Articles | Volume 23, issue 6
https://doi.org/10.5194/acp-23-3471-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-3471-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Assessing the climate and air quality effects of future aerosol mitigation in India using a global climate model combined with statistical downscaling
Tuuli Miinalainen
CORRESPONDING AUTHOR
Department of Technical Physics, University of Eastern Finland (UEF), Kuopio, Finland
Earth Observation Research, Finnish Meteorological Institute (FMI), Helsinki, Finland
Harri Kokkola
Atmospheric Research Centre of Eastern Finland, Finnish Meteorological Institute (FMI), Kuopio, Finland
Antti Lipponen
Atmospheric Research Centre of Eastern Finland, Finnish Meteorological Institute (FMI), Kuopio, Finland
Antti-Pekka Hyvärinen
Atmospheric Composition Research, Finnish Meteorological Institute (FMI), Helsinki, Finland
Vijay Kumar Soni
India Meteorological Department (IMD), Ministry of Earth Sciences, New Delhi, India
Kari E. J. Lehtinen
Department of Technical Physics, University of Eastern Finland (UEF), Kuopio, Finland
Atmospheric Research Centre of Eastern Finland, Finnish Meteorological Institute (FMI), Kuopio, Finland
Thomas Kühn
Department of Technical Physics, University of Eastern Finland (UEF), Kuopio, Finland
Atmospheric Research Centre of Eastern Finland, Finnish Meteorological Institute (FMI), Kuopio, Finland
Weather and Climate Change Research, Finnish Meteorological Institute (FMI), Helsinki, Finland
Related authors
Tuuli Miinalainen, Amanda Ojasalo, Holly Croft, Mika Aurela, Mikko Peltoniemi, Silvia Caldararu, Sönke Zaehle, and Tea Thum
EGUsphere, https://doi.org/10.5194/egusphere-2025-2987, https://doi.org/10.5194/egusphere-2025-2987, 2025
Short summary
Short summary
Estimating the future carbon budget requires an accurate understanding of the interlinkages between the land carbon and nitrogen cycles. We use a remote sensing leaf chlorophyll product to evaluate a terrestrial biosphere model, QUINCY (QUantifying Interactions between terrestrial Nutrient CYcles and the climate system). Our study showcases how the latest advancements in remote sensing-based vegetation monitoring can be harnessed for improving and evaluating process-based vegetation models.
Tea Thum, Tuuli Miinalainen, Outi Seppälä, Holly Croft, Cheryl Rogers, Ralf Staebler, Silvia Caldararu, and Sönke Zaehle
Biogeosciences, 22, 1781–1807, https://doi.org/10.5194/bg-22-1781-2025, https://doi.org/10.5194/bg-22-1781-2025, 2025
Short summary
Short summary
Climate change has the potential to influence the carbon sequestration potential of terrestrial ecosystems, and here the nitrogen cycle is also important. We used the terrestrial biosphere model QUINCY (QUantifying Interactions between terrestrial Nutrient CYcles and the climate system) in a mixed deciduous forest in Canada. We investigated the usefulness of using the leaf area index and leaf chlorophyll content to improve the parameterization of the model. This work paves the way for using spaceborne observations in model parameterizations, also including information on the nitrogen cycle.
Wolfgang Knorr, Matthew Williams, Tea Thum, Thomas Kaminski, Michael Voßbeck, Marko Scholze, Tristan Quaife, T. Luke Smallman, Susan C. Steele-Dunne, Mariette Vreugdenhil, Tim Green, Sönke Zaehle, Mika Aurela, Alexandre Bouvet, Emanuel Bueechi, Wouter Dorigo, Tarek S. El-Madany, Mirco Migliavacca, Marika Honkanen, Yann H. Kerr, Anna Kontu, Juha Lemmetyinen, Hannakaisa Lindqvist, Arnaud Mialon, Tuuli Miinalainen, Gaétan Pique, Amanda Ojasalo, Shaun Quegan, Peter J. Rayner, Pablo Reyes-Muñoz, Nemesio Rodríguez-Fernández, Mike Schwank, Jochem Verrelst, Songyan Zhu, Dirk Schüttemeyer, and Matthias Drusch
Geosci. Model Dev., 18, 2137–2159, https://doi.org/10.5194/gmd-18-2137-2025, https://doi.org/10.5194/gmd-18-2137-2025, 2025
Short summary
Short summary
When it comes to climate change, the land surface is where the vast majority of impacts happen. The task of monitoring those impacts across the globe is formidable and must necessarily rely on satellites – at a significant cost: the measurements are only indirect and require comprehensive physical understanding. We have created a comprehensive modelling system that we offer to the research community to explore how satellite data can be better exploited to help us capture the changes that happen on our lands.
Antti Vartiainen, Santtu Mikkonen, Ville Leinonen, Tuukka Petäjä, Alfred Wiedensohler, Thomas Kühn, and Tuuli Miinalainen
EGUsphere, https://doi.org/10.5194/egusphere-2025-774, https://doi.org/10.5194/egusphere-2025-774, 2025
Short summary
Short summary
Global climate models, commonly used for climate predictions, struggle at capturing local-scale variations in air quality. We have used measurements of ultrafine particles (UFPs), a less understood air pollutant with potentially significant health implications, for training machine learning models that can substantially reduce the inaccuracy in UFP concentrations predicted by a climate model. This approach could aid epidemiological studies of ultrafine particles by extending exposure records.
Ville Leinonen, Harri Kokkola, Taina Yli-Juuti, Tero Mielonen, Thomas Kühn, Tuomo Nieminen, Simo Heikkinen, Tuuli Miinalainen, Tommi Bergman, Ken Carslaw, Stefano Decesari, Markus Fiebig, Tareq Hussein, Niku Kivekäs, Radovan Krejci, Markku Kulmala, Ari Leskinen, Andreas Massling, Nikos Mihalopoulos, Jane P. Mulcahy, Steffen M. Noe, Twan van Noije, Fiona M. O'Connor, Colin O'Dowd, Dirk Olivie, Jakob B. Pernov, Tuukka Petäjä, Øyvind Seland, Michael Schulz, Catherine E. Scott, Henrik Skov, Erik Swietlicki, Thomas Tuch, Alfred Wiedensohler, Annele Virtanen, and Santtu Mikkonen
Atmos. Chem. Phys., 22, 12873–12905, https://doi.org/10.5194/acp-22-12873-2022, https://doi.org/10.5194/acp-22-12873-2022, 2022
Short summary
Short summary
We provide the first extensive comparison of detailed aerosol size distribution trends between in situ observations from Europe and five different earth system models. We investigated aerosol modes (nucleation, Aitken, and accumulation) separately and were able to show the differences between measured and modeled trends and especially their seasonal patterns. The differences in model results are likely due to complex effects of several processes instead of certain specific model features.
Simone Pulimeno, Angelo Lupi, Vito Vitale, Claudia Frangipani, Carlos Toledano, Stelios Kazadzis, Natalia Kouremeti, Christoph Ritter, Sandra Graßl, Kerstin Stebel, Vitali Fioletov, Ihab Abboud, Sandra Blindheim, Lynn Ma, Norm O’Neill, Piotr Sobolewski, Pawan Gupta, Elena Lind, Thomas F. Eck, Antti Hyvärinen, Veijo Aaltonen, Rigel Kivi, Janae Csavina, Dmitry Kabanov, Sergey M. Sakerin, Olga R. Sidorova, Robert S. Stone, Hagen Telg, Laura Riihimaki, Raul R. Cordero, Martin Radenz, Ronny Engelmann, Michel Van Roozendal, Anatoli Chaikovsky, Philippe Goloub, Junji Hisamitsu, and Mauro Mazzola
EGUsphere, https://doi.org/10.5194/egusphere-2025-2527, https://doi.org/10.5194/egusphere-2025-2527, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
This study analyzed aerosols optical properties over the Arctic and Antarctic to measure them even during long periods of darkness. It found that pollution in the Arctic is decreasing, likely due to European emission regulations, while wildfires are becoming a more important source of particles. In Antarctica, particle levels are higher near the coast than inland, and vary by season. These results help us better understand how air pollution and climate are changing at the Earth’s poles.
Tuuli Miinalainen, Amanda Ojasalo, Holly Croft, Mika Aurela, Mikko Peltoniemi, Silvia Caldararu, Sönke Zaehle, and Tea Thum
EGUsphere, https://doi.org/10.5194/egusphere-2025-2987, https://doi.org/10.5194/egusphere-2025-2987, 2025
Short summary
Short summary
Estimating the future carbon budget requires an accurate understanding of the interlinkages between the land carbon and nitrogen cycles. We use a remote sensing leaf chlorophyll product to evaluate a terrestrial biosphere model, QUINCY (QUantifying Interactions between terrestrial Nutrient CYcles and the climate system). Our study showcases how the latest advancements in remote sensing-based vegetation monitoring can be harnessed for improving and evaluating process-based vegetation models.
Sara M. Blichner, Theodore Khadir, Sini Talvinen, Paulo Artaxo, Liine Heikkinen, Harri Kokkola, Radovan Krejci, Muhammed Irfan, Twan van Noije, Tuukka Petäjä, Christopher Pöhlker, Øyvind Seland, Carl Svenhag, Antti Vartiainen, and Ilona Riipinen
EGUsphere, https://doi.org/10.5194/egusphere-2025-2559, https://doi.org/10.5194/egusphere-2025-2559, 2025
Short summary
Short summary
This study looks at how well climate models capture the impact of rain on particles that help form cloud droplets. Using data from three measurement stations and applying both a correlation analysis and a machine learning approach, we found that models often miss how new particles form after rain and struggle in cold environments. This matters because these particles influence cloud formation and climate.
Aino Ovaska, Elio Rauth, Daniel Holmberg, Paulo Artaxo, John Backman, Benjamin Bergmans, Don Collins, Marco Aurélio Franco, Shahzad Gani, Roy M. Harrison, Rakes K. Hooda, Tareq Hussein, Antti-Pekka Hyvärinen, Kerneels Jaars, Adam Kristensson, Markku Kulmala, Lauri Laakso, Ari Laaksonen, Nikolaos Mihalopoulos, Colin O'Dowd, Jakub Ondracek, Tuukka Petäjä, Kristina Plauškaitė, Mira Pöhlker, Ximeng Qi, Peter Tunved, Ville Vakkari, Alfred Wiedensohler, Kai Puolamäki, Tuomo Nieminen, Veli-Matti Kerminen, Victoria A. Sinclair, and Pauli Paasonen
Aerosol Research Discuss., https://doi.org/10.5194/ar-2025-18, https://doi.org/10.5194/ar-2025-18, 2025
Preprint under review for AR
Short summary
Short summary
We trained machine learning models to estimate the number of aerosol particles large enough to form clouds and generated daily estimates for the entire globe. The models performed well in many continental regions but struggled in remote and marine areas. Still, this approach offers a way to quantify these particles in areas that lack direct measurements, helping us understand their influence on clouds and climate on a global scale.
Silvia M. Calderón, Noora Hyttinen, Harri Kokkola, Tomi Raatikainen, R. Paul Lawson, and Sami Romakkaniemi
EGUsphere, https://doi.org/10.5194/egusphere-2025-2730, https://doi.org/10.5194/egusphere-2025-2730, 2025
Short summary
Short summary
Field campaigns suggest that secondary ice production (SIP) via millimeter-sized supercooled droplets is responsible for the rapid glaciation and precipitation development in summer cumulus congestus clouds that lack of ice nucleating particles. We used large-eddy-simulations with sectional representation of aerosol and hydrometeor microphysics that reproduced observed hydrometeor size distributions and explained how SIP boosted rates of aggregation processes that increase surface precipitation.
Matti Niskanen, Aku Seppänen, Henri Oikarinen, Miska Olin, Panu Karjalainen, Santtu Mikkonen, and Kari Lehtinen
Geosci. Model Dev., 18, 2983–3001, https://doi.org/10.5194/gmd-18-2983-2025, https://doi.org/10.5194/gmd-18-2983-2025, 2025
Short summary
Short summary
Particle size is a key factor determining the properties of aerosol particles which have a major influence on the climate and on human health. When measuring the particle sizes, however, sometimes the sampling lines that transfer the aerosol to the measurement device distort the size distribution, making the measurement unreliable. We propose a method to correct for the distortions and estimate the true particle sizes, improving measurement accuracy.
Tea Thum, Tuuli Miinalainen, Outi Seppälä, Holly Croft, Cheryl Rogers, Ralf Staebler, Silvia Caldararu, and Sönke Zaehle
Biogeosciences, 22, 1781–1807, https://doi.org/10.5194/bg-22-1781-2025, https://doi.org/10.5194/bg-22-1781-2025, 2025
Short summary
Short summary
Climate change has the potential to influence the carbon sequestration potential of terrestrial ecosystems, and here the nitrogen cycle is also important. We used the terrestrial biosphere model QUINCY (QUantifying Interactions between terrestrial Nutrient CYcles and the climate system) in a mixed deciduous forest in Canada. We investigated the usefulness of using the leaf area index and leaf chlorophyll content to improve the parameterization of the model. This work paves the way for using spaceborne observations in model parameterizations, also including information on the nitrogen cycle.
Wolfgang Knorr, Matthew Williams, Tea Thum, Thomas Kaminski, Michael Voßbeck, Marko Scholze, Tristan Quaife, T. Luke Smallman, Susan C. Steele-Dunne, Mariette Vreugdenhil, Tim Green, Sönke Zaehle, Mika Aurela, Alexandre Bouvet, Emanuel Bueechi, Wouter Dorigo, Tarek S. El-Madany, Mirco Migliavacca, Marika Honkanen, Yann H. Kerr, Anna Kontu, Juha Lemmetyinen, Hannakaisa Lindqvist, Arnaud Mialon, Tuuli Miinalainen, Gaétan Pique, Amanda Ojasalo, Shaun Quegan, Peter J. Rayner, Pablo Reyes-Muñoz, Nemesio Rodríguez-Fernández, Mike Schwank, Jochem Verrelst, Songyan Zhu, Dirk Schüttemeyer, and Matthias Drusch
Geosci. Model Dev., 18, 2137–2159, https://doi.org/10.5194/gmd-18-2137-2025, https://doi.org/10.5194/gmd-18-2137-2025, 2025
Short summary
Short summary
When it comes to climate change, the land surface is where the vast majority of impacts happen. The task of monitoring those impacts across the globe is formidable and must necessarily rely on satellites – at a significant cost: the measurements are only indirect and require comprehensive physical understanding. We have created a comprehensive modelling system that we offer to the research community to explore how satellite data can be better exploited to help us capture the changes that happen on our lands.
