05199, 2019.
Xu, J., Shi, J., Zhang, Q., Ge, X., Canonaco, F., Prévôt, A. S. H., Vonwiller, M., Szidat, S., Ge, J., Ma, J., An, Y., Kang, S., and Qin, D.: Wintertime organic and inorganic aerosols in Lanzhou, China: sources, processes, and comparison with the results during summer, Atmos. Chem. Phys., 16, 14937–14957, https://doi.org/10.5194/acp-16-14937-2016, 2016.
Yang, H., Yan, R., Chen, H., Lee, D. H., and Zheng, C.: Characteristics of
hemicellulose, cellulose and lignin pyrolysis, Fuel, 86, 1781–1788,
https://doi.org/10.1016/j.fuel.2006.12.013, 2007.
Yokelson, R. J., Griffith, D. W. T., and Ward, D. E.: Open-path fourier
transform infrared studies of large-scale laboratory biomass fires, J. Geophys. Res.-Atmos., 101, 21067–21080,
https://doi.org/10.1029/96jd01800, 1996.
Young, D. E., Kim, H., Parworth, C., Zhou, S., Zhang, X., Cappa, C. D., Seco, R., Kim, S., and Zhang, Q.: Influences of emission sources and meteorology on aerosol chemistry in a polluted urban environment: results from DISCOVER-AQ California, Atmos. Chem. Phys., 16, 5427–5451, https://doi.org/10.5194/acp-16-5427-2016, 2016.
Zhang, Y., Fu, R., Yu, H., Dickinson, R. E., Juarez, R. N., Chin, M., and
Wang, H.: A regional climate model study of how biomass burning aerosol
impacts land-atmosphere interactions over the Amazon, J. Geophys. Res., 113, D14S15, https://doi.org/10.1029/2007JD009449, 2008.
Zhou, S., Collier, S., Xu, J., Mei, F., Wang, J., Lee, Y. N., Sedlacek, A.
J., Springston, S. R., Sun, Y., and Zhang, Q.: Influences of upwind emission
sources and atmospheric processing on aerosol chemistry and properties at a
rural location in the Northeastern U.S., J. Geophys. Res., 121, 6049–6065,
https://doi.org/10.1002/2015JD024568, 2016.
Zhou, S., Collier, S., Jaffe, D. A., Briggs, N. L., Hee, J., Sedlacek III, A. J., Kleinman, L., Onasch, T. B., and Zhang, Q.: Regional influence of wildfires on aerosol chemistry in the western US and insights into atmospheric aging of biomass burning organic aerosol, Atmos. Chem. Phys., 17, 2477–2493, https://doi.org/10.5194/acp-17-2477-2017, 2017.
Zhou, X., Li, W., Mabon, R., and Broadbelt, L. J.: A mechanistic model of
fast pyrolysis of hemicellulose, Energy Environ. Sci, 11, 1240,
https://doi.org/10.1039/c7ee03208k, 2018.
Short summary
Pyrolysis is the thermal decomposition of fuels like wood which occurs during combustion or as an isolated process. During combustion, some pyrolysis products are emitted directly, while others are oxidized in the combustion process. This work describes the chemical composition of particle-phase pyrolysis products in order to investigate both the uncombusted emissions from wildfires and the fuel that participates in combustion.
Pyrolysis is the thermal decomposition of fuels like wood which occurs during combustion or as...
Altmetrics
Final-revised paper
Preprint