Articles | Volume 23, issue 10
https://doi.org/10.5194/acp-23-6021-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-6021-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Influence of the previous North Atlantic Oscillation (NAO) on the spring dust aerosols over North China
Yan Li
Key Laboratory for Semi-Arid Climate Change of the Ministry of
Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou,
China
Falei Xu
Key Laboratory for Semi-Arid Climate Change of the Ministry of
Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou,
China
Juan Feng
CORRESPONDING AUTHOR
State Key Laboratory of Remote Sensing Science, College of Global
Change and Earth System Science, Beijing Normal University, Beijing, China
Mengying Du
Key Laboratory for Semi-Arid Climate Change of the Ministry of
Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou,
China
Wenjun Song
Key Laboratory for Semi-Arid Climate Change of the Ministry of
Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou,
China
Chao Li
Key Laboratory for Semi-Arid Climate Change of the Ministry of
Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou,
China
Hubei Key Laboratory for Heavy Rain Monitoring and Warning Research, Institute of Heavy Rain, China Meteorological Administration, Wuhan, China
Wenjing Zhao
Key Laboratory for Semi-Arid Climate Change of the Ministry of
Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou,
China
Gansu Meteorological Service Center, Lanzhou, China
Related authors
Qi Wen, Yan Li, Mengying Du, Wenjun Song, Linbo Wei, Zhilan Wang, and Xu Li
Atmos. Chem. Phys., 25, 10853–10867, https://doi.org/10.5194/acp-25-10853-2025, https://doi.org/10.5194/acp-25-10853-2025, 2025
Short summary
Short summary
We find that, through an interdecadal coupling of sea–land thermal forcing, the North Atlantic Oscillation, and the westerly jet, springtime dust from North Africa has been more likely to be transported eastward (extending into North America) since the late 1990s, whereas before that time, westward transport paths were more frequent. Under the influence of thermal forcing, wind speed and drought contribute to dust emissions in the two periods, respectively.
Falei Xu, Shuang Wang, Yan Li, and Juan Feng
Atmos. Chem. Phys., 24, 10689–10705, https://doi.org/10.5194/acp-24-10689-2024, https://doi.org/10.5194/acp-24-10689-2024, 2024
Short summary
Short summary
This study examines how the winter North Atlantic Oscillation (NAO) and El Niño–Southern Oscillation (ENSO) affect dust activities in North China during the following spring. The results show that the NAO and ENSO, particularly in their negative phases, greatly influence dust activities. When both are negative, their combined effect on dust activities is even greater. This research highlights the importance of these climate patterns in predicting spring dust activities in North China.
Qi Wen, Yan Li, Mengying Du, Wenjun Song, Linbo Wei, Zhilan Wang, and Xu Li
Atmos. Chem. Phys., 25, 10853–10867, https://doi.org/10.5194/acp-25-10853-2025, https://doi.org/10.5194/acp-25-10853-2025, 2025
Short summary
Short summary
We find that, through an interdecadal coupling of sea–land thermal forcing, the North Atlantic Oscillation, and the westerly jet, springtime dust from North Africa has been more likely to be transported eastward (extending into North America) since the late 1990s, whereas before that time, westward transport paths were more frequent. Under the influence of thermal forcing, wind speed and drought contribute to dust emissions in the two periods, respectively.
Falei Xu, Shuang Wang, Yan Li, and Juan Feng
Atmos. Chem. Phys., 24, 10689–10705, https://doi.org/10.5194/acp-24-10689-2024, https://doi.org/10.5194/acp-24-10689-2024, 2024
Short summary
Short summary
This study examines how the winter North Atlantic Oscillation (NAO) and El Niño–Southern Oscillation (ENSO) affect dust activities in North China during the following spring. The results show that the NAO and ENSO, particularly in their negative phases, greatly influence dust activities. When both are negative, their combined effect on dust activities is even greater. This research highlights the importance of these climate patterns in predicting spring dust activities in North China.
Yaqi Wang, Lanning Wang, Juan Feng, Zhenya Song, Qizhong Wu, and Huaqiong Cheng
Geosci. Model Dev., 16, 6857–6873, https://doi.org/10.5194/gmd-16-6857-2023, https://doi.org/10.5194/gmd-16-6857-2023, 2023
Short summary
Short summary
In this study, to noticeably improve precipitation simulation in steep mountains, we propose a sub-grid parameterization scheme for the topographic vertical motion in CAM5-SE to revise the original vertical velocity by adding the topographic vertical motion. The dynamic lifting effect of topography is extended from the lowest layer to multiple layers, thus improving the positive deviations of precipitation simulation in high-altitude regions and negative deviations in low-altitude regions.
