Articles | Volume 23, issue 10
https://doi.org/10.5194/acp-23-5867-2023
https://doi.org/10.5194/acp-23-5867-2023
Research article
 | 
26 May 2023
Research article |  | 26 May 2023

Convective organization and 3D structure of tropical cloud systems deduced from synergistic A-Train observations and machine learning

Claudia J. Stubenrauch, Giulio Mandorli, and Elisabeth Lemaitre

Related authors

Relationship between latent and radiative heating fields of Tropical cloud systems using synergistic satellite observations
Xiaoting Chen, Claudia J. Stubenrauch, and Giulio Mandorli
EGUsphere, https://doi.org/10.5194/egusphere-2024-3434,https://doi.org/10.5194/egusphere-2024-3434, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Assessment of object-based indices to identify convective organization
Giulio Mandorli and Claudia J. Stubenrauch
Geosci. Model Dev., 17, 7795–7813, https://doi.org/10.5194/gmd-17-7795-2024,https://doi.org/10.5194/gmd-17-7795-2024, 2024
Short summary
3D radiative heating of tropical upper tropospheric cloud systems derived from synergistic A-Train observations and machine learning
Claudia J. Stubenrauch, Giacomo Caria, Sofia E. Protopapadaki, and Friederike Hemmer
Atmos. Chem. Phys., 21, 1015–1034, https://doi.org/10.5194/acp-21-1015-2021,https://doi.org/10.5194/acp-21-1015-2021, 2021
Short summary
Diurnal variation of high-level clouds from the synergy of AIRS and IASI space-borne infrared sounders
Artem G. Feofilov and Claudia J. Stubenrauch
Atmos. Chem. Phys., 19, 13957–13972, https://doi.org/10.5194/acp-19-13957-2019,https://doi.org/10.5194/acp-19-13957-2019, 2019
Short summary
Cloud climatologies from the infrared sounders AIRS and IASI: strengths and applications
Claudia J. Stubenrauch, Artem G. Feofilov, Sofia E. Protopapadaki, and Raymond Armante
Atmos. Chem. Phys., 17, 13625–13644, https://doi.org/10.5194/acp-17-13625-2017,https://doi.org/10.5194/acp-17-13625-2017, 2017
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Air mass history linked to the development of Arctic mixed-phase clouds
Rebecca J. Murray-Watson and Edward Gryspeerdt
Atmos. Chem. Phys., 24, 11115–11132, https://doi.org/10.5194/acp-24-11115-2024,https://doi.org/10.5194/acp-24-11115-2024, 2024
Short summary
Distinct structure, radiative effects, and precipitation characteristics of deep convection systems in the Tibetan Plateau compared to the tropical Indian Ocean
Yuxin Zhao, Jiming Li, Deyu Wen, Yarong Li, Yuan Wang, and Jianping Huang
Atmos. Chem. Phys., 24, 9435–9457, https://doi.org/10.5194/acp-24-9435-2024,https://doi.org/10.5194/acp-24-9435-2024, 2024
Short summary
The correlation between Arctic sea ice, cloud phase and radiation using A-Train satellites
Grégory V. Cesana, Olivia Pierpaoli, Matteo Ottaviani, Linh Vu, Zhonghai Jin, and Israel Silber
Atmos. Chem. Phys., 24, 7899–7909, https://doi.org/10.5194/acp-24-7899-2024,https://doi.org/10.5194/acp-24-7899-2024, 2024
Short summary
Technical note: Retrieval of the supercooled liquid fraction in mixed-phase clouds from Himawari-8 observations
Ziming Wang, Husi Letu, Huazhe Shang, and Luca Bugliaro
Atmos. Chem. Phys., 24, 7559–7574, https://doi.org/10.5194/acp-24-7559-2024,https://doi.org/10.5194/acp-24-7559-2024, 2024
Short summary
Characterisation of low-base and mid-base clouds and their thermodynamic phase over the Southern Ocean and Arctic marine regions
Barbara Dietel, Odran Sourdeval, and Corinna Hoose
Atmos. Chem. Phys., 24, 7359–7383, https://doi.org/10.5194/acp-24-7359-2024,https://doi.org/10.5194/acp-24-7359-2024, 2024
Short summary

Cited articles

Berry, G. and Reeder, M. J.: Objective Identification of the Intertropical Convergence Zone: Climatology and Trends from the ERA-Interim, J. Clim., 27, 1894–1909, https://doi.org/10.1175/JCLI-D-13-00339.1, 2014. 
Bläckberg, C. P. O. and Singh, M. S.: Increased Large-Scale Convective Aggregation in CMIP5 Projections: Implications for Tropical Precipitation Extremes, Geophys. Res. Lett., 49, e2021GL097295, https://doi.org/10.1029/2021GL097295, 2022. 
Bony, S., Semie, A., Kramer, R. J., Soden, B., Tompkins, A. M., and Emanuel, K. A.: Observed modulation of the tropical radiation budget by deep convective organization and lower-tropospheric stability, AGU Adv., 1, e2019AV000155, https://doi.org/10.1029/2019AV000155, 2020. 
Chen, Q., Fan, J., Hagos, S., Gustafson Jr., W. I., and Berg, L. K.: Roles of windshear at different vertical levels: Cloud system organization and properties, J. Geophys. Res.-Atmos., 120, 6551–6574, https://doi.org/10.1002/2015JD023253, 2015. 
Download
Short summary
Organized convection leads to large convective cloud systems and intense rain and may change with a warming climate. Their complete 3D description, attained by machine learning techniques in combination with various satellite observations, together with a cloud system concept, link convection to anvil properties, while convective organization can be identified by the horizontal structure of intense rain.
Altmetrics
Final-revised paper
Preprint