Antti Vartiainen, Santtu Mikkonen, Ville Leinonen, Tuukka Petäjä, Alfred Wiedensohler, Thomas Kühn, and Tuuli Miinalainen
EGUsphere, https://doi.org/10.5194/egusphere-2025-774, https://doi.org/10.5194/egusphere-2025-774, 2025
Short summary
Short summary
Global climate models, commonly used for climate predictions, struggle at capturing local-scale variations in air quality. We have used measurements of ultrafine particles (UFPs), a less understood air pollutant with potentially significant health implications, for training machine learning models that can substantially reduce the inaccuracy in UFP concentrations predicted by a climate model. This approach could aid epidemiological studies of ultrafine particles by extending exposure records.
Sini Talvinen, Paul Kim, Emanuele Tovazzi, Eemeli Holopainen, Roxana Cremer, Thomas Kühn, Harri Kokkola, Zak Kipling, David Neubauer, João C. Teixeira, Alistair Sellar, Duncan Watson-Parris, Yang Yang, Jialei Zhu, Srinath Krishnan, Annele Virtanen, and Daniel G. Partridge
EGUsphere, https://doi.org/10.5194/egusphere-2025-721, https://doi.org/10.5194/egusphere-2025-721, 2025
Short summary
Short summary
Climate models struggle to predict how clouds and aerosols interact, affecting Earth’s energy balance. This study compares models to observations to see how they describe effects of clouds and rain on aerosols. While both models show similar overall trends, seasonal differences emerged. These, however, align with differences in key variables participating in cloud formation. The study provides tools to improve the representation of aerosol-cloud interactions in climate models.
Antti Kukkurainen, Antti Mikkonen, Antti Arola, Antti Lipponen, Ville Kolehmainen, and Neus Sabater
EGUsphere, https://doi.org/10.5194/egusphere-2025-220, https://doi.org/10.5194/egusphere-2025-220, 2025
Short summary
Short summary
HAPI2LIBIS is a new software tool that enhances the capabilities of the radiative transfer model libRadtran. It simplifies high wavelength resolution simulations by using up-to-date molecular data from the HITRAN database and streamlining computations. This tool helps researchers analyze how gases interact with radiation in the Earth's atmosphere and surface, improving atmospheric studies and satellite observations, and making detailed modeling more accurate and accessible.
Timo H. Virtanen, Anu-Maija Sundström, Elli Suhonen, Antti Lipponen, Antti Arola, Christopher O'Dell, Robert R. Nelson, and Hannakaisa Lindqvist
Atmos. Meas. Tech., 18, 929–952, https://doi.org/10.5194/amt-18-929-2025, https://doi.org/10.5194/amt-18-929-2025, 2025
Short summary
Short summary
We find that small particles suspended in the air (aerosols) affect the satellite observations of carbon dioxide (CO2) made by the Orbiting Carbon Observatory-2 satellite instrument. Satellite estimates of CO2 appear to be too high for clean areas and too low for polluted areas. Our results show that CO2 and aerosols are often co-emitted, and this is partly masked out in the current retrievals. Correctly accounting for the aerosol effect is important for CO2 emission estimates by satellites.
Andrea Porcheddu, Ville Kolehmainen, Timo Lähivaara, and Antti Lipponen
EGUsphere, https://doi.org/10.5194/egusphere-2024-4056, https://doi.org/10.5194/egusphere-2024-4056, 2025
Short summary
Short summary
This study proposes a novel machine learning method to estimate pollution levels (PM2.5) on urban areas at fine scale. Our model generates hourly PM2.5 maps with high spatial resolution (100 meters), by combining satellite data, ground measurements, geophysical model data, and different geographical indicators. The model properly accounts for spatial and temporal variability of the urban pollution levels, offering relevant insights for air quality monitoring and health protection.
Mariya Petrenko, Ralph Kahn, Mian Chin, Susanne E. Bauer, Tommi Bergman, Huisheng Bian, Gabriele Curci, Ben Johnson, Johannes W. Kaiser, Zak Kipling, Harri Kokkola, Xiaohong Liu, Keren Mezuman, Tero Mielonen, Gunnar Myhre, Xiaohua Pan, Anna Protonotariou, Samuel Remy, Ragnhild Bieltvedt Skeie, Philip Stier, Toshihiko Takemura, Kostas Tsigaridis, Hailong Wang, Duncan Watson-Parris, and Kai Zhang
Atmos. Chem. Phys., 25, 1545–1567, https://doi.org/10.5194/acp-25-1545-2025, https://doi.org/10.5194/acp-25-1545-2025, 2025
Short summary
Short summary
We compared smoke plume simulations from 11 global models to each other and to satellite smoke amount observations aimed at constraining smoke source strength. In regions where plumes are thick and background aerosol is low, models and satellites compare well. However, the input emission inventory tends to underestimate in many places, and particle property and loss rate assumptions vary enormously among models, causing uncertainties that require systematic in situ measurements to resolve.
Harri Kokkola, Juha Tonttila, Silvia M. Calderón, Sami Romakkaniemi, Antti Lipponen, Aapo Peräkorpi, Tero Mielonen, Edward Gryspeerdt, Timo Henrik Virtanen, Pekka Kolmonen, and Antti Arola
Atmos. Chem. Phys., 25, 1533–1543, https://doi.org/10.5194/acp-25-1533-2025, https://doi.org/10.5194/acp-25-1533-2025, 2025
Short summary
Short summary
Understanding how atmospheric aerosols affect clouds is a scientific challenge. One question is how aerosols affects the amount of cloud water. We used a cloud-scale model to study these effects on marine clouds. The study showed that variations in cloud properties and instrument noise can cause bias in satellite-derived cloud water content. However, our results suggest that for similar weather conditions with well-defined aerosol concentrations, satellite data can reliably track these effects.
Sachin Mishra, Vinayak Sinha, Haseeb Hakkim, Arpit Awasthi, Sachin D. Ghude, Vijay Kumar Soni, Narendra Nigam, Baerbel Sinha, and Madhavan N. Rajeevan
Atmos. Chem. Phys., 24, 13129–13150, https://doi.org/10.5194/acp-24-13129-2024, https://doi.org/10.5194/acp-24-13129-2024, 2024
Short summary
Short summary
We quantified 111 gases using mass spectrometry to understand how seasonal and emission changes lead from clean air in the monsoon season to extremely polluted air in the post-monsoon season in Delhi. Averaged total mass concentrations (260 µg m-3) were > 4 times in polluted periods, driven by biomass burning emissions and reduced atmospheric ventilation. Reactive gaseous nitrogen, chlorine, and sulfur compounds hitherto unreported from such a polluted environment were discovered.
Andrea Porcheddu, Ville Kolehmainen, Timo Lähivaara, and Antti Lipponen
Atmos. Meas. Tech., 17, 5747–5764, https://doi.org/10.5194/amt-17-5747-2024, https://doi.org/10.5194/amt-17-5747-2024, 2024
Short summary
Short summary
This study focuses on improving the accuracy of satellite-based PM2.5 retrieval, crucial for monitoring air quality and its impact on health. It employs machine learning to correct the AOD-to-PM2.5 conversion ratio using various data sources. The approach produces high-resolution PM2.5 estimates with improved accuracy. The method is flexible and can incorporate additional training data from different sources, making it a valuable tool for air quality monitoring and epidemiological studies.
Arpit Awasthi, Baerbel Sinha, Haseeb Hakkim, Sachin Mishra, Varkrishna Mummidivarapu, Gurmanjot Singh, Sachin D. Ghude, Vijay Kumar Soni, Narendra Nigam, Vinayak Sinha, and Madhavan N. Rajeevan
Atmos. Chem. Phys., 24, 10279–10304, https://doi.org/10.5194/acp-24-10279-2024, https://doi.org/10.5194/acp-24-10279-2024, 2024
Short summary
Short summary
We use 111 volatile organic compounds (VOCs), PM10, and PM2.5 in a positive matrix factorization (PMF) model to resolve 11 pollution sources validated with chemical fingerprints. Crop residue burning and heating account for ~ 50 % of the PM, while traffic and industrial emissions dominate the gas-phase VOC burden and formation potential of secondary organic aerosols (> 60 %). Non-tailpipe emissions from compressed-natural-gas-fuelled commercial vehicles dominate the transport sector's PM burden.
Muhammed Irfan, Thomas Kühn, Taina Yli-Juuti, Anton Laakso, Eemeli Holopainen, Douglas R. Worsnop, Annele Virtanen, and Harri Kokkola
Atmos. Chem. Phys., 24, 8489–8506, https://doi.org/10.5194/acp-24-8489-2024, https://doi.org/10.5194/acp-24-8489-2024, 2024
Short summary
Short summary
The study examines how the volatility of semi-volatile organic compounds affects secondary organic aerosol (SOA) formation and climate. Our simulations show that uncertainties in these volatilities influence aerosol mass and climate impacts. Accurate representation of these compounds in climate models is crucial for predicting global climate patterns.
Anton Laakso, Daniele Visioni, Ulrike Niemeier, Simone Tilmes, and Harri Kokkola
Earth Syst. Dynam., 15, 405–427, https://doi.org/10.5194/esd-15-405-2024, https://doi.org/10.5194/esd-15-405-2024, 2024
Short summary
Short summary
This study is the second in a two-part series in which we explore the dependency of the impacts of stratospheric sulfur injections on both the model employed and the strategy of injection utilized. The study uncovers uncertainties associated with these techniques to cool climate, highlighting how the simulated climate impacts are dependent on both the selected model and the magnitude of the injections. We also show that estimating precipitation impacts of aerosol injection is a complex task.
Alejandro Baró Pérez, Michael S. Diamond, Frida A.-M. Bender, Abhay Devasthale, Matthias Schwarz, Julien Savre, Juha Tonttila, Harri Kokkola, Hyunho Lee, David Painemal, and Annica M. L. Ekman
Atmos. Chem. Phys., 24, 4591–4610, https://doi.org/10.5194/acp-24-4591-2024, https://doi.org/10.5194/acp-24-4591-2024, 2024
Short summary
Short summary
We use a numerical model to study interactions between humid light-absorbing aerosol plumes, clouds, and radiation over the southeast Atlantic. We find that the warming produced by the aerosols reduces cloud cover, especially in highly polluted situations. Aerosol impacts on drizzle play a minor role. However, aerosol effects on cloud reflectivity and moisture-induced changes in cloud cover dominate the climatic response and lead to an overall cooling by the biomass burning plumes.
Gaurav Govardhan, Sachin D. Ghude, Rajesh Kumar, Sumit Sharma, Preeti Gunwani, Chinmay Jena, Prafull Yadav, Shubhangi Ingle, Sreyashi Debnath, Pooja Pawar, Prodip Acharja, Rajmal Jat, Gayatry Kalita, Rupal Ambulkar, Santosh Kulkarni, Akshara Kaginalkar, Vijay K. Soni, Ravi S. Nanjundiah, and Madhavan Rajeevan
Geosci. Model Dev., 17, 2617–2640, https://doi.org/10.5194/gmd-17-2617-2024, https://doi.org/10.5194/gmd-17-2617-2024, 2024
Short summary
Short summary
A newly developed air quality forecasting framework, Decision Support System (DSS), for air quality management in Delhi, India, provides source attribution with numerous emission reduction scenarios besides forecasts. DSS shows that during post-monsoon and winter seasons, Delhi and its neighboring districts contribute to 30 %–40 % each to pollution in Delhi. On average, a 40 % reduction in the emissions in Delhi and the surrounding districts would result in a 24 % reduction in Delhi's pollution.
Arto Heitto, Cheng Wu, Diego Aliaga, Luis Blacutt, Xuemeng Chen, Yvette Gramlich, Liine Heikkinen, Wei Huang, Radovan Krejci, Paolo Laj, Isabel Moreno, Karine Sellegri, Fernando Velarde, Kay Weinhold, Alfred Wiedensohler, Qiaozhi Zha, Federico Bianchi, Marcos Andrade, Kari E. J. Lehtinen, Claudia Mohr, and Taina Yli-Juuti
Atmos. Chem. Phys., 24, 1315–1328, https://doi.org/10.5194/acp-24-1315-2024, https://doi.org/10.5194/acp-24-1315-2024, 2024
Short summary
Short summary
Particle growth at the Chacaltaya station in Bolivia was simulated based on measured vapor concentrations and ambient conditions. Major contributors to the simulated growth were low-volatility organic compounds (LVOCs). Also, sulfuric acid had major role when volcanic activity was occurring in the area. This study provides insight on nanoparticle growth at this high-altitude Southern Hemispheric site and hence contributes to building knowledge of early growth of atmospheric particles.
Xiaoxia Shang, Antti Lipponen, Maria Filioglou, Anu-Maija Sundström, Mark Parrington, Virginie Buchard, Anton S. Darmenov, Ellsworth J. Welton, Eleni Marinou, Vassilis Amiridis, Michael Sicard, Alejandro Rodríguez-Gómez, Mika Komppula, and Tero Mielonen
Atmos. Chem. Phys., 24, 1329–1344, https://doi.org/10.5194/acp-24-1329-2024, https://doi.org/10.5194/acp-24-1329-2024, 2024
Short summary
Short summary
In June 2019, smoke particles from a Canadian wildfire event were transported to Europe. The long-range-transported smoke plumes were monitored with a spaceborne lidar and reanalysis models. Based on the aerosol mass concentrations estimated from the observations, the reanalysis models had difficulties in reproducing the amount and location of the smoke aerosols during the transport event. Consequently, more spaceborne lidar missions are needed for reliable monitoring of aerosol plumes.