Cited articles
Ackerman, A. S., Toon, O. B., Stevens, D. E., Heymsfield, A. J.,
Ramanathan, V., and Welton, E. J.: Reduction of tropical cloudiness by soot,
Science, 288, 1042–1047, https://doi.org/10.1126/science.288.5468.1042,
2000.
An, L. C., Che, H. Z., Xue, M., Zhang, T. H., Wang, H., Wang, Y. Q., Zhou,
C. H., Zhao, H. J., Gui, K., Zheng, Y., Sun, T. Z., Liang, Y. X., Sun, E.
W., Zhang, H. D., and Zhang, X. Y.: Temporal and spatial variations in sand
and dust storm events in East Asia from 2007 to 2016: Relationships with
surface conditions and climate change, Sci. Total Environ., 633, 452–462,
https://doi.org/10.1016/j.scitotenv.2018.03.068, 2018.
Banerjee, P., Satheesh, S. K., and Krishna Moorthy, K.: Is the Atlantic Ocean driving the recent variability in South Asian dust?, Atmos. Chem. Phys., 21, 17665–17685, https://doi.org/10.5194/acp-21-17665-2021, 2021.
Cayan, D. R.: Latent and Sensible Heat Flux Anomalies over the Northern
Oceans: The Connection to Monthly Atmospheric Circulation, J. Climate, 5,
354–369, https://doi.org/10.1175/1520-0442(1992)005<0354:Lashfa>2.0.Co;2, 1992.
Che, H., Gui, K., Xia, X., Wang, Y., Holben, B. N., Goloub, P., Cuevas-Agulló, E., Wang, H., Zheng, Y., Zhao, H., and Zhang, X.: Large contribution of meteorological factors to inter-decadal changes in regional aerosol optical depth, Atmos. Chem. Phys., 19, 10497–10523, https://doi.org/10.5194/acp-19-10497-2019, 2019.
Chen, S., Huang, J., Kang, L., Wang, H., Ma, X., He, Y., Yuan, T., Yang, B., Huang, Z., and Zhang, G.: Emission, transport, and radiative effects of mineral dust from the Taklimakan and Gobi deserts: comparison of measurements and model results, Atmos. Chem. Phys., 17, 2401–2421, https://doi.org/10.5194/acp-17-2401-2017, 2017.
Chiapello, I., Moulin, C., and Prospero, J. M.: Understanding the long-term
variability of African dust transport across the Atlantic as recorded in
both Barbados surface concentrations and large-scale Total Ozone Mapping
Spectrometer (TOMS) optical thickness, J. Geophys. Res.-Atmos., 110, D18S10,
https://doi.org/10.1029/2004jd005132, 2005.
Czaja, A. and Frankignoul, C.: Observed Impact of Atlantic SST Anomalies on
the North Atlantic Oscillation, J. Climate, 15, 606–623,
https://doi.org/10.1175/1520-0442(2002)015<0606:Oioasa>2.0.Co;2, 2002.
Duce, R. A., Unni, C. K., Ray, B. J., Prospero, J. M., and Merrill, J. T.:
Long-Range Atmospheric Transport of Soil Dust from Asia to the Tropical
North Pacific: Temporal Variability, Science, 209, 1522–1524,
https://doi.org/10.1126/science.209.4464.1522, 1980.
Feng, J., Li, J., Liao, H., and Zhu, J.: Simulated coordinated impacts of the previous autumn North Atlantic Oscillation (NAO) and winter El Niño on winter aerosol concentrations over eastern China, Atmos. Chem. Phys., 19, 10787–10800, https://doi.org/10.5194/acp-19-10787-2019, 2019.
Feng, J., Zhu, J., Li, J., and Liao, H.: Aerosol concentrations variability over China: two distinct leading modes, Atmos. Chem. Phys., 20, 9883–9893, https://doi.org/10.5194/acp-20-9883-2020, 2020.
Gelaro, R., McCarty, W., Suarez, M. J., Todling, R., Molod, A., Takacs, L.,
Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K.,
Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da
Silva, A. M., Gu, W., Kim, G. K., Koster, R., Lucchesi, R., Merkova, D.,
Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M.,
Schubert, S. D., Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective
Analysis for Research and Applications, Version 2 (MERRA-2), J. Climate, 30,
5419–5454, https://doi.org/10.1175/jcli-d-16-0758.1, 2017.
Giannini, A., Kushnir, Y., and Cane, M. A.: Interannual variability of
Caribbean rainfall, ENSO, and the Atlantic Ocean, J. Climate, 13, 297–311,
https://doi.org/10.1175/1520-0442(2000)013<0297:Ivocre>2.0.Co;2, 2000.
Ginoux, P., Prospero, J. M., Torres, O., and Chin, M.: Long-term simulation
of global dust distribution with the GOCART model: correlation with North
Atlantic Oscillation, Environ. Modell. Softw., 19, 113–128,
https://doi.org/10.1016/s1364-8152(03)00114-2, 2004.
Ginoux, P., Prospero, J. M., Gill, T. E., Hsu, N. C., and Zhao, M.:
Global-scale attribution of anthropogenic and natural dust sources and their
emission rates based on MODIS Deep Blue aerosol products, Rev. Geophys., 50,
RG3005, https://doi.org/10.1029/2012rg000388, 2012.
Global Modeling and Assimilation Office (GMAO): MERRA-2 tavg1_2d_aer_Nx: 2d,1-Hourly, Time-averaged, Single-Level, Assimilation, Aerosol Diagnostics V5.12.4, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], https://doi.org/10.5067/KLICLTZ8EM9D, 2015a.
Global Modeling and Assimilation Office (GMAO): MERRA-2 tavgM_2d_aer_Nx: 2d, Monthly mean, Time-averaged, Single-Level, Assimilation, Aerosol Diagnostics V5.12.4, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], https://doi.org/10.5067/FH9A0MLJPC7N, 2015b.
Graf, H.-F. and Zanchettin, D.: Central Pacific El Niño, the
“subtropical bridge,” and Eurasian climate, J. Geophys. Res.-Atmos., 117, D01102,
https://doi.org/10.1029/2011JD016493, 2012.
Han, Y., Wang, T. H., Tang, J. Y., Wang, C. Y., Jian, B. D., Huang, Z. W.,
and Huang, J. P.: New insights into the Asian dust cycle derived from
CALIPSO lidar measurements, Remote Sens. Environ., 272, 112906,
https://doi.org/10.1016/j.rse.2022.112906, 2022.
Hartley, S. and Keables, M. J.: Synoptic associations of winter climate and
snowfall variability in New England, USA, 1950–1992, Int. J. Climatol., 18,
281–298, https://doi.org/10.1002/(sici)1097-0088(19980315)18:3<281::Aid-joc245>3.0.Co;2-f, 1998.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horanyi, A.,
Munoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons,
A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati,
G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Holm, E., Janiskova, M.,
Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thepaut, J.-N.: The ERA5 global
reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049,
https://doi.org/10.1002/qj.3803, 2020.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., Thépaut, J.-N.: ERA5 hourly data on pressure levels from 1940 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.bd0915c6, 2023.
Holopainen, E. O. and Oort, A. H.: On the Role of Large-Scale Transient
Eddies in the Maintenance of the Vorticity and Enstrophy of the Time-Mean
Atmospheric Flow, J. Atmos. Sci., 38, 270–280,
https://doi.org/10.1175/1520-0469(1981)038<0270:Otrols>2.0.Co;2, 1981.
Holopainen, E. O., Rontu, L., and Lau, N. C.: The Effect of Large-Scale
Transient Eddies on the Time-Mean Flow in the Atmosphere, J. Atmos. Sci.,
39, 1972–1984, https://doi.org/10.1175/1520-0469(1982)039<1972:Teolst>2.0.Co;2, 1982.
Hong, S. K., Ryoo, S. B., Kim, J., and Lee, S. S.: Prediction of Asian Dust
Days over Northern China Using the KMA-ADAM2 Model, Weather Forecast., 34,
1777–1787, https://doi.org/10.1175/waf-d-19-0008.1, 2019.