Kalle Nordling, Jukka-Pekka Keskinen, Sami Romakkaniemi, Harri Kokkola, Petri Räisänen, Antti Lipponen, Antti-Ilari Partanen, Jaakko Ahola, Juha Tonttila, Muzaffer Ege Alper, Hannele Korhonen, and Tomi Raatikainen
Atmos. Chem. Phys., 24, 869–890, https://doi.org/10.5194/acp-24-869-2024, https://doi.org/10.5194/acp-24-869-2024, 2024
Short summary
Short summary
Our results show that the global model is stable and it provides meaningful results. This way we can include a physics-based presentation of sub-grid physics (physics which happens on a 100 m scale) in the global model, whose resolution is on a 100 km scale.
Juan Andrés Casquero-Vera, Daniel Pérez-Ramírez, Hassan Lyamani, Fernando Rejano, Andrea Casans, Gloria Titos, Francisco José Olmo, Lubna Dada, Simo Hakala, Tareq Hussein, Katrianne Lehtipalo, Pauli Paasonen, Antti Hyvärinen, Noemí Pérez, Xavier Querol, Sergio Rodríguez, Nikos Kalivitis, Yenny González, Mansour A. Alghamdi, Veli-Matti Kerminen, Andrés Alastuey, Tuukka Petäjä, and Lucas Alados-Arboledas
Atmos. Chem. Phys., 23, 15795–15814, https://doi.org/10.5194/acp-23-15795-2023, https://doi.org/10.5194/acp-23-15795-2023, 2023
Short summary
Short summary
Here we present the first study of the effect of mineral dust on the inhibition/promotion of new particle formation (NPF) events in different dust-influenced areas. Unexpectedly, we show that the occurrence of NPF events is highly frequent during mineral dust outbreaks, occurring even during extreme dust outbreaks. We also show that the occurrence of NPF events during mineral dust outbreaks significantly affects the potential cloud condensation nuclei budget.
Markku Kulmala, Anna Lintunen, Hanna Lappalainen, Annele Virtanen, Chao Yan, Ekaterina Ezhova, Tuomo Nieminen, Ilona Riipinen, Risto Makkonen, Johanna Tamminen, Anu-Maija Sundström, Antti Arola, Armin Hansel, Kari Lehtinen, Timo Vesala, Tuukka Petäjä, Jaana Bäck, Tom Kokkonen, and Veli-Matti Kerminen
Atmos. Chem. Phys., 23, 14949–14971, https://doi.org/10.5194/acp-23-14949-2023, https://doi.org/10.5194/acp-23-14949-2023, 2023
Short summary
Short summary
To be able to meet global grand challenges, we need comprehensive open data with proper metadata. In this opinion paper, we describe the SMEAR (Station for Measuring Earth surface – Atmosphere Relations) concept and include several examples (cases), such as new particle formation and growth, feedback loops and the effect of COVID-19, and what has been learned from these investigations. The future needs and the potential of comprehensive observations of the environment are summarized.
Simo Hakala, Ville Vakkari, Heikki Lihavainen, Antti-Pekka Hyvärinen, Kimmo Neitola, Jenni Kontkanen, Veli-Matti Kerminen, Markku Kulmala, Tuukka Petäjä, Tareq Hussein, Mamdouh I. Khoder, Mansour A. Alghamdi, and Pauli Paasonen
Atmos. Chem. Phys., 23, 9287–9321, https://doi.org/10.5194/acp-23-9287-2023, https://doi.org/10.5194/acp-23-9287-2023, 2023
Short summary
Short summary
Things are not always as they first seem in ambient aerosol measurements. Observations of decreasing particle sizes are often interpreted as resulting from particle evaporation. We show that such observations can counterintuitively be explained by particles that are constantly growing in size. This requires one to account for the previous movements of the observed air. Our explanation implies a larger number of larger particles, meaning more significant effects of aerosols on climate and health.
Franz Martin Schnaiter, Claudia Linke, Eija Asmi, Henri Servomaa, Antti-Pekka Hyvärinen, Sho Ohata, Yutaka Kondo, and Emma Järvinen
Atmos. Meas. Tech., 16, 2753–2769, https://doi.org/10.5194/amt-16-2753-2023, https://doi.org/10.5194/amt-16-2753-2023, 2023
Short summary
Short summary
Light-absorbing particles from combustion processes are important contributors to climate warming. Their highly variable spectral light absorption properties need to be monitored in the field. Commonly used methods show measurement artefacts that are difficult to correct. We introduce a new instrument that is based on the photoacoustic effect. Long-term operation in the Finnish Arctic demonstrates the applicability of the new instrument for unattended light absorption monitoring.
Svetlana Sofieva, Eija Asmi, Nina S. Atanasova, Aino E. Heikkinen, Emeline Vidal, Jonathan Duplissy, Martin Romantschuk, Rostislav Kouznetsov, Jaakko Kukkonen, Dennis H. Bamford, Antti-Pekka Hyvärinen, and Mikhail Sofiev
Atmos. Meas. Tech., 15, 6201–6219, https://doi.org/10.5194/amt-15-6201-2022, https://doi.org/10.5194/amt-15-6201-2022, 2022
Short summary
Short summary
A new bubble-generating glass chamber design with an extensive set of aerosol production experiments is presented to re-evaluate bubble-bursting-mediated aerosol production as a function of water parameters: bubbling air flow, water salinity, and temperature. Our main findings suggest modest dependence of aerosol production on the water salinity and a strong dependence on temperature below ~ 10 °C.
Ville Leinonen, Harri Kokkola, Taina Yli-Juuti, Tero Mielonen, Thomas Kühn, Tuomo Nieminen, Simo Heikkinen, Tuuli Miinalainen, Tommi Bergman, Ken Carslaw, Stefano Decesari, Markus Fiebig, Tareq Hussein, Niku Kivekäs, Radovan Krejci, Markku Kulmala, Ari Leskinen, Andreas Massling, Nikos Mihalopoulos, Jane P. Mulcahy, Steffen M. Noe, Twan van Noije, Fiona M. O'Connor, Colin O'Dowd, Dirk Olivie, Jakob B. Pernov, Tuukka Petäjä, Øyvind Seland, Michael Schulz, Catherine E. Scott, Henrik Skov, Erik Swietlicki, Thomas Tuch, Alfred Wiedensohler, Annele Virtanen, and Santtu Mikkonen
Atmos. Chem. Phys., 22, 12873–12905, https://doi.org/10.5194/acp-22-12873-2022, https://doi.org/10.5194/acp-22-12873-2022, 2022
Short summary
Short summary
We provide the first extensive comparison of detailed aerosol size distribution trends between in situ observations from Europe and five different earth system models. We investigated aerosol modes (nucleation, Aitken, and accumulation) separately and were able to show the differences between measured and modeled trends and especially their seasonal patterns. The differences in model results are likely due to complex effects of several processes instead of certain specific model features.
Silvia M. Calderón, Juha Tonttila, Angela Buchholz, Jorma Joutsensaari, Mika Komppula, Ari Leskinen, Liqing Hao, Dmitri Moisseev, Iida Pullinen, Petri Tiitta, Jian Xu, Annele Virtanen, Harri Kokkola, and Sami Romakkaniemi
Atmos. Chem. Phys., 22, 12417–12441, https://doi.org/10.5194/acp-22-12417-2022, https://doi.org/10.5194/acp-22-12417-2022, 2022
Short summary
Short summary
The spatial and temporal restrictions of observations and oversimplified aerosol representation in large eddy simulations (LES) limit our understanding of aerosol–stratocumulus interactions. In this closure study of in situ and remote sensing observations and outputs from UCLALES–SALSA, we have assessed the role of convective overturning and aerosol effects in two cloud events observed at the Puijo SMEAR IV station, Finland, a diurnal-high aerosol case and a nocturnal-low aerosol case.
Chao Yan, Yicheng Shen, Dominik Stolzenburg, Lubna Dada, Ximeng Qi, Simo Hakala, Anu-Maija Sundström, Yishuo Guo, Antti Lipponen, Tom V. Kokkonen, Jenni Kontkanen, Runlong Cai, Jing Cai, Tommy Chan, Liangduo Chen, Biwu Chu, Chenjuan Deng, Wei Du, Xiaolong Fan, Xu-Cheng He, Juha Kangasluoma, Joni Kujansuu, Mona Kurppa, Chang Li, Yiran Li, Zhuohui Lin, Yiliang Liu, Yuliang Liu, Yiqun Lu, Wei Nie, Jouni Pulliainen, Xiaohui Qiao, Yonghong Wang, Yifan Wen, Ye Wu, Gan Yang, Lei Yao, Rujing Yin, Gen Zhang, Shaojun Zhang, Feixue Zheng, Ying Zhou, Antti Arola, Johanna Tamminen, Pauli Paasonen, Yele Sun, Lin Wang, Neil M. Donahue, Yongchun Liu, Federico Bianchi, Kaspar R. Daellenbach, Douglas R. Worsnop, Veli-Matti Kerminen, Tuukka Petäjä, Aijun Ding, Jingkun Jiang, and Markku Kulmala
Atmos. Chem. Phys., 22, 12207–12220, https://doi.org/10.5194/acp-22-12207-2022, https://doi.org/10.5194/acp-22-12207-2022, 2022
Short summary
Short summary
Atmospheric new particle formation (NPF) is a dominant source of atmospheric ultrafine particles. In urban environments, traffic emissions are a major source of primary pollutants, but their contribution to NPF remains under debate. During the COVID-19 lockdown, traffic emissions were significantly reduced, providing a unique chance to examine their relevance to NPF. Based on our comprehensive measurements, we demonstrate that traffic emissions alone are not able to explain the NPF in Beijing.
Sini Isokääntä, Paul Kim, Santtu Mikkonen, Thomas Kühn, Harri Kokkola, Taina Yli-Juuti, Liine Heikkinen, Krista Luoma, Tuukka Petäjä, Zak Kipling, Daniel Partridge, and Annele Virtanen
Atmos. Chem. Phys., 22, 11823–11843, https://doi.org/10.5194/acp-22-11823-2022, https://doi.org/10.5194/acp-22-11823-2022, 2022
Short summary
Short summary
This research employs air mass history analysis and observations to study how clouds and precipitation affect atmospheric aerosols during transport to a boreal forest site. The mass concentrations of studied chemical species showed exponential decrease as a function of accumulated rain along the air mass route. Our analysis revealed in-cloud sulfate formation, while no major changes in organic mass were seen. Most of the in-cloud-formed sulfate could be assigned to particle sizes above 200 nm.
Qirui Zhong, Nick Schutgens, Guido van der Werf, Twan van Noije, Kostas Tsigaridis, Susanne E. Bauer, Tero Mielonen, Alf Kirkevåg, Øyvind Seland, Harri Kokkola, Ramiro Checa-Garcia, David Neubauer, Zak Kipling, Hitoshi Matsui, Paul Ginoux, Toshihiko Takemura, Philippe Le Sager, Samuel Rémy, Huisheng Bian, Mian Chin, Kai Zhang, Jialei Zhu, Svetlana G. Tsyro, Gabriele Curci, Anna Protonotariou, Ben Johnson, Joyce E. Penner, Nicolas Bellouin, Ragnhild B. Skeie, and Gunnar Myhre
Atmos. Chem. Phys., 22, 11009–11032, https://doi.org/10.5194/acp-22-11009-2022, https://doi.org/10.5194/acp-22-11009-2022, 2022
Short summary
Short summary
Aerosol optical depth (AOD) errors for biomass burning aerosol (BBA) are evaluated in 18 global models against satellite datasets. Notwithstanding biases in satellite products, they allow model evaluations. We observe large and diverse model biases due to errors in BBA. Further interpretations of AOD diversities suggest large biases exist in key processes for BBA which require better constraining. These results can contribute to further model improvement and development.
Marje Prank, Juha Tonttila, Jaakko Ahola, Harri Kokkola, Thomas Kühn, Sami Romakkaniemi, and Tomi Raatikainen
Atmos. Chem. Phys., 22, 10971–10992, https://doi.org/10.5194/acp-22-10971-2022, https://doi.org/10.5194/acp-22-10971-2022, 2022
Short summary
Short summary
Aerosols and clouds persist as the dominant sources of uncertainty in climate projections. In this modelling study, we investigate the role of marine aerosols in influencing the lifetime of low-level clouds. Our high resolution simulations show that sea spray can both extend and shorten the lifetime of the cloud layer depending on the model setup. The impact of the primary marine organics is relatively limited while secondary aerosol from monoterpenes can have larger impact.
Cynthia H. Whaley, Rashed Mahmood, Knut von Salzen, Barbara Winter, Sabine Eckhardt, Stephen Arnold, Stephen Beagley, Silvia Becagli, Rong-You Chien, Jesper Christensen, Sujay Manish Damani, Xinyi Dong, Konstantinos Eleftheriadis, Nikolaos Evangeliou, Gregory Faluvegi, Mark Flanner, Joshua S. Fu, Michael Gauss, Fabio Giardi, Wanmin Gong, Jens Liengaard Hjorth, Lin Huang, Ulas Im, Yugo Kanaya, Srinath Krishnan, Zbigniew Klimont, Thomas Kühn, Joakim Langner, Kathy S. Law, Louis Marelle, Andreas Massling, Dirk Olivié, Tatsuo Onishi, Naga Oshima, Yiran Peng, David A. Plummer, Olga Popovicheva, Luca Pozzoli, Jean-Christophe Raut, Maria Sand, Laura N. Saunders, Julia Schmale, Sangeeta Sharma, Ragnhild Bieltvedt Skeie, Henrik Skov, Fumikazu Taketani, Manu A. Thomas, Rita Traversi, Kostas Tsigaridis, Svetlana Tsyro, Steven Turnock, Vito Vitale, Kaley A. Walker, Minqi Wang, Duncan Watson-Parris, and Tahya Weiss-Gibbons
Atmos. Chem. Phys., 22, 5775–5828, https://doi.org/10.5194/acp-22-5775-2022, https://doi.org/10.5194/acp-22-5775-2022, 2022
Short summary
Short summary
Air pollutants, like ozone and soot, play a role in both global warming and air quality. Atmospheric models are often used to provide information to policy makers about current and future conditions under different emissions scenarios. In order to have confidence in those simulations, in this study we compare simulated air pollution from 18 state-of-the-art atmospheric models to measured air pollution in order to assess how well the models perform.
Jaakko Ahola, Tomi Raatikainen, Muzaffer Ege Alper, Jukka-Pekka Keskinen, Harri Kokkola, Antti Kukkurainen, Antti Lipponen, Jia Liu, Kalle Nordling, Antti-Ilari Partanen, Sami Romakkaniemi, Petri Räisänen, Juha Tonttila, and Hannele Korhonen
Atmos. Chem. Phys., 22, 4523–4537, https://doi.org/10.5194/acp-22-4523-2022, https://doi.org/10.5194/acp-22-4523-2022, 2022
Short summary
Short summary
Clouds are important for the climate, and cloud droplets have a significant role in cloud properties. Cloud droplets form when air rises and cools and water vapour condenses on small particles that can be natural or of anthropogenic origin. Currently, the updraft velocity, meaning how fast the air rises, is poorly represented in global climate models. In our study, we show three methods that will improve the depiction of updraft velocity and which properties are vital to updrafts.
Mathew Sebastian, Sobhan Kumar Kompalli, Vasudevan Anil Kumar, Sandhya Jose, S. Suresh Babu, Govindan Pandithurai, Sachchidanand Singh, Rakesh K. Hooda, Vijay K. Soni, Jeffrey R. Pierce, Ville Vakkari, Eija Asmi, Daniel M. Westervelt, Antti-Pekka Hyvärinen, and Vijay P. Kanawade
Atmos. Chem. Phys., 22, 4491–4508, https://doi.org/10.5194/acp-22-4491-2022, https://doi.org/10.5194/acp-22-4491-2022, 2022
Short summary
Short summary
Characteristics of particle number size distributions and new particle formation in six locations in India were analyzed. New particle formation occurred frequently during the pre-monsoon (spring) season and it significantly modulates the shape of the particle number size distributions. The contribution of newly formed particles to cloud condensation nuclei concentrations was ~3 times higher in urban locations than in mountain background locations.
Tomi Raatikainen, Marje Prank, Jaakko Ahola, Harri Kokkola, Juha Tonttila, and Sami Romakkaniemi
Atmos. Chem. Phys., 22, 3763–3778, https://doi.org/10.5194/acp-22-3763-2022, https://doi.org/10.5194/acp-22-3763-2022, 2022
Short summary
Short summary
Mineral dust or similar ice-nucleating particles (INPs) are needed to initiate cloud droplet freezing at temperatures common in shallow clouds. In this work we examine how INPs that are released from the sea surface impact marine clouds. Our high-resolution simulations show that turbulent updraughts carry these particles effectively up to the clouds, where they initiate cloud droplet freezing. Sea surface INP emissions become more important with decreasing background dust INP concentrations.
Antti Lipponen, Jaakko Reinvall, Arttu Väisänen, Henri Taskinen, Timo Lähivaara, Larisa Sogacheva, Pekka Kolmonen, Kari Lehtinen, Antti Arola, and Ville Kolehmainen
Atmos. Meas. Tech., 15, 895–914, https://doi.org/10.5194/amt-15-895-2022, https://doi.org/10.5194/amt-15-895-2022, 2022
Short summary
Short summary
We have developed a machine-learning-based model that can be used to correct the Sentinel-3 satellite-based aerosol parameter data of the Synergy data product. The strength of the model is that the original satellite data processing does not have to be carried out again but the correction can be carried out with the data already available. We show that the correction significantly improves the accuracy of the satellite aerosol parameters.
Konstantinos Matthaios Doulgeris, Heikki Lihavainen, Anti-Pekka Hyvärinen, Veli-Matti Kerminen, and David Brus
Earth Syst. Sci. Data, 14, 637–649, https://doi.org/10.5194/essd-14-637-2022, https://doi.org/10.5194/essd-14-637-2022, 2022
Short summary
Short summary
We produced and summarized data sets obtained from two cloud ground-based spectrometers (CAPS and FSSP-100 ground setups) during 8 years of Pallas Cloud Experiment campaigns conducted in autumn from 2004 until 2019 along with several meteorological variables. The campaigns took place in the Finnish sub-Arctic region in a clear environment in temperatures that were usually below zero. This data set provides a helpful contribution to cloud microphysics processes.
Daniel M. Kalbermatter, Griša Močnik, Luka Drinovec, Bradley Visser, Jannis Röhrbein, Matthias Oscity, Ernest Weingartner, Antti-Pekka Hyvärinen, and Konstantina Vasilatou
Atmos. Meas. Tech., 15, 561–572, https://doi.org/10.5194/amt-15-561-2022, https://doi.org/10.5194/amt-15-561-2022, 2022
Short summary
Short summary
Soot particles with varying amounts of secondary organic matter coating were generated and used to compare a series of aerosol-absorption-measuring instruments: filter-based and photoacoustic instruments as well as photo-thermal interferometers. Significant deviations in the response of the instruments were observed depending on the amount of secondary organic coating. The system can be used for the inter-comparison and characterisation of instruments.
Arto Heitto, Kari Lehtinen, Tuukka Petäjä, Felipe Lopez-Hilfiker, Joel A. Thornton, Markku Kulmala, and Taina Yli-Juuti
Atmos. Chem. Phys., 22, 155–171, https://doi.org/10.5194/acp-22-155-2022, https://doi.org/10.5194/acp-22-155-2022, 2022
Short summary
Short summary
For atmospheric aerosol particles to take part in cloud formation, they need to be at least a few tens of nanometers in diameter. By using a particle condensation model, we investigated how two types of chemical reactions, oligomerization and decomposition, of organic molecules inside the particle may affect the growth of secondary aerosol particles to these sizes. We show that the effect is potentially significant, which highlights the importance of increasing understanding of these processes.
Anton Laakso, Ulrike Niemeier, Daniele Visioni, Simone Tilmes, and Harri Kokkola
Atmos. Chem. Phys., 22, 93–118, https://doi.org/10.5194/acp-22-93-2022, https://doi.org/10.5194/acp-22-93-2022, 2022
Short summary
Short summary
The use of different spatio-temporal sulfur injection strategies with different magnitudes to create an artificial reflective aerosol layer to cool the climate is studied using sectional and modal aerosol schemes in a climate model. There are significant differences in the results depending on the aerosol microphysical module used. Different spatio-temporal injection strategies have a significant impact on the magnitude and zonal distribution of radiative forcing and atmospheric dynamics.
Maria Sand, Bjørn H. Samset, Gunnar Myhre, Jonas Gliß, Susanne E. Bauer, Huisheng Bian, Mian Chin, Ramiro Checa-Garcia, Paul Ginoux, Zak Kipling, Alf Kirkevåg, Harri Kokkola, Philippe Le Sager, Marianne T. Lund, Hitoshi Matsui, Twan van Noije, Dirk J. L. Olivié, Samuel Remy, Michael Schulz, Philip Stier, Camilla W. Stjern, Toshihiko Takemura, Kostas Tsigaridis, Svetlana G. Tsyro, and Duncan Watson-Parris
Atmos. Chem. Phys., 21, 15929–15947, https://doi.org/10.5194/acp-21-15929-2021, https://doi.org/10.5194/acp-21-15929-2021, 2021
Short summary
Short summary
Absorption of shortwave radiation by aerosols can modify precipitation and clouds but is poorly constrained in models. A total of 15 different aerosol models from AeroCom phase III have reported total aerosol absorption, and for the first time, 11 of these models have reported in a consistent experiment the contributions to absorption from black carbon, dust, and organic aerosol. Here, we document the model diversity in aerosol absorption.
Anu Kauppi, Antti Kukkurainen, Antti Lipponen, Marko Laine, Antti Arola, Hannakaisa Lindqvist, and Johanna Tamminen
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-328, https://doi.org/10.5194/amt-2021-328, 2021
Revised manuscript not accepted
Short summary
Short summary
We present a methodology in Bayesian framework for retrieving atmospheric aerosol optical depth and aerosol type from the pre-computed look-up tables (LUTs). Especially, we consider Bayesian model averaging and uncertainty originating from aerosol model selection and imperfect forward modelling. Our aim is to get more realistic uncertainty estimates. We have applied the methodology to TROPOMI/S5P satellite observations and evaluated the results against ground-based data from the AERONET.
Sho Ohata, Tatsuhiro Mori, Yutaka Kondo, Sangeeta Sharma, Antti Hyvärinen, Elisabeth Andrews, Peter Tunved, Eija Asmi, John Backman, Henri Servomaa, Daniel Veber, Konstantinos Eleftheriadis, Stergios Vratolis, Radovan Krejci, Paul Zieger, Makoto Koike, Yugo Kanaya, Atsushi Yoshida, Nobuhiro Moteki, Yongjing Zhao, Yutaka Tobo, Junji Matsushita, and Naga Oshima
Atmos. Meas. Tech., 14, 6723–6748, https://doi.org/10.5194/amt-14-6723-2021, https://doi.org/10.5194/amt-14-6723-2021, 2021
Short summary
Short summary
Reliable values of mass absorption cross sections (MACs) of black carbon (BC) are required to determine mass concentrations of BC at Arctic sites using different types of filter-based absorption photometers. We successfully estimated MAC values for these instruments through comparison with independent measurements of BC by a continuous soot monitoring system called COSMOS. These MAC values are consistent with each other and applicable to study spatial and temporal variation in BC in the Arctic.
Xiaoxia Shang, Tero Mielonen, Antti Lipponen, Elina Giannakaki, Ari Leskinen, Virginie Buchard, Anton S. Darmenov, Antti Kukkurainen, Antti Arola, Ewan O'Connor, Anne Hirsikko, and Mika Komppula
Atmos. Meas. Tech., 14, 6159–6179, https://doi.org/10.5194/amt-14-6159-2021, https://doi.org/10.5194/amt-14-6159-2021, 2021
Short summary
Short summary
The long-range-transported smoke particles from a Canadian wildfire event were observed with a multi-wavelength Raman polarization lidar and a ceilometer over Kuopio, Finland, in June 2019. The optical properties and the mass concentration estimations were reported for such aged smoke aerosols over northern Europe.
Matthew Ozon, Dominik Stolzenburg, Lubna Dada, Aku Seppänen, and Kari E. J. Lehtinen
Atmos. Chem. Phys., 21, 12595–12611, https://doi.org/10.5194/acp-21-12595-2021, https://doi.org/10.5194/acp-21-12595-2021, 2021
Short summary
Short summary
Measuring the rate at which aerosol particles are formed is of importance for understanding climate change. We present an analysis method based on Kalman smoothing, which retrieves new particle formation and growth rates from size-distribution measurements. We apply it to atmospheric simulation chamber experiments and show that it agrees well with traditional methods. In addition, it provides reliable uncertainty estimates, and we suggest instrument design optimisation for signal processing.
Eija Asmi, John Backman, Henri Servomaa, Aki Virkkula, Maria I. Gini, Konstantinos Eleftheriadis, Thomas Müller, Sho Ohata, Yutaka Kondo, and Antti Hyvärinen
Atmos. Meas. Tech., 14, 5397–5413, https://doi.org/10.5194/amt-14-5397-2021, https://doi.org/10.5194/amt-14-5397-2021, 2021
Short summary
Short summary
Absorbing aerosols are warming the planet and accurate measurements of their concentrations in pristine environments are needed. We applied eight different absorbing-aerosol measurement methods in a field campaign at the Arctic Pallas station. The filter-based techniques were found to be the most sensitive to detect the minuscule amounts of black carbon present, showing a 40 % agreement between them. Our results help to reduce uncertainties in absorbing aerosol measurements.
Ernesto Reyes-Villegas, Upasana Panda, Eoghan Darbyshire, James M. Cash, Rutambhara Joshi, Ben Langford, Chiara F. Di Marco, Neil J. Mullinger, Mohammed S. Alam, Leigh R. Crilley, Daniel J. Rooney, W. Joe F. Acton, Will Drysdale, Eiko Nemitz, Michael Flynn, Aristeidis Voliotis, Gordon McFiggans, Hugh Coe, James Lee, C. Nicholas Hewitt, Mathew R. Heal, Sachin S. Gunthe, Tuhin K. Mandal, Bhola R. Gurjar, Shivani, Ranu Gadi, Siddhartha Singh, Vijay Soni, and James D. Allan
Atmos. Chem. Phys., 21, 11655–11667, https://doi.org/10.5194/acp-21-11655-2021, https://doi.org/10.5194/acp-21-11655-2021, 2021
Short summary
Short summary
This paper shows the first multisite online measurements of PM1 in Delhi, India, with measurements over different seasons in Old Delhi and New Delhi in 2018. Organic aerosol (OA) source apportionment was performed using positive matrix factorisation (PMF). Traffic was the main primary aerosol source for both OAs and black carbon, seen with PMF and Aethalometer model analysis, indicating that control of primary traffic exhaust emissions would make a significant reduction to Delhi air pollution.