Huang, B. Y., Thorne, P. W., Banzon, V. F., Boyer, T., Chepurin, G.,
Lawrimore, J. H., Menne, M. J., Smith, T. M., Vose, R. S., and Zhang, H. M.:
Extended Reconstructed Sea Surface Temperature, Version 5 (ERSSTv5):
Upgrades, Validations, and Intercomparisons, J. Climate, 30, 8179–8205,
https://doi.org/10.1175/jcli-d-16-0836.1, 2017a.
Huang, B. Y., Thorne, P. W., Banzon, V. F., Boyer, T., Chepurin, G., Lawrimore, J. H., Menne, M. J., Smith, T. M., Vose, R. S., and Zhang, H. M.: NOAA Extended Reconstructed Sea Surface Temperature (ERSST), Version 5, NOAA National Centers for Environmental Information [data set], https://doi.org/10.7289/V5T72FNM, 2017b.
Huang, J. P., Lin, B., Minnis, P., Wang, T. H., Wang, X., Hu, Y. X., Yi, Y.
H., and Ayers, J. K.: Satellite-based assessment of possible dust aerosols
semi-direct effect on cloud water path over East Asia, Geophys. Res. Lett.,
33, L19802, https://doi.org/10.1029/2006gl026561, 2006.
Huang, J. P., Wang, T. H., Wang, W. C., Li, Z. Q., and Yan, H. R.: Climate
effects of dust aerosols over East Asian arid and semiarid regions, J.
Geophys. Res.-Atmos., 119, 11398–11416,
https://doi.org/10.1002/2014jd021796, 2014.
Huang, J. P., Liu, J. J., Chen, B., and Nasiri, S. L.: Detection of anthropogenic dust using CALIPSO lidar measurements, Atmos. Chem. Phys., 15, 11653–11665, https://doi.org/10.5194/acp-15-11653-2015, 2015.
Huang, X., Song, Y., Zhao, C., Li, M. M., Zhu, T., Zhang, Q., and Zhang, X.
Y.: Pathways of sulfate enhancement by natural and anthropogenic mineral
aerosols in China, J. Geophys. Res.-Atmos., 119, 14165–14179,
https://doi.org/10.1002/2014jd022301, 2014.
Huang, Y. H., Liu, X. D., Yin, Z. Y., and An, Z. S.: Global Impact of ENSO
on Dust Activities with Emphasis on the Key Region from the Arabian
Peninsula to Central Asia, J. Geophys. Res.-Atmos., 126, e2020JD034068,
https://doi.org/10.1029/2020jd034068, 2021.
Hurrell, J. W.: Decadal Trends in the North Atlantic Oscillation: Regional
Temperatures and Precipitation, Science, 269, 676–679,
https://doi.org/10.1126/science.269.5224.676, 1995.
Ji, L. Q. and Fan, K.: Climate prediction of dust weather frequency over
northern China based on sea-ice cover and vegetation variability, Clim.
Dynam., 53, 687–705, https://doi.org/10.1007/s00382-018-04608-w, 2019.
Jin, F. F., Pan, L. L., and Watanabe, M.: Dynamics of synoptic eddy and
low-frequency flow interaction. Part I: A linear closure, J. Atmos. Sci.,
63, 1677–1694, https://doi.org/10.1175/jas3715.1, 2006.
Kang, L. T., Huang, J. P., Chen, S. Y., and Wang, X.: Long-term trends of
dust events over Tibetan Plateau during 1961-2010, Atmos. Environ., 125,
188–198, https://doi.org/10.1016/j.atmosenv.2015.10.085, 2016.
Kaufman, Y. J., Tanre, D., and Boucher, O.: A satellite view of aerosols in
the climate system, Nature, 419, 215–223,
https://doi.org/10.1038/nature01091, 2002.
Kurosaki, Y. and Mikami, M.: Recent frequent dust events and their relation
to surface wind in East Asia, Geophys. Res. Lett., 30, 1736,
https://doi.org/10.1029/2003gl017261, 2003.
Kutiel, H. and Furman, H.: Dust storms in the Middle East: Sources of origin
and their temporal characteristics, Indoor Built Environ., 12, 419–426,
https://doi.org/10.1177/1420326x03037110, 2003.
Lackmann, G.: Midlatitude Synoptic Meteorology: Dynamics, Analysis, and Forecasting, American Meteorological Society Publications, Boston, America, 41–55, ISBN9781878220103, 2012.
Lau, N. C. and Nath, M. J.: Variability of the Baroclinic and Barotropic
Transient Eddy Forcing Associated with Monthly Changes in the Midlatitude
Storm Tracks, J. Atmos. Sci., 48, 2589–2613,
https://doi.org/10.1175/1520-0469(1991)048<2589:Votbab>2.0.Co;2, 1991.
Lee, E. H. and Sohn, B. J.: Examining the impact of wind and surface
vegetation on the Asian dust occurrence over three classified source
regions, J. Geophys. Res.-Atmos., 114, D06205,
https://doi.org/10.1029/2008jd010687, 2009.
Li, J., Garshick, E., Huang, S. D., and Koutrakis, P.: Impacts of El
Nino-Southern Oscillation on surface dust levels across the world during
1982-2019, Sci. Total Environ., 769, 144566,
https://doi.org/10.1016/j.scitotenv.2020.144566, 2021.
Li, J. P. and Wang, J. X. L.: A new North Atlantic Oscillation index and its
variability, Adv. Atmos. Sci., 20, 661–676, https://doi.org/10.1007/BF02915394, 2003.
Li, J. P., Zheng, F., Sun, C., Feng, J., and Wang, J.: Pathways of Influence
of the Northern Hemisphere Mid-high Latitudes on East Asian Climate: A
Review, Adv. Atmos. Sci., 36, 902–921,
https://doi.org/10.1007/s00376-019-8236-5, 2019.
Li, M. Y., Yao, Y., Simmonds, I., Luo, D., Zhong, L., and Pei, L.: Linkages between the atmospheric transmission originating from the North Atlantic Oscillation and persistent winter haze over Beijing, Atmos. Chem. Phys., 21, 18573–18588, https://doi.org/10.5194/acp-21-18573-2021, 2021.
Li, X. and Liu, X. D.: Relation of Spring Dust-Storm Activities in Northern
China and Changes of Upper Westerlies, Plateau. Meteorology,
34, 1292–1300, 2015 (in Chinese).
Li, Y., Li, J. P., Zhang, W. J., Chen, Q. L., Feng, J., Zheng, F., Wang, W.,
and Zhou, X.: Impacts of the Tropical Pacific Cold Tongue Mode on ENSO
Diversity Under Global Warming, J. Geophys. Res.-Oceans, 122, 8524–8542,
https://doi.org/10.1002/2017jc013052, 2017.
Li, Y., Zhang, J. Y., Lu, Y., Zhu, J. L., and Feng, J.: Characteristics of
Transient Eddy Fluxes during Blocking Highs Associated with Two Cold Events
in China, Atmosphere, 10, 235, https://doi.org/10.3390/atmos10050235, 2019a.
Li, Y., Lu, Y., and Wang, C. H.: Characteristics of thermal and momentum
transport during the lifetime of Ural blocking highs, Int. J. Climatol., 40,
77–93, https://doi.org/10.1002/joc.6195, 2019b.
Li, Y., Song, Y. G., Kaskaoutis, D. G., Zhang, X. X., Chen, X. L., Shukurov,
N., and Orozbaev, R.: Atmospheric dust dynamics over Central Asia: A
perspective view from loess deposits, Gondwana Res., 109, 150–165,
https://doi.org/10.1016/j.gr.2022.04.019, 2022a.
Li, Y., Hu, X. L., Wang, X., and Ji, M. X.: Impact of transient eddy fluxes
on the dust storm event: Cases study in South Xinjiang, China, Atmos. Res.,
269, 106054, https://doi.org/10.1016/j.atmosres.2022.106054, 2022b.
Lin, H. and Wu, Z. W.: Contribution of the Autumn Tibetan Plateau Snow Cover
to Seasonal Prediction of North American Winter Temperature, J. Climate, 24,
2801–2813, https://doi.org/10.1175/2010jcli3889.1, 2011.
Liu, J., Wu, D. Y., Liu, G. J., Mao, R., Chen, S. Y., Ji, M. X., Fu, P. Q.,
Sun, Y. L., Pan, X. L., Jin, H. C., Zhou, Y. B., and Wang, X.: Impact of
Arctic amplification on declining spring dust events in East Asia, Clim.