Antti Arola, William Wandji Nyamsi, Antti Lipponen, Stelios Kazadzis, Nickolay A. Krotkov, and Johanna Tamminen
Atmos. Meas. Tech., 14, 4947–4957, https://doi.org/10.5194/amt-14-4947-2021, https://doi.org/10.5194/amt-14-4947-2021, 2021
Short summary
Short summary
Methods to estimate surface UV radiation from satellite measurements offer the only means to obtain global coverage, and the development of satellite-based UV algorithms has been ongoing since the early 1990s. One of the main challenges in this development has been how to account for the overall effect of absorption by atmospheric aerosols. One such method was suggested roughly a decade ago, and in this study we propose further improvements for this kind of approach.
Matthew Ozon, Aku Seppänen, Jari P. Kaipio, and Kari E. J. Lehtinen
Geosci. Model Dev., 14, 3715–3739, https://doi.org/10.5194/gmd-14-3715-2021, https://doi.org/10.5194/gmd-14-3715-2021, 2021
Short summary
Short summary
Experimental research has provided large amounts of high-quality data on aerosol over the last 2 decades. However, inference of the process rates (e.g., the rates at which particles are generated) is still typically done by simple curve-fitting methods and does not assess the credibility of the estimation. The devised method takes advantage of the Bayesian framework to not only retrieve the state of the observed aerosol system but also to estimate the process rates (e.g., growth rate).
Stephanie Bohlmann, Xiaoxia Shang, Ville Vakkari, Elina Giannakaki, Ari Leskinen, Kari E. J. Lehtinen, Sanna Pätsi, and Mika Komppula
Atmos. Chem. Phys., 21, 7083–7097, https://doi.org/10.5194/acp-21-7083-2021, https://doi.org/10.5194/acp-21-7083-2021, 2021
Short summary
Short summary
Measurements of the multi-wavelength Raman polarization lidar PollyXT and a Halo Photonics StreamLine Doppler lidar have been combined with measurements of pollen type and concentration using a traditional pollen trap at the rural forest site in Vehmasmäki, Finland. Depolarization ratios were measured at three wavelengths. High depolarization ratios were detected during an event with high birch and spruce pollen concentrations and a wavelength dependence of the depolarization ratio was observed.
Antti Lipponen, Ville Kolehmainen, Pekka Kolmonen, Antti Kukkurainen, Tero Mielonen, Neus Sabater, Larisa Sogacheva, Timo H. Virtanen, and Antti Arola
Atmos. Meas. Tech., 14, 2981–2992, https://doi.org/10.5194/amt-14-2981-2021, https://doi.org/10.5194/amt-14-2981-2021, 2021
Short summary
Short summary
We have developed a new computational method to post-process-correct the satellite aerosol retrievals. The proposed method combines the conventional satellite aerosol retrievals relying on physics-based models and machine learning. The results show significantly improved accuracy in the aerosol data over the operational satellite data products. The correction can be applied to the existing satellite aerosol datasets with no need to fully reprocess the much larger original radiance data.
Johan Ström, Jonas Svensson, Henri Honkanen, Eija Asmi, Nathaniel B. Dkhar, Shresth Tayal, Ved P. Sharma, Rakesh Hooda, Outi Meinander, Matti Leppäranta, Hans-Werner Jacobi, Heikki Lihavainen, and Antti Hyvärinen
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-158, https://doi.org/10.5194/acp-2021-158, 2021
Revised manuscript not accepted
Short summary
Short summary
Snow darkening in the Himalaya results from the deposition of different particles. Here we assess the change in the seasonal snow cover duration due to the presence of mineral dust and black carbon particles in the snow of Sunderdhunga valley, Central Himalaya, India. With the use of in situ weather station data, the snow melt-out date is estimated to be shifted ~13 days earlier due to the presence of the particles in the snow.
Sami D. Seppälä, Joel Kuula, Antti-Pekka Hyvärinen, Sanna Saarikoski, Topi Rönkkö, Jorma Keskinen, Jukka-Pekka Jalkanen, and Hilkka Timonen
Atmos. Chem. Phys., 21, 3215–3234, https://doi.org/10.5194/acp-21-3215-2021, https://doi.org/10.5194/acp-21-3215-2021, 2021
Short summary
Short summary
The effects of fuel sulfur content restrictions implemented by the International Maritime Organization in the Baltic Sea (in July 2010 and January 2015) on the particle properties of ship exhaust plumes and ambient aerosol were studied. The restrictions reduced the particle number concentrations and median particle size in plumes and number concentrations in ambient aerosol. These changes may improve human health in coastal areas and decrease the cooling effect of exhaust emissions from ships.
Jonas Svensson, Johan Ström, Henri Honkanen, Eija Asmi, Nathaniel B. Dkhar, Shresth Tayal, Ved P. Sharma, Rakesh Hooda, Matti Leppäranta, Hans-Werner Jacobi, Heikki Lihavainen, and Antti Hyvärinen
Atmos. Chem. Phys., 21, 2931–2943, https://doi.org/10.5194/acp-21-2931-2021, https://doi.org/10.5194/acp-21-2931-2021, 2021
Short summary
Short summary
Light-absorbing particles specifically affect snowmelt in the Himalayas. Through measurements of the constituents in glacier snow pits from the Indian Himalayas our investigations show that different snow layers display striking similarities. These similarities can be characterized by a deposition constant. Our results further indicate that mineral dust can be responsible for the majority of light absorption in the snow in this part of the Himalayas.
Antti Ruuskanen, Sami Romakkaniemi, Harri Kokkola, Antti Arola, Santtu Mikkonen, Harri Portin, Annele Virtanen, Kari E. J. Lehtinen, Mika Komppula, and Ari Leskinen
Atmos. Chem. Phys., 21, 1683–1695, https://doi.org/10.5194/acp-21-1683-2021, https://doi.org/10.5194/acp-21-1683-2021, 2021
Short summary
Short summary
The study focuses mainly on cloud-scavenging efficiency of absorbing particulate matter (mainly black carbon) but additionally covers cloud-scavenging efficiency of scattering particles and statistics of cloud condensation nuclei. The main findings give insight into how black carbon is distributed in different particle sizes and the sensitivity to cloud scavenged. The main findings are useful for large-scale modelling for evaluating cloud scavenging.
Juha Tonttila, Ali Afzalifar, Harri Kokkola, Tomi Raatikainen, Hannele Korhonen, and Sami Romakkaniemi
Atmos. Chem. Phys., 21, 1035–1048, https://doi.org/10.5194/acp-21-1035-2021, https://doi.org/10.5194/acp-21-1035-2021, 2021
Short summary
Short summary
The focus of this study is on rain enhancement by deliberate injection of small particles into clouds (
cloud seeding). The particles, usually released from an aircraft, are expected to enhance cloud droplet growth, but its practical feasibility is somewhat uncertain. To improve upon this, we simulate the seeding effects with a numerical model. The model reproduces the main features seen in field observations, with a strong sensitivity to the total mass of the injected particle material.
Jonas Gliß, Augustin Mortier, Michael Schulz, Elisabeth Andrews, Yves Balkanski, Susanne E. Bauer, Anna M. K. Benedictow, Huisheng Bian, Ramiro Checa-Garcia, Mian Chin, Paul Ginoux, Jan J. Griesfeller, Andreas Heckel, Zak Kipling, Alf Kirkevåg, Harri Kokkola, Paolo Laj, Philippe Le Sager, Marianne Tronstad Lund, Cathrine Lund Myhre, Hitoshi Matsui, Gunnar Myhre, David Neubauer, Twan van Noije, Peter North, Dirk J. L. Olivié, Samuel Rémy, Larisa Sogacheva, Toshihiko Takemura, Kostas Tsigaridis, and Svetlana G. Tsyro
Atmos. Chem. Phys., 21, 87–128, https://doi.org/10.5194/acp-21-87-2021, https://doi.org/10.5194/acp-21-87-2021, 2021
Short summary
Short summary
Simulated aerosol optical properties as well as the aerosol life cycle are investigated for 14 global models participating in the AeroCom initiative. Considerable diversity is found in the simulated aerosol species emissions and lifetimes, also resulting in a large diversity in the simulated aerosol mass, composition, and optical properties. A comparison with observations suggests that, on average, current models underestimate the direct effect of aerosol on the atmosphere radiation budget.
Sho Ohata, Tatsuhiro Mori, Yutaka Kondo, Sangeeta Sharma, Antti Hyvärinen, Elisabeth Andrews, Peter Tunved, Eija Asmi, John Backman, Henri Servomaa, Daniel Veber, Makoto Koike, Yugo Kanaya, Atsushi Yoshida, Nobuhiro Moteki, Yongjing Zhao, Junji Matsushita, and Naga Oshima
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1190, https://doi.org/10.5194/acp-2020-1190, 2020
Preprint withdrawn
Short summary
Short summary
Reliable values of mass absorption cross sections (MAC) of black carbon (BC) are required to determine mass concentrations of BC at Arctic sites using different types of filter-based absorption photometers. We successfully estimated MAC values for these instruments through comparison with independent measurements of BC by continuous soot monitoring system called COSMOS. These MAC values are consistent with each other and applicable to study spatial and temporal variation of BC in the Arctic.
Eemeli Holopainen, Harri Kokkola, Anton Laakso, and Thomas Kühn
Geosci. Model Dev., 13, 6215–6235, https://doi.org/10.5194/gmd-13-6215-2020, https://doi.org/10.5194/gmd-13-6215-2020, 2020
Short summary
Short summary
This paper introduces an in-cloud wet deposition scheme for liquid and ice phase clouds for global aerosol–climate models. With the default setup, our wet deposition scheme behaves spuriously and better representation can be achieved with this scheme when black carbon is mixed with soluble compounds at emission time. This work is done as many of the global models fail to reproduce the transport of black carbon to the Arctic, which may be due to the poor representation of wet removal in models.
Johannes Quaas, Antti Arola, Brian Cairns, Matthew Christensen, Hartwig Deneke, Annica M. L. Ekman, Graham Feingold, Ann Fridlind, Edward Gryspeerdt, Otto Hasekamp, Zhanqing Li, Antti Lipponen, Po-Lun Ma, Johannes Mülmenstädt, Athanasios Nenes, Joyce E. Penner, Daniel Rosenfeld, Roland Schrödner, Kenneth Sinclair, Odran Sourdeval, Philip Stier, Matthias Tesche, Bastiaan van Diedenhoven, and Manfred Wendisch
Atmos. Chem. Phys., 20, 15079–15099, https://doi.org/10.5194/acp-20-15079-2020, https://doi.org/10.5194/acp-20-15079-2020, 2020
Short summary
Short summary
Anthropogenic pollution particles – aerosols – serve as cloud condensation nuclei and thus increase cloud droplet concentration and the clouds' reflection of sunlight (a cooling effect on climate). This Twomey effect is poorly constrained by models and requires satellite data for better quantification. The review summarizes the challenges in properly doing so and outlines avenues for progress towards a better use of aerosol retrievals and better retrievals of droplet concentrations.
Nick Schutgens, Andrew M. Sayer, Andreas Heckel, Christina Hsu, Hiren Jethva, Gerrit de Leeuw, Peter J. T. Leonard, Robert C. Levy, Antti Lipponen, Alexei Lyapustin, Peter North, Thomas Popp, Caroline Poulsen, Virginia Sawyer, Larisa Sogacheva, Gareth Thomas, Omar Torres, Yujie Wang, Stefan Kinne, Michael Schulz, and Philip Stier
Atmos. Chem. Phys., 20, 12431–12457, https://doi.org/10.5194/acp-20-12431-2020, https://doi.org/10.5194/acp-20-12431-2020, 2020
Short summary
Short summary
We intercompare 14 different datasets of satellite observations of aerosol. Such measurements are challenging but also provide the best opportunity to globally observe an atmospheric component strongly related to air pollution and climate change. Our study shows that most datasets perform similarly well on a global scale but that locally errors can be quite different. We develop a technique to estimate satellite errors everywhere, even in the absence of surface reference data.
Jessica Slater, Juha Tonttila, Gordon McFiggans, Paul Connolly, Sami Romakkaniemi, Thomas Kühn, and Hugh Coe
Atmos. Chem. Phys., 20, 11893–11906, https://doi.org/10.5194/acp-20-11893-2020, https://doi.org/10.5194/acp-20-11893-2020, 2020
Short summary
Short summary
The feedback effect between aerosol particles, radiation and meteorology reduces turbulent motion and results in increased surface aerosol concentrations during Beijing haze. Observational analysis and regional modelling studies have examined the feedback effect but these studies are limited. In this work, we set up a high-resolution model for the Beijing environment to examine the sensitivity of the aerosol feedback effect to initial meteorological conditions and aerosol loading.
Jaakko Ahola, Hannele Korhonen, Juha Tonttila, Sami Romakkaniemi, Harri Kokkola, and Tomi Raatikainen
Atmos. Chem. Phys., 20, 11639–11654, https://doi.org/10.5194/acp-20-11639-2020, https://doi.org/10.5194/acp-20-11639-2020, 2020
Short summary
Short summary
In this study, we present an improved cloud model that reproduces the behaviour of mixed-phase clouds containing liquid droplets and ice crystals in more detail than before. This model is a convenient computational tool that enables the study of phenomena that cannot fit into a laboratory. These clouds have a significant role in climate, but they are not yet properly understood. Here, we show the advantages of the new model in a case study focusing on Arctic mixed-phase clouds.
Konstantinos-Matthaios Doulgeris, Mika Komppula, Sami Romakkaniemi, Antti-Pekka Hyvärinen, Veli-Matti Kerminen, and David Brus
Atmos. Meas. Tech., 13, 5129–5147, https://doi.org/10.5194/amt-13-5129-2020, https://doi.org/10.5194/amt-13-5129-2020, 2020
Short summary
Short summary
We intercompared three cloud spectrometers ground setups in conditions with frequently occurring supercooled clouds. The measurements were conducted during the Pallas Cloud Experiment (PaCE) in 2013, in the Finnish sub-Arctic region at Sammaltunturi station. The main meteorological parameters influencing the spectrometers' performance was the wind direction. Final recommendations and our view on the main limitations of each spectrometer ground setup are presented.