Dynam., 54, 1913–1935, https://doi.org/10.1007/s00382-019-05094-4, 2020.
Liu, X. D. and Yin, Z. Y.: Spatial and temporal variation of summer
precipitation over the eastern Tibetan Plateau and the North Atlantic
oscillation, J. Climate, 14, 2896–2909,
https://doi.org/10.1175/1520-0442(2001)014<2896:Satvos>2.0.Co;2, 2001.
Liu, X. D., Yin, Z. Y., Zhang, X. Y., and Yang, X. C.: Analyses of the
spring dust storm frequency of northern China in relation to antecedent and
concurrent wind, precipitation, vegetation, and soil moisture conditions, J.
Geophys. Res.-Atmos., 109, D16210, https://doi.org/10.1029/2004jd004615, 2004.
Liu, Y., Zhang, J., Zhou, P., Lin, T., Hong, J., Shi, L., Yao, F., Wu, J., Guo, H., and de Leeuw, G.: Satellite-based estimate of the variability of warm cloud properties associated with aerosol and meteorological conditions, Atmos. Chem. Phys., 18, 18187–18202, https://doi.org/10.5194/acp-18-18187-2018, 2018.
Mao, R., Ho, C. H., Shao, Y., Gong, D. Y., and Kim, J.: Influence of Arctic
Oscillation on dust activity over northeast Asia, Atmos. Environ., 45,
326–337, https://doi.org/10.1016/j.atmosenv.2010.10.020, 2011.
Moulin, C., Lambert, C. E., Dulac, F., and Dayan, U.: Control of atmospheric
export of dust from North Africa by the North Atlantic oscillation, Nature,
387, 691–694, https://doi.org/10.1038/42679, 1997.
Nie, W., Ding, A. J., Wang, T., Kerminen, V. M., George, C., Xue, L. K.,
Wang, W. X., Zhang, Q. Z., Petaja, T., Qi, X. M., Gao, X. M., Wang, X. F.,
Yang, X. Q., Fu, C. B., and Kulmala, M.: Polluted dust promotes new particle
formation and growth, Sci. Rep., 4, 6634, https://doi.org/10.1038/srep08949,
2015.
Qian, W. H.: Physical decomposition principle of regional-scale atmospheric
transient anomaly, J. Geophys., 55, 1439–1448,
https://doi.org/10.6038/j.issn.0001-5733.2012.05.002, 2012 (in Chinese).
Sassen, K., DeMott, P. J., Prospero, J. M., and Poellot, M. R.: Saharan dust
storms and indirect aerosol effects on clouds: CRYSTAL-FACE results,
Geophys. Res. Lett., 30, 1633, https://doi.org/10.1029/2003GL017371, 2003.
Shao, T. H. and Zhang, Y. C.: Influence of Winter North Atlantic Oscillation on
Spring Precipitation in China, Plateau. Meteorology, 31,
1225–1233, 2012 (in Chinese).
Sokolik, I. N. and Toon, O. B.: Direct radiative forcing by anthropogenic
airborne mineral aerosols, Nature, 381, 681–683,
https://doi.org/10.1038/381681a0, 1996.
Solomon, A. B.: An observational study of the spatial and temporal scales of
transient eddy sensible heat fluxes, J. Climate, 10, 508–520,
https://doi.org/10.1175/1520-0442(1997)010<0508:Aosots>2.0.Co;2, 1997.
Tang, H. Y., Zhai, P. M., and Chang, Y. K.: SVD Analysis between Northern
Hemisphere 500 hPa Heights and Spring Duststorms over Northern China, J.
Dersert. Res., 25, 570–576,
https://doi.org/10.3321/j.issn:1000-694X.2005.04.020, 2005 (in Chinese).
Trenberth, K. E.: An assessment of the impact of transient eddies on the
zonal flow during a blocking episode using localized Eliassen-Palm flux
diagnostics, J. Atmos. Sci., 43, 2070–2087,
https://doi.org/10.1175/1520-0469(1986)043<2070:Aaotio>2.0.Co;2, 1986.
Walker, G. T.: Correlations in seasonal variations of weather IX, Indian
Meteor. Dept., 24, 275–332, 1924.
Wang, X., Liu, J., Che, H. Z., Ji, F., and Liu, J. J.: Spatial and temporal
evolution of natural and anthropogenic dust events over northern China, Sci.
Rep., 8, 2141, https://doi.org/10.1038/s41598-018-20382-5, 2018.
Wang, X. M., Zhai, P. M., and Wang, C. C.: Variations in extratropical
cyclone activity in northern East Asia, Adv. Atmos. Sci., 26, 471–479,
https://doi.org/10.1007/s00376-009-0471-8, 2009.
Wang, Y. B. and Shi, N.: Relation of North Atlantic Oscillation Anomaly to
China Climate during 1951–1995, Trans. Atmos. Sci., 24,
315–322, https://doi.org/10.3969/j.issn.1674-7097.2001.03.003, 2001 (in Chinese).
Wang, Z. Q., Yang, S., Lau, N. C., and Duan, A. M.: Teleconnection between
Summer NAO and East China Rainfall Variations: A Bridge Effect of the
Tibetan Plateau, J. Climate, 31, 6433–6444,
https://doi.org/10.1175/jcli-d-17-0413.1, 2018.
Washington, R., Todd, M., Middleton, N. J., and Goudie, A. S.: Dust-storm
source areas determined by the total ozone monitoring spectrometer and
surface observations, Ann. Assoc. Am. Geogr., 93, 297–313,
https://doi.org/10.1111/1467-8306.9302003, 2003.
Watanabe, M.: Asian jet waveguide and a downstream extension of the North
Atlantic Oscillation, J. Climate, 17, 4674–4691,
https://doi.org/10.1175/jcli-3228.1, 2004.
Watanabe, M. and Kimoto, M.: Atmosphere-ocean thermal coupling in the North
Atlantic: A positive feedback, Q. J. Roy. Meteor. Soc., 126, 3343–3369,
https://doi.org/10.1002/qj.49712657017, 2000.
Wilcox, L. J., Liu, Z., Samset, B. H., Hawkins, E., Lund, M. T., Nordling, K., Undorf, S., Bollasina, M., Ekman, A. M. L., Krishnan, S., Merikanto, J., and Turner, A. G.: Accelerated increases in global and Asian summer monsoon precipitation from future aerosol reductions, Atmos. Chem. Phys., 20, 11955–11977, https://doi.org/10.5194/acp-20-11955-2020, 2020.
Wu, J., Kurosaki, Y., Shinoda, M., and Kai, K. J.: Regional Characteristics
of Recent Dust Occurrence and Its Controlling Factors in East Asia, Sola,
12, 187–191, https://doi.org/10.2151/sola.2016-038, 2016.
Wu, Z. W., Wang, B., Li, J. P., and Jin, F. F.: An empirical seasonal
prediction model of the east Asian summer monsoon using ENSO and NAO, J.
Geophys. Res.-Atmos., 114, D18120, https://doi.org/10.1029/2009jd011733, 2009.
Yang, Y., Russell, L. M., Lou, S. J., Liao, H., Guo, J. P., Liu, Y., Singh,
B., and Ghan, S. J.: Dust-wind interactions can intensify aerosol pollution
over eastern China, Nat. Commun., 8, 15333, https://doi.org/10.1038/ncomms15333,
2017.
Yang, Y., Zeng, L., Wang, H., Wang, P., and Liao, H.: Dust pollution in China affected by different spatial and temporal types of El Niño, Atmos. Chem. Phys., 22, 14489–14502, https://doi.org/10.5194/acp-22-14489-2022, 2022.
Yao, W. R., Gui, K., Wang, Y. Q., Che, H. Z., and Zhang, X. Y.: Identifying
the dominant local factors of 2000–2019 changes in dust loading over East
Asia, Sci. Total Environ., 777, 146064,
https://doi.org/10.1016/j.scitotenv.2021.146064, 2021.
Yao, Y., Zhang, W. Q., Luo, D. H., Zhong, L. H., and Pei, L.: Seasonal
Cumulative Effect of Ural Blocking Episodes on the Frequent Cold events in
China during the Early Winter of 2020/21, Adv. Atmos. Sci., 39, 609–624,
https://doi.org/10.1007/s00376-021-1100-4, 2022.
Yin, Z. C., Wan, Y., Zhang, Y. J., and Wang, H. J.: Why super sandstorm 2021
in North China?, Natl. Sci. Rev., 9, nwab165, https://doi.org/10.1093/nsr/nwab165,
2021.