Cited articles
Amann, M., Bertok, I., Borken-Kleefeld, J., Cofala, J., Heyes, C.,
Höglund-Isaksson, L., Klimont, Z., Nguyen, B., Posch, M., Rafaj, P.,
Sandler, R., Schöpp, W., Wagner, F., and Winiwarter, W.: Cost-effective
control of air quality and greenhouse gases in Europe: Modeling and
policy applications, Environ. Model. Softw., 26, 1489–1501,
https://doi.org/10.1016/j.envsoft.2011.07.012, 2011. a
AMAP: AMAP Assessment 2015: Black carbon and ozone as Arctic climate forcers,
Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway,
https://www.amap.no/documents/doc/amap-assessment-2015-black-carbon-and-ozone-as-arctic-climate-forcers/1299 (last access: 14 March 2023),
2015. a
Auret, L. and Aldrich, C.: Interpretation of nonlinear relationships between
process variables by use of random forests, Miner. Eng., 35, 27–42,
https://doi.org/10.1016/j.mineng.2012.05.008, 2012. a
Backman, J., Schmeisser, L., and Asmi, E.: Asian Emissions Explain Much of
the Arctic Black Carbon Events, Geophys. Res. Lett., 48,
e2020GL091913, https://doi.org/10.1029/2020GL091913,
2021. a
Bawase, M., Sathe, Y., Khandaskar, H., and Thipse, S.: Chemical composition and
source attribution of PM2.5 and PM10 in Delhi-National Capital Region
(NCR) of India: results from an extensive seasonal campaign, J.
Atmos. Chem., 78, 35–58, https://doi.org/10.1007/s10874-020-09412-7, 2021. a
Belis, C. A., Van Dingenen, R., Klimont, Z., and Dentener, F.: Scenario
analysis of PM2.5 and ozone impacts on health, crops and climate with
TM5-FASST: A case study in the Western Balkans, J.
Environ. Manage., 319, 115738, https://doi.org/10.1016/j.jenvman.2022.115738,
2022. a, b
Bellouin, N., Quaas, J., Gryspeerdt, E., Kinne, S., Stier, P., Watson-Parris,
D., Boucher, O., Carslaw, K. S., Christensen, M., Daniau, A.-L., Dufresne,
J.-L., Feingold, G., Fiedler, S., Forster, P., Gettelman, A., Haywood, J. M.,
Lohmann, U., Malavelle, F., Mauritsen, T., McCoy, D. T., Myhre, G.,
Mülmenstädt, J., Neubauer, D., Possner, A., Rugenstein, M., Sato, Y.,
Schulz, M., Schwartz, S. E., Sourdeval, O., Storelvmo, T., Toll, V., Winker,
D., and Stevens, B.: Bounding Global Aerosol Radiative Forcing of Climate
Change, Rev. Geophys., 58, e2019RG000660,
https://doi.org/10.1029/2019RG000660, 2020. a
Bera, B., Bhattacharjee, S., Shit, P. K., Sengupta, N., and Saha, S.:
Significant impacts of COVID-19 lockdown on urban air pollution in Kolkata
(India) and amelioration of environmental health, Environ. Dev.
Sustain., 23, 6913–6940, 2021. a
Blockeel, H. and De Raedt, L.: Top-down induction of first-order logical
decision trees, Artif. Intell., 101, 285–297,
https://doi.org/10.1016/S0004-3702(98)00034-4, 1998. a
Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster,
P., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh,
S., Sherwood, S., Stevens, B., and Zhang, X.: Clouds and Aerosols, in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, https://doi.org/10.1017/CBO9781107415324.016, 2013. a
Bramer, M.: Avoiding Overfitting of Decision Trees, 121–136, Springer, London, https://doi.org/10.1007/978-1-4471-4884-5_9, 2013. a
Breiman, L.: Random Forests, Mach. Learn., 45, 5–32,
https://doi.org/10.1023/A:1010933404324, 2001. a, b
Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J.:
Classification and Regression Trees, Statistics/Probability Series, Wadsworth
Publishing Company, Belmont, California, USA, 1984. a
Burnett, R., Chen, H., Szyszkowicz, M., Fann, N., Hubbell, B., Pope, C. A.,
Apte, J. S., Brauer, M., Cohen, A., Weichenthal, S., Coggins, J., Di, Q.,
Brunekreef, B., Frostad, J., Lim, S. S., Kan, H., Walker, K. D., Thurston,
G. D., Hayes, R. B., Lim, C. C., Turner, M. C., Jerrett, M., Krewski, D.,
Gapstur, S. M., Diver, W. R., Ostro, B., Goldberg, D., Crouse, D. L., Martin,
R. V., Peters, P., Pinault, L., Tjepkema, M., van Donkelaar, A., Villeneuve,
P. J., Miller, A. B., Yin, P., Zhou, M., Wang, L., Janssen, N. A. H., Marra,
M., Atkinson, R. W., Tsang, H., Quoc Thach, T., Cannon, J. B., Allen, R. T.,
Hart, J. E., Laden, F., Cesaroni, G., Forastiere, F., Weinmayr, G., Jaensch,
A., Nagel, G., Concin, H., and Spadaro, J. V.: Global estimates of mortality
associated with long-term exposure to outdoor fine particulate matter,
P. Natl. Acad. Sci. USA, 115, 9592–9597,
2018. a
Cheng, T., Peng, Y., Feichter, J., and Tegen, I.: An improvement on the dust emission scheme in the global aerosol-climate model ECHAM5-HAM, Atmos. Chem. Phys., 8, 1105–1117, https://doi.org/10.5194/acp-8-1105-2008, 2008. a
Cherian, R., Quaas, J., Salzmann, M., and Tomassini, L.: Black carbon indirect
radiative effects in a climate model, Tellus B, 69, 1369342, https://doi.org/10.1080/16000889.2017.1369342, 2017. a
Collins, W. D., Ramaswamy, V., Schwarzkopf, M. D., Sun, Y., Portmann, R. W.,
Fu, Q., Casanova, S. E. B., Dufresne, J.-L., Fillmore, D. W., Forster, P.
M. D., Galin, V. Y., Gohar, L. K., Ingram, W. J., Kratz, D. P., Lefebvre,
M.-P., Li, J., Marquet, P., Oinas, V., Tsushima, Y., Uchiyama, T., and Zhong,
W. Y.: Radiative forcing by well-mixed greenhouse gases: Estimates from
climate models in the Intergovernmental Panel on Climate Change (IPCC)
Fourth Assessment Report (AR4), J. Geophys. Res.-Atmos., 111, D14317, https://doi.org/10.1029/2005JD006713, 2006. a, b
Cooney, C. M.: Downscaling climate models: sharpening the focus on local-level
changes, Environ. Health Persp., 120, a22–a28,
https://doi.org/10.1289/ehp.120-a22, 2012. a
Copernicus Climate Change Service (C3S): ERA5: Fifth generation of ECMWF
atmospheric reanalyses of the global climate,
https://cds.climate.copernicus.eu/cdsapp#!/home (last access:
22 July 2021), 2017. a
CPCB: National Ambient Air Quality Status and Trends 2019, National Ambient
Air Quality Monitoring, Central Pollution Control Board, Ministry of
Environment and Forest, NAAQMS/45/2019-2020, Government of
India, https://cpcb.nic.in/upload/NAAQS_2019.pdf (last access:
11 July 2022), 2020. a
CPBC: Central Control Room for Air Quality Management, Delhi NCR [data set], https://app.cpcbccr.com/ccr/#/caaqm-dashboard/caaqm-landing, last access: 14 March 2023. a
Crawford, J., Venkataraman, K., and Booth, J.: Developing climate model
ensembles: A comparative case study, J. Hydrol., 568, 160–173,
https://doi.org/10.1016/j.jhydrol.2018.10.054, 2019. a
Das, S., Giorgi, F., Giuliani, G., Dey, S., and Coppola, E.: Near-Future
Anthropogenic Aerosol Emission Scenarios and Their Direct Radiative Effects
on the Present-Day Characteristics of the Indian Summer Monsoon, J.
Geophys. Res.-Atmos., 125, e2019JD031414,
https://doi.org/10.1029/2019JD031414, 2020. a
Delhi Pollution Control Committee: DPCC, https://www.dpcc.delhigovt.nic.in/,
last access: 23 June 2022. a
Di, Q., Amini, H., Shi, L., Kloog, I., Silvern, R., Kelly, J., Sabath, M. B.,
Choirat, C., Koutrakis, P., Lyapustin, A., Wang, Y., Mickley, L. J., and
Schwartz, J.: An ensemble-based model of PM2.5 concentration across the
contiguous United States with high spatiotemporal resolution, Environ.
Int., 130, 104909, https://doi.org/10.1016/j.envint.2019.104909, 2019. a
Fairlie, T. D., Liu, H., Vernier, J.-P., Campuzano-Jost, P., Jimenez, J. L.,
Jo, D. S., Zhang, B., Natarajan, M., Avery, M. A., and Huey, G.: Estimates
of Regional Source Contributions to the Asian Tropopause Aerosol Layer Using
a Chemical Transport Model, J. Geophys. Res.-Atmos.,
125, e2019JD031506, https://doi.org/10.1029/2019JD031506, 2020. a
Fawagreh, K., Gaber, M. M., and Elyan, E.: Random forests: from early
developments to recent advancements, Systems Science & Control Engineering,
2, 602–609, https://doi.org/10.1080/21642583.2014.956265, 2014. a
Forster, P., Storelvmo, T., Armour, K., Collins, W., Dufresne, J. L., Frame,
D., Lunt, D. J., Mauritsen, T., Palmer, M. D., Watanabe, M., Wild, M., and
Zhang, H.: The Earth’s Energy Budget, Climate Feedbacks, and Climate
Sensitivity, in: Climate Change 2021: The Physical Science Basis.
Contribution of Working Group I to the Sixth Assessment Report of the
Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V.,
Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen,
Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E.,
Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and
Zhou, B., book section 7, Cambridge University Press, Cambridge, United
Kingdom and New York, NY, USA,
https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Chapter07.pdf (last access: 14 March 2021),
2021. a, b
Fricko, O., Havlik, P., Rogelj, J., Klimont, Z., Gusti, M., Johnson, N., Kolp,
P., Strubegger, M., Valin, H., Amann, M., Ermolieva, T., Forsell, N.,
Herrero, M., Heyes, C., Kindermann, G., Krey, V., McCollum, D. L.,
Obersteiner, M., Pachauri, S., Rao, S., Schmid, E., Schoepp, W., and Riahi,
K.: The marker quantification of the Shared Socioeconomic Pathway 2: A
middle-of-the-road scenario for the 21st century, Global Environ.
Chang., 42, 251–267, https://doi.org/10.1016/j.gloenvcha.2016.06.004, 2017. a
Gao, M., Han, Z., Liu, Z., Li, M., Xin, J., Tao, Z., Li, J., Kang, J.-E., Huang, K., Dong, X., Zhuang, B., Li, S., Ge, B., Wu, Q., Cheng, Y., Wang, Y., Lee, H.-J., Kim, C.-H., Fu, J. S., Wang, T., Chin, M., Woo, J.-H., Zhang, Q., Wang, Z., and Carmichael, G. R.: Air quality and climate change, Topic 3 of the Model Inter-Comparison Study for Asia Phase III (MICS-Asia III) – Part 1: Overview and model evaluation, Atmos. Chem. Phys., 18, 4859–4884, https://doi.org/10.5194/acp-18-4859-2018, 2018. a
GBD 2015 Risk Factors Collaborators: Global, regional, and national
comparative risk assessment of 79 behavioural, environmental and
occupational, and metabolic risks or clusters of risks, 1990–2015: a
systematic analysis for the Global Burden of Disease Study 2015,
Lancet, 388, 1659–1724, 2016. a
Geng, G., Meng, X., He, K., and Liu, Y.: Random forest models for PM2.5
speciation concentrations using MISR fractional AODs, Environ.