Yu, B., Lin, H., Wu, Z. W., and Merryfield, W. J.: Relationship between
North American winter temperature and large-scale atmospheric circulation
anomalies and its decadal variation, Environ. Res. Lett., 11, 074001,
https://doi.org/10.1088/1748-9326/11/7/074001, 2016.
Yu, X. C., Wang, Z. L., Zhang, H., and Zhao, S. Y.: Impacts of different
types and intensities of El Niño events on winter aerosols over China,
Sci. Total Environ., 655, 766–780,
https://doi.org/10.1016/j.scitotenv.2018.11.090, 2019.
Zender, C. S., Miller, R. L., and Tegen, I.: Quantifying mineral dust mass
budgets:Terminology, constraints, and current estimates, Eos, Transactions
American Geophysical Union, 85, 509–512,
https://doi.org/10.1029/2004EO480002, 2004.
Zhang, C. X., Liu, C., Hu, Q. H., Cai, Z. N., Su, W. J., Xia, C. Z., Zhu, Y.
Z., Wang, S. W., and Liu, J. G.: Satellite UV-Vis spectroscopy: implications
for air quality trends and their driving forces in China during 2005–2017,
Light-Sci. Appl., 8, 100, https://doi.org/10.1038/s41377-019-0210-6, 2019.
Zhang, L., Zhang, H. S., Li, Q. H., Cai, X. H., and Song, Y.: Vertical
dispersion mechanism of long-range transported dust in Beijing: Effects of
atmospheric turbulence, Atmos. Res., 269, 106033,
https://doi.org/10.1016/j.atmosres.2022.106033, 2022.
Zhang, P., Wu, Z. W., and Jin, R.: How can the winter North Atlantic
Oscillation influence the early summer precipitation in Northeast Asia:
effect of the Arctic sea ice, Clim. Dynam., 56, 1989–2005,
https://doi.org/10.1007/s00382-020-05570-2, 2021.
Zhang, W. J., Wang, L., Xiang, B. Q., Qi, L., and He, J. H.: Impacts of two
types of La Nina on the NAO during boreal winter, Clim. Dynam., 44, 1351–1366,
https://doi.org/10.1007/s00382-014-2155-z, 2015.
Zhang, X. Y., Gong, S. L., Zhao, T. L., Arimoto, R., Wang, Y. Q., and Zhou,
Z. J.: Sources of Asian dust and role of climate change versus
desertification in Asian dust emission, Geophys. Res. Lett., 30, 2272,
https://doi.org/10.1029/2003gl018206, 2003.
Zhang, X. Y., Wang, Y. Q., Niu, T., Zhang, X. C., Gong, S. L., Zhang, Y. M., and Sun, J. Y.: Atmospheric aerosol compositions in China: spatial/temporal variability, chemical signature, regional haze distribution and comparisons with global aerosols, Atmos. Chem. Phys., 12, 779–799, https://doi.org/10.5194/acp-12-779-2012, 2012.
Zhao, S., Li, J. P., and Sun, C.: Decadal variability in the occurrence of
wintertime haze in central eastern China tied to the Pacific Decadal
Oscillation, Sci. Rep., 6, 27424, https://doi.org/10.1038/srep27424, 2016.
Zhao, Y., Li, H. J., and He, Q.: Variation of dust strom days in Tarim Basin
and its relation with North Atlantic Oscillation, J. Dersert. Res., 32, 1082–1088,
2012 (in Chinese).
Zuo, J. Q., Ren, H. L., and Li, W. J.: Contrasting Impacts of the Arctic
Oscillation on Surface Air Temperature Anomalies in Southern China between
Early and Middle-to-Late Winter, J. Climate, 28, 4015–4026,
https://doi.org/10.1175/jcli-d-14-00687.1, 2015.
Short summary
There is a significantly negative relationship between boreal winter North Atlantic Oscillation (NAO) and dust aerosols (DAs) in the eastern part of China (30–40°N, 105–120°E), which is not a DA source area but is severely affected by the dust events (DEs). Under the effect of the NAO negative phase, main atmospheric circulation during the DEs is characterized by variation of the transient eddy flux. The work is of reference value to the prediction of DEs and the understanding of their causes.
There is a significantly negative relationship between boreal winter North Atlantic Oscillation...
Altmetrics
Final-revised paper
Preprint