Res. Lett., 15, 034056, https://doi.org/10.1088/1748-9326/ab76df, 2020. a, b
Ghan, S. J.: Technical Note: Estimating aerosol effects on cloud radiative forcing, Atmos. Chem. Phys., 13, 9971–9974, https://doi.org/10.5194/acp-13-9971-2013, 2013. a
Guo, H., Kota, S. H., Chen, K., Sahu, S. K., Hu, J., Ying, Q., Wang, Y., and Zhang, H.: Source contributions and potential reductions to health effects of particulate matter in India, Atmos. Chem. Phys., 18, 15219–15229, https://doi.org/10.5194/acp-18-15219-2018, 2018. a
Hama, S. M., Kumar, P., Harrison, R. M., Bloss, W. J., Khare, M., Mishra, S.,
Namdeo, A., Sokhi, R., Goodman, P., and Sharma, C.: Four-year assessment of
ambient particulate matter and trace gases in the Delhi-NCR region of India,
Sustain. Cities Soc., 54, 102003,
https://doi.org/10.1016/j.scs.2019.102003, 2020. a
Hammer, M. S., van Donkelaar, A., Li, C., Lyapustin, A., Sayer, A. M., Hsu,
N. C., Levy, R. C., Garay, M. J., Kalashnikova, O. V., Kahn, R. A., Brauer,
M., Apte, J. S., Henze, D. K., Zhang, L., Zhang, Q., Ford, B., Pierce, J. R.,
and Martin, R. V.: Global Estimates and Long-Term Trends of Fine Particulate
Matter Concentrations (1998–2018), Environ. Sci. Technol.,
54, 7879–7890, https://doi.org/10.1021/acs.est.0c01764, 2020. a, b
Harmsen, M. J. H. M., van Dorst, P., van Vuuren, D. P., van den Berg, M.,
Van Dingenen, R., and Klimont, Z.: Co-benefits of black carbon mitigation for
climate and air quality, Climatic Change, 163, 1519–1538,
https://doi.org/10.1007/s10584-020-02800-8, 2020. a
Hegglin, M., Kinnison, D., Lamarque, J.-F., and Plummer, D.: CCMI ozone in
support of CMIP6 – version 1.0, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/input4MIPs.1115, 2016. a
Heinold, B., Tegen, I., Schepanski, K., and Banks, J. R.: New developments in the representation of Saharan dust sources in the aerosol–climate model ECHAM6-HAM2, Geosci. Model Dev., 9, 765–777, https://doi.org/10.5194/gmd-9-765-2016, 2016. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M.,
Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5
global reanalysis, Q. J. Roy. Meteor. Soc.,
146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020. a
Ho, T. K.: Random decision forests, Proceedings of 3rd International Conference on Document Analysis and Recognition, Montreal, QC, Canada, 278–282, Vol. 1, https://doi.org/10.1109/ICDAR.1995.598994, 1995. a
Holopainen, E., Kokkola, H., Laakso, A., and Kühn, T.: In-cloud scavenging scheme for sectional aerosol modules – implementation in the framework of the Sectional Aerosol module for Large Scale Applications version 2.0 (SALSA2.0) global aerosol module, Geosci. Model Dev., 13, 6215–6235, https://doi.org/10.5194/gmd-13-6215-2020, 2020. a, b
Honkonen, T.: Tackling Cookstove Emissions in India: Towards an Enabling
Policy Environment and More Effective Legal Solution, Law, Environment and
Development Journal, 16, 195–213, https://doi.org/10.25501/SOAS.00033485, 2020. a
Im, U., Tsigaridis, K., Faluvegi, G., Langen, P. L., French, J. P., Mahmood, R., Thomas, M. A., von Salzen, K., Thomas, D. C., Whaley, C. H., Klimont, Z., Skov, H., and Brandt, J.: Present and future aerosol impacts on Arctic climate change in the GISS-E2.1 Earth system model, Atmos. Chem. Phys., 21, 10413–10438, https://doi.org/10.5194/acp-21-10413-2021, 2021 a, b, c
Inness, A., Baier, F., Benedetti, A., Bouarar, I., Chabrillat, S., Clark, H., Clerbaux, C., Coheur, P., Engelen, R. J., Errera, Q., Flemming, J., George, M., Granier, C., Hadji-Lazaro, J., Huijnen, V., Hurtmans, D., Jones, L., Kaiser, J. W., Kapsomenakis, J., Lefever, K., Leitão, J., Razinger, M., Richter, A., Schultz, M. G., Simmons, A. J., Suttie, M., Stein, O., Thépaut, J.-N., Thouret, V., Vrekoussis, M., Zerefos, C., and the MACC team: The MACC reanalysis: an 8 yr data set of atmospheric composition, Atmos. Chem. Phys., 13, 4073–4109, https://doi.org/10.5194/acp-13-4073-2013, 2013. a
Ivatt, P. D. and Evans, M. J.: Improving the prediction of an atmospheric chemistry transport model using gradient-boosted regression trees, Atmos. Chem. Phys., 20, 8063–8082, https://doi.org/10.5194/acp-20-8063-2020, 2020. a, b
Jethva, H., Torres, O., Field, R. D., Lyapustin, A., Gautam, R., and Kayetha,
V.: Connecting crop productivity, residue fires, and air quality over
northern India, Sci. Rep., 9, 16594, https://doi.org/10.1038/s41598-019-52799-x, 2019. a
Johnson, B. T., Haywood, J. M., and Hawcroft, M. K.: Are Changes in Atmospheric
Circulation Important for Black Carbon Aerosol Impacts on Clouds,
Precipitation, and Radiation?, J. Geophys. Res.-Atmos.,
124, 7930–7950, https://doi.org/10.1029/2019JD030568, 2019. a
Kaiser, J. W., Heil, A., Andreae, M. O., Benedetti, A., Chubarova, N., Jones, L., Morcrette, J.-J., Razinger, M., Schultz, M. G., Suttie, M., and van der Werf, G. R.: Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power, Biogeosciences, 9, 527–554, https://doi.org/10.5194/bg-9-527-2012, 2012. a
Klimont, Z., Kupiainen, K., Heyes, C., Purohit, P., Cofala, J., Rafaj, P., Borken-Kleefeld, J., and Schöpp, W.: Global anthropogenic emissions of particulate matter including black carbon, Atmos. Chem. Phys., 17, 8681–8723, https://doi.org/10.5194/acp-17-8681-2017, 2017. a, b
Kokkola, H., Kühn, T., Laakso, A., Bergman, T., Lehtinen, K. E. J., Mielonen, T., Arola, A., Stadtler, S., Korhonen, H., Ferrachat, S., Lohmann, U., Neubauer, D., Tegen, I., Siegenthaler-Le Drian, C., Schultz, M. G., Bey, I., Stier, P., Daskalakis, N., Heald, C. L., and Romakkaniemi, S.: SALSA2.0: The sectional aerosol module of the aerosol–chemistry–climate model ECHAM6.3.0-HAM2.3-MOZ1.0, Geosci. Model Dev., 11, 3833–3863, https://doi.org/10.5194/gmd-11-3833-2018, 2018. a, b, c
Kühn, T., Kupiainen, K., Miinalainen, T., Kokkola, H., Paunu, V.-V., Laakso, A., Tonttila, J., Van Dingenen, R., Kulovesi, K., Karvosenoja, N., and Lehtinen, K. E. J.: Effects of black carbon mitigation on Arctic climate, Atmos. Chem. Phys., 20, 5527–5546, https://doi.org/10.5194/acp-20-5527-2020, 2020. a
Kukkonen, J., Kangas, L., Kauhaniemi, M., Sofiev, M., Aarnio, M., Jaakkola, J. J. K., Kousa, A., and Karppinen, A.: Modelling of the urban concentrations of PM2.5 on a high resolution for a period of 35 years, for the assessment of lifetime exposure and health effects, Atmos. Chem. Phys., 18, 8041–8064, https://doi.org/10.5194/acp-18-8041-2018, 2018. a
Lalchandani, V., Srivastava, D., Dave, J., Mishra, S., Tripathi, N., Shukla,
A. K., Sahu, R., Thamban, N. M., Gaddamidi, S., Dixit, K., Ganguly, D.,
Tiwari, S., Srivastava, A. K., Sahu, L., Rastogi, N., Gargava, P., and
Tripathi, S. N.: Effect of Biomass Burning on PM2.5 Composition and Secondary
Aerosol Formation During Post-Monsoon and Winter Haze Episodes in Delhi,
J. Geophys. Res.-Atmos., 127, e2021JD035232,
https://doi.org/10.1029/2021JD035232, 2022. a
Lamarque, J.-F., Bond, T. C., Eyring, V., Granier, C., Heil, A., Klimont, Z., Lee, D., Liousse, C., Mieville, A., Owen, B., Schultz, M. G., Shindell, D., Smith, S. J., Stehfest, E., Van Aardenne, J., Cooper, O. R., Kainuma, M., Mahowald, N., McConnell, J. R., Naik, V., Riahi, K., and van Vuuren, D. P.: Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application, Atmos. Chem. Phys., 10, 7017–7039, https://doi.org/10.5194/acp-10-7017-2010, 2010. a
Lannelongue, L., Grealey, J., Bateman, A., and Inouye, M.: Ten simple rules to
make your computing more environmentally sustainable, PLOS Comput.
Biol., 17, 1–8, https://doi.org/10.1371/journal.pcbi.1009324, 2021. a
Lau, W. K. M., Yuan, C., and Li, Z.: Origin, Maintenance and Variability of
the Asian Tropopause Aerosol Layer (ATAL): The Roles of Monsoon Dynamics,
Sci. Rep., 8, 3960, https://doi.org/10.1038/s41598-018-22267-z, 2018. a
Li, Y., Henze, D. K., Jack, D., and Kinney, P. L.: The influence of air quality
model resolution on health impact assessment for fine particulate matter and
its components, Air Qual. Atmos. Hlth., 9, 51–68,
https://doi.org/10.1007/s11869-015-0321-z, 2016. a
Lipponen, A., Kolehmainen, V., Romakkaniemi, S., and Kokkola, H.: Correction of approximation errors with Random Forests applied to modelling of cloud droplet formation, Geosci. Model Dev., 6, 2087–2098, https://doi.org/10.5194/gmd-6-2087-2013, 2013. a, b, c
Lu, W.-Z. and Wang, W.-J.: Potential assessment of the “support vector
machine” method in forecasting ambient air pollutant trends, Chemosphere,
59, 693–701, https://doi.org/10.1016/j.chemosphere.2004.10.032, 2005. a
Miinalainen, T.: Data for “Assessing the climate and air quality effects of future aerosol mitigation in India using a global climate model combined with statistical downscaling”, Version 3, Fairdata [data set], https://doi.org/10.23729/9724a768-9e3f-4116-8b1d-a4010817eead, 2023. a
Murari, V., Kumar, M., Barman, S., and Banerjee, T.: Temporal variability of
MODIS aerosol optical depth and chemical characterization of airborne
particulates in Varanasi, India, Environ. Sci. Pollut.
R., 22, 1329–1343, 2015. a
Myhre, G., Samset, B. H., Schulz, M., Balkanski, Y., Bauer, S., Berntsen, T. K., Bian, H., Bellouin, N., Chin, M., Diehl, T., Easter, R. C., Feichter, J., Ghan, S. J., Hauglustaine, D., Iversen, T., Kinne, S., Kirkevåg, A., Lamarque, J.-F., Lin, G., Liu, X., Lund, M. T., Luo, G., Ma, X., van Noije, T., Penner, J. E., Rasch, P. J., Ruiz, A., Seland, Ø., Skeie, R. B., Stier, P., Takemura, T., Tsigaridis, K., Wang, P., Wang, Z., Xu, L., Yu, H., Yu, F., Yoon, J.-H., Zhang, K., Zhang, H., and Zhou, C.: Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations, Atmos. Chem. Phys., 13, 1853–1877, https://doi.org/10.5194/acp-13-1853-2013, 2013. a
Neubauer, D., Ferrachat, S., Siegenthaler-Le Drian, C., Stier, P., Partridge, D. G., Tegen, I., Bey, I., Stanelle, T., Kokkola, H., and Lohmann, U.: The global aerosol–climate model ECHAM6.3–HAM2.3 – Part 2: Cloud evaluation, aerosol radiative forcing, and climate sensitivity, Geosci. Model Dev., 12, 3609–3639, https://doi.org/10.5194/gmd-12-3609-2019, 2019. a, b, c
Nolte, C. G., Spero, T. L., Bowden, J. H., Mallard, M. S., and Dolwick, P. D.: The potential effects of climate change on air quality across the conterminous US at 2030 under three Representative Concentration Pathways, Atmos. Chem. Phys., 18, 15471–15489, https://doi.org/10.5194/acp-18-15471-2018, 2018. a, b
O'Connor, F. M., Abraham, N. L., Dalvi, M., Folberth, G. A., Griffiths, P. T., Hardacre, C., Johnson, B. T., Kahana, R., Keeble, J., Kim, B., Morgenstern, O., Mulcahy, J. P., Richardson, M., Robertson, E., Seo, J., Shim, S., Teixeira, J. C., Turnock, S. T., Williams, J., Wiltshire, A. J., Woodward, S., and Zeng, G.: Assessment of pre-industrial to present-day anthropogenic climate forcing in UKESM1, Atmos. Chem. Phys., 21, 1211–1243, https://doi.org/10.5194/acp-21-1211-2021, 2021. a
Pang, B., Yue, J., Zhao, G., and Xu, Z.: Statistical Downscaling of Temperature
with the Random Forest Model, Adv. Meteorol., 2017, 7265178,
https://doi.org/10.1155/2017/7265178, 2017. a
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,
O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J.,
Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E.:
Scikit-learn: Machine Learning in Python, J. Mach. Learn.
Res., 12, 2825–2830, 2011. a, b
Permadi, D. A., Kim Oanh, N. T., and Vautard, R.: Assessment of emission scenarios for 2030 and impacts of black carbon emission reduction measures on air quality and radiative forcing in Southeast Asia, Atmos. Chem. Phys., 18, 3321–3334, https://doi.org/10.5194/acp-18-3321-2018, 2018. a
Prakash, J., Vats, P., Sharma, A. K., Ganguly, D., and Habib, G.: New Emission
Inventory of Carbonaceous Aerosols from the On-road Transport Sector in
India and its Implications for Direct Radiative Forcing over the Region,
Aerosol Air Qual. Res., 20, 741–761,
https://doi.org/10.4209/aaqr.2019.08.0393, 2020. a
Ramachandran, S., Rupakheti, M., and Cherian, R.: Insights into recent aerosol
trends over Asia from observations and CMIP6 simulations, Sci.
Total Environ., 807, 150756, https://doi.org/10.1016/j.scitotenv.2021.150756,
2022. a, b
Sahu, S. K., Sharma, S., Zhang, H., Chejarla, V., Guo, H., Hu, J., Ying, Q.,
Xing, J., and Kota, S. H.: Estimating ground level PM2.5 concentrations and
associated health risk in India using satellite based AOD and WRF
predicted meteorological parameters, Chemosphere, 255, 126969,
https://doi.org/10.1016/j.chemosphere.2020.126969, 2020. a
Saikawa, E., Panday, A., Kang, S., Gautam, R., Zusman, E., Cong, Z.,
Somanathan, E., and Adhikary, B.: Air Pollution in the Hindu Kush Himalaya, edited by: Wester, P., Mishra, A., Mukherji, A., and Shrestha, A.,
339–387, Springer International Publishing, Cham,
https://doi.org/10.1007/978-3-319-92288-1_10, 2019. a
Saraswati, George, M. P., Sharma, S. K., Mandal, T. K., and Kotnala, R. K.:
Simultaneous Measurements of Ambient NH3 and Its Relationship with Other
Trace Gases, PM2.5 and Meteorological Parameters over Delhi, India,
MAPAN, 34, 55–69, https://doi.org/10.1007/s12647-018-0286-0, 2019. a
Schultz, M. G., Stadtler, S., Schröder, S., Taraborrelli, D., Franco, B., Krefting, J., Henrot, A., Ferrachat, S., Lohmann, U., Neubauer, D., Siegenthaler-Le Drian, C., Wahl, S., Kokkola, H., Kühn, T., Rast, S., Schmidt, H., Stier, P., Kinnison, D., Tyndall, G. S., Orlando, J. J., and Wespes, C.: The chemistry–climate model ECHAM6.3-HAM2.3-MOZ1.0, Geosci. Model Dev., 11, 1695–1723, https://doi.org/10.5194/gmd-11-1695-2018, 2018. a
Shaddick, G., Thomas, M. L., Mudu, P., Ruggeri, G., and Gumy, S.: Half the
world's population are exposed to increasing air pollution, npj Climate and
Atmospheric Science, 3, 23, https://doi.org/10.1038/s41612-020-0124-2, 2020. a
Sharma, D., Soni, V. K., and Pradhan, S.: Assessment of variation in air
quality over Delhi and neighbouring cities of Noida and Greater Noida,
J. Earth Syst. Sci., 131, 155, https://doi.org/10.1007/s12040-022-01902-4,
2022. a
Silibello, C., D'Allura, A., Finardi, S., Bolignano, A., and Sozzi, R.:
Application of bias adjustment techniques to improve air quality forecasts,
Atmos. Pollut. Res., 6, 928–938, https://doi.org/10.1016/j.apr.2015.04.002,
2015. a
Smith, S. J. and Mizrahi, A.: Near-term climate mitigation by short-lived
forcers, P. Natl. Acad. Sci. USA, 110, 14202–14206, https://doi.org/10.1073/pnas.1308470110, 2013. a
Smith, S. J., Chateau, J., Dorheim, K., Drouet, L., Durand-Lasserve, O.,
Fricko, O., Fujimori, S., Hanaoka, T., Harmsen, M., Hilaire, J., Keramidas,
K., Klimont, Z., Luderer, G., Moura, M. C. P., Riahi, K., Rogelj, J., Sano,
F., van Vuuren, D. P., and Wada, K.: Impact of methane and black carbon
mitigation on forcing and temperature: a multi-model scenario analysis,
Climatic Change, 163, 1427–1442, https://doi.org/10.1007/s10584-020-02794-3, 2020. a
Stevens, A. R. H., Bellstedt, S., Elahi, P. J., and Murphy, M. T.: The
imperative to reduce carbon emissions in astronomy, Nature Astronomy, 4,
843–851, https://doi.org/10.1038/s41550-020-1169-1, 2020. a
Stevens, B., Giorgetta, M., Esch, M., Mauritsen, T., Crueger, T., Rast, S.,
Salzmann, M., Schmidt, H., Bader, J., Block, K., Brokopf, R., Fast, I.,
Kinne, S., Kornblueh, L., Lohmann, U., Pincus, R., Reichler, T., and
Roeckner, E.: Atmospheric component of the MPI-M Earth System Model:
ECHAM6, J. Adv. Model. Earth Sy., 5, 146–172,
https://doi.org/10.1002/jame.20015, 2013. a
Stohl, A., Aamaas, B., Amann, M., Baker, L. H., Bellouin, N., Berntsen, T. K., Boucher, O., Cherian, R., Collins, W., Daskalakis, N., Dusinska, M., Eckhardt, S., Fuglestvedt, J. S., Harju, M., Heyes, C., Hodnebrog, Ø., Hao, J., Im, U., Kanakidou, M., Klimont, Z., Kupiainen, K., Law, K. S., Lund, M. T., Maas, R., MacIntosh, C. R., Myhre, G., Myriokefalitakis, S., Olivié, D., Quaas, J., Quennehen, B., Raut, J.-C., Rumbold, S. T., Samset, B. H., Schulz, M., Seland, Ø., Shine, K. P., Skeie, R. B., Wang, S., Yttri, K. E., and Zhu, T.: Evaluating the climate and air quality impacts of short-lived pollutants, Atmos. Chem. Phys., 15, 10529–10566, https://doi.org/10.5194/acp-15-10529-2015, 2015. a, b, c
System of Air Quality and Weather Forecasting And Research: SAFAR, http://safar.tropmet.res.in/QA & QC-42-5-Details, last access: 23 June 2022. a
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An Overview of CMIP5 and
the Experiment Design, B. Am. Meteorol. Soc., 93,
485–498, https://doi.org/10.1175/BAMS-D-11-00094.1, 2012. a
Tegen, I., Harrison, S. P., Kohfeld, K., Prentice, I. C., Coe, M., and Heimann,
M.: Impact of vegetation and preferential source areas on global dust
aerosol: Results from a model study, J. Geophys. Res.-Atmos., 107, AAC 14–1–AAC 14–27, https://doi.org/10.1029/2001JD000963, 2002. a
Tegen, I., Neubauer, D., Ferrachat, S., Siegenthaler-Le Drian, C., Bey, I., Schutgens, N., Stier, P., Watson-Parris, D., Stanelle, T., Schmidt, H., Rast, S., Kokkola, H., Schultz, M., Schroeder, S., Daskalakis, N., Barthel, S., Heinold, B., and Lohmann, U.: The global aerosol–climate model ECHAM6.3–HAM2.3 – Part 1: Aerosol evaluation, Geosci. Model Dev., 12, 1643–1677, https://doi.org/10.5194/gmd-12-1643-2019, 2019. a, b
Thomson, A. M., Calvin, K. V., Smith, S. J., Kyle, G. P., Volke, A., Patel, P.,
Delgado-Arias, S., Bond-Lamberty, B., Wise, M. A., Clarke, L. E., and
Edmonds, J. A.: RCP4.5: a pathway for stabilization of radiative forcing by
2100, Climatic Change, 109, 77, https://doi.org/10.1007/s10584-011-0151-4, 2011. a
Trail, M., Tsimpidi, A. P., Liu, P., Tsigaridis, K., Hu, Y., Nenes, A., and Russell, A. G.: Downscaling a global climate model to simulate climate change over the US and the implication on regional and urban air quality, Geosci. Model Dev., 6, 1429–1445, https://doi.org/10.5194/gmd-6-1429-2013, 2013. a
Tran Anh, Q. and Taniguchi, K.: Coupling dynamical and statistical downscaling
for high-resolution rainfall forecasting: case study of the Red River Delta,
Vietnam, Progress in Earth and Planetary Science, 5, 28,
https://doi.org/10.1186/s40645-018-0185-6, 2018. a
Trevor, H., Robert, T., and Jerome, F.: The Elements of Statistical Learning:
Data Mining, Inference, and Prediction, 2nd Edn.,
corrected 7th printing of Springer Series in Statistics, Springer, https://doi.org/10.1007/978-0-387-84858-7,
2009. a
Turnock, S. T., Allen, R. J., Andrews, M., Bauer, S. E., Deushi, M., Emmons, L., Good, P., Horowitz, L., John, J. G., Michou, M., Nabat, P., Naik, V., Neubauer, D., O'Connor, F. M., Olivié, D., Oshima, N., Schulz, M., Sellar, A., Shim, S., Takemura, T., Tilmes, S., Tsigaridis, K., Wu, T., and Zhang, J.: Historical and future changes in air pollutants from CMIP6 models, Atmos. Chem. Phys., 20, 14547–14579, https://doi.org/10.5194/acp-20-14547-2020, 2020. a, b
Twomey, S.: The Influence of Pollution on the Shortwave Albedo of Clouds,
J. Atmos. Sci., 34, 1149–1152,
https://doi.org/10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2, 1977. a
van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard,
K., Hurtt, G. C., Kram, T., Krey, V., Lamarque, J.-F., Masui, T.,
Meinshausen, M., Nakicenovic, N., Smith, S. J., and Rose, S. K.: The
representative concentration pathways: an overview, Climatic Change, 109, 5,
https://doi.org/10.1007/s10584-011-0148-z, 2011. a
Vernier, J.-P., Fairlie, T. D., Natarajan, M., Wienhold, F. G., Bian, J.,
Martinsson, B. G., Crumeyrolle, S., Thomason, L. W., and Bedka, K. M.:
Increase in upper tropospheric and lower stratospheric aerosol levels and
its potential connection with Asian pollution, J. Geophys.
Res.-Atmos., 120, 1608–1619, https://doi.org/10.1002/2014JD022372,
2015. a
Vohra, K., Vodonos, A., Schwartz, J., Marais, E. A., Sulprizio, M. P., and
Mickley, L. J.: Global mortality from outdoor fine particle pollution
generated by fossil fuel combustion: Results from GEOS-Chem, Environ.
Res., 195, 110754, https://doi.org/10.1016/j.envres.2021.110754, 2021. a, b
Wang, Z., Lin, L., Xu, Y., Che, H., Zhang, X., Zhang, H., Dong, W., Wang, C.,
Gui, K., and Xie, B.: Incorrect Asian aerosols affecting the attribution
and projection of regional climate change in CMIP6 models, npj Climate and
Atmospheric Science, 4, 2, https://doi.org/10.1038/s41612-020-00159-2, 2021. a, b
Watson, G. L., Telesca, D., Reid, C. E., Pfister, G. G., and Jerrett, M.:
Machine learning models accurately predict ozone exposure during wildfire
events, Environ. Pollut., 254, 112792,
https://doi.org/10.1016/j.envpol.2019.06.088, 2019. a
Wei, L., Lu, Z., Wang, Y., Liu, X., Wang, W., Wu, C., Zhao, X., Rahimi, S.,
Xia, W., and Jiang, Y.: Black carbon-climate interactions regulate dust
burdens over India revealed during COVID-19, Nat. Commun., 13,
1839, https://doi.org/10.1038/s41467-022-29468-1, 2022. a
Wei, Y., Wang, Y., Di, Q., Choirat, C., Wang, Y., Koutrakis, P., Zanobetti, A.,
Dominici, F., and Schwartz, J. D.: Short term exposure to fine particulate
matter and hospital admission risks and costs in the Medicare population:
time stratified, case crossover study, BMJ, 367, l6258, https://doi.org/10.1136/bmj.l6258,
2019.
a
Whaley, C. H., Mahmood, R., von Salzen, K., Winter, B., Eckhardt, S., Arnold, S., Beagley, S., Becagli, S., Chien, R.-Y., Christensen, J., Damani, S. M., Dong, X., Eleftheriadis, K., Evangeliou, N., Faluvegi, G., Flanner, M., Fu, J. S., Gauss, M., Giardi, F., Gong, W., Hjorth, J. L., Huang, L., Im, U., Kanaya, Y., Krishnan, S., Klimont, Z., Kühn, T., Langner, J., Law, K. S., Marelle, L., Massling, A., Olivié, D., Onishi, T., Oshima, N., Peng, Y., Plummer, D. A., Popovicheva, O., Pozzoli, L., Raut, J.-C., Sand, M., Saunders, L. N., Schmale, J., Sharma, S., Skeie, R. B., Skov, H., Taketani, F., Thomas, M. A., Traversi, R., Tsigaridis, K., Tsyro, S., Turnock, S., Vitale, V., Walker, K. A., Wang, M., Watson-Parris, D., and Weiss-Gibbons, T.: Model evaluation of short-lived climate forcers for the Arctic Monitoring and Assessment Programme: a multi-species, multi-model study, Atmos. Chem. Phys., 22, 5775–5828, https://doi.org/10.5194/acp-22-5775-2022, 2022. a
Xu, H., Ren, Y., Zhang, W., Meng, W., Yun, X., Yu, X., Li, J., Zhang, Y., Shen,
G., Ma, J., Li, B., Cheng, H., Wang, X., Wan, Y., and Tao, S.: Updated Global
Black Carbon Emissions from 1960 to 2017: Improvements, Trends, and
Drivers, Environ. Sci. Technol., 55, 7869–7879,
https://doi.org/10.1021/acs.est.1c03117, 2021. a
Yang, Q., Yuan, Q., Li, T., and Yue, L.: Mapping PM2.5 concentration at high
resolution using a cascade random forest based downscaling model: Evaluation
and application, J. Clean. Prod., 277, 123887,
https://doi.org/10.1016/j.jclepro.2020.123887, 2020. a, b
Zamani Joharestani, M., Cao, C., Ni, X., Bashir, B., and Talebiesfandarani, S.:
PM2.5 Prediction Based on Random Forest, XGBoost, and Deep Learning Using
Multisource Remote Sensing Data, Atmosphere, 10, 373,
https://doi.org/10.3390/atmos10070373, 2019. a
Zhang, K., Wan, H., Liu, X., Ghan, S. J., Kooperman, G. J., Ma, P.-L., Rasch, P. J., Neubauer, D., and Lohmann, U.: Technical Note: On the use of nudging for aerosol–climate model intercomparison studies, Atmos. Chem. Phys., 14, 8631–8645, https://doi.org/10.5194/acp-14-8631-2014, 2014. a
Zhao, N., Dong, X., Huang, K., Fu, J. S., Lund, M. T., Sudo, K., Henze, D., Kucsera, T., Lam, Y. F., Chin, M., and Tilmes, S.: Responses of Arctic black carbon and surface temperature to multi-region emission reductions: a Hemispheric Transport of Air Pollution Phase 2 (HTAP2) ensemble modeling study, Atmos. Chem. Phys., 21, 8637–8654, https://doi.org/10.5194/acp-21-8637-2021, 2021. a
Short summary
We simulated the effects of aerosol emission mitigation on both global and regional radiative forcing and city-level air quality with a global-scale climate model. We used a machine learning downscaling approach to bias-correct the PM2.5 values obtained from the global model for the Indian megacity New Delhi. Our results indicate that aerosol mitigation could result in both improved air quality and less radiative heating for India.
We simulated the effects of aerosol emission mitigation on both global and regional radiative...
Altmetrics
Final-revised paper
Preprint