Articles | Volume 23, issue 4
https://doi.org/10.5194/acp-23-2525-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/acp-23-2525-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Microphysics of liquid water in sub-10 nm ultrafine aerosol particles
Xiaohan Li
Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ, USA
Ian C. Bourg
CORRESPONDING AUTHOR
Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ, USA
High Meadows Environmental Institute, Princeton University, Princeton, NJ, USA
Related authors
Xiaohan Li, Songmiao Fan, Huan Guo, and Paul Ginoux
EGUsphere, https://doi.org/10.5194/egusphere-2025-4224, https://doi.org/10.5194/egusphere-2025-4224, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
We used computer simulations to show that soot from wildfires and human activities has a bigger impact on high-altitude clouds than previously known. These particles create more ice crystals, which leads to a net warming effect on the climate in polar regions. Understanding this process is crucial for making accurate climate predictions as global wildfire activity increases.
Xiaohan Li, Songmiao Fan, Huan Guo, and Paul Ginoux
EGUsphere, https://doi.org/10.5194/egusphere-2025-4224, https://doi.org/10.5194/egusphere-2025-4224, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
We used computer simulations to show that soot from wildfires and human activities has a bigger impact on high-altitude clouds than previously known. These particles create more ice crystals, which leads to a net warming effect on the climate in polar regions. Understanding this process is crucial for making accurate climate predictions as global wildfire activity increases.
Cited articles
Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., and Lindahl, E.: GROMACS: High performance molecular simulations through
multi-level parallelism from laptops to supercomputers, SoftwareX, 1, 19–25,
2015. a
Abramzon, A. A. and Gaukhberg, R. D.: Surface tension of salt solutions, Zhurnal Prikladnoj Khimii, 66, 2145–2156, 1993. a
Alper, H. E. and Levy, R. M.: Computer simulations of the dielectric properties of water: studies of the simple point charge and transferrable intermolecular potential models, J. Chem. Phys., 91, 1242–1251, 1989. a
Ault, A. P. and Axson, J. L.: Atmospheric aerosol chemistry: Spectroscopic and microscopic advances, Anal. Chem., 89, 430–452, 2017. a
Azouzi, M. E. M., Ramboz, C., Lenain, J.-F., and Caupin, F.: A coherent picture of water at extreme negative pressure, Nat. Phys., 9, 38–41, 2013. a
Bahadur, R., Russell, L. M., and Alavi, S.: Surface tensions in NaCl-water-air systems from MD simulations, J. Phys. Chem. B, 111, 11989–11996, 2007. a
Benjamin, S. G., Brown, J. M., Brunet, G., Lynch, P., Saito, K., and Schlatter, T. W.: 100 years of progress in forecasting and NWP applications,
Meteorol. Monogr., 59, 13.1–13.67, 2019. a
Berendsen, H. J. C., Grigera, J. R., and Straatsma, T. P.: The missing term in effective pair potentials, J. Phys. Chem., 91, 6269–6271, 1987. a
Biskos, G., Paulsen, D., Russell, L. M., Buseck, P. R., and Martin, S. T.: Prompt deliquescence and efflorescence of aerosol nanoparticles, Atmos. Chem. Phys., 6, 4633–4642, https://doi.org/10.5194/acp-6-4633-2006, 2006b. a
Bocquet, L. and Charlaix, E.: Nanofluidics, from bulk to interfaces, Chem.
Soc. Rev., 39, 1073–1095, 2010. a
Bourg, I. C. and Steefel, C. I.: Molecular dynamics simulations of water
structure and diffusion in silica nanopores, J. Phys. Chem. C, 116, 11556–11564, 2012. a
Brown, E. C., Mucha, M., Jungwirth, P., and Tobias, D. J.: Structure and
vibrational spectroscopy of salt water/air interfaces: predictions from
classical molecular dynamics simulations, J. Phys. Chem. B, 109, 7934–7940, 2005. a
Burian, S., Isaiev, M., Termentzidis, K., Sysoev, V., and Bulavin, L.: Size
dependence of the surface tension of a free surface of an isotropic fluid,
Phys. Rev. E, 95, 062801, https://doi.org/10.1103/PhysRevE.95.062801, 2017. a
Bzdek, B. R. and Reid, J. P.: Perspective: Aerosol microphysics: From molecules to the chemical physics of aerosols, J. Chem. Phys., 147, 220901, https://doi.org/10.1063/1.5002641, 2017. a
Bzdek, B. R., Power, R. M., Simpson, S. H., Reid, J. P., and Royall, C. P.:
Precise, contactless measurements of the surface tension of picolitre aerosol
droplets, Chem. Sci., 7, 274–285, 2016. a
Bzdek, B. R., Reid, J. P., and Cotterell, M. I.: Open questions on the physical properties of aerosols, Commun. Chem., 3, 105, https://doi.org/10.1038/s42004-020-00342-9, 2020a. a
Bzdek, B. R., Reid, J. P., Malila, J., and Prisle, N. L.: The surface tension
of surfactant-containing, finite volume droplets, P. Natl. Acad. Sci. USA, 117, 8335–8343, 2020b. a
Chan, M. N., Zhang, H., Goldstein, A. H., and Wilson, K. R.: Role of water and phase in the heterogeneous oxidation of solid and aqueous succinic acid
aerosol by hydroxyl radicals, J. Phys. Chem. C, 118, 28978–28992, 2014. a
Ciobanu, V. G., Marcolli, C., Krieger, U. K., Weers, U., and Peter, T.:
Liquid-liquid phase separation in mixed organic/inorganic aerosol particles,
J. Phys. Chem. A, 113, 10966–10978, 2009. a
Davis, E. J.: A history and state-of-the-art of accommodation coefficients,
Atmos. Res., 82, 561–578, 2006. a
El Guendouzi, M. and Dinane, A.: Determination of water activities, osmotic and activity coefficients in aqueous solutions using the hygrometric method,
J. Chem. Thermodynam., 32, 297–310, 2000. a
Enghoff, M. B. and Svensmark, H.: The role of atmospheric ions in aerosol nucleation – a review, Atmos. Chem. Phys., 8, 4911–4923, https://doi.org/10.5194/acp-8-4911-2008, 2008. a
Estillore, A. D., Morris, H. S., Or, V. W., Lee, H. D., Alves, M. R., Marciano, M. A., Laskina, O., Qin, Z., Tivanski, A. V., and Grassian, V. H.: Linking hygroscopicity and the surface microstructure of model inorganic salts, simple and complex carbohydrates, and authentic sea spray aerosol particles, Phys. Chem. Chem. Phys., 19, 21101–21111, 2017. a
Evans, D. J. and Holian, B. L.: The nose–hoover thermostat, J. Chem. Phys., 83, 4069–4074, 1985. a
Evoy, E., Kamal, S., Patey, G. N., Martin, S. T., and Bertram, A. K.: Unified
Description of Diffusion Coefficients from Small to Large Molecules in
Organic–Water Mixtures, J. Phys. Chem. A, 124, 2301–2308, 2020. a
Fan, J., Rosenfeld, D., Zhang, Y., Giangrande, S. E., Li, Z., Machado, L. A., Martin, S. T., Yang, Y., Wang, J., Artaxo, P., Barbosa, H. M. J., Braga, R. C., Comstock, J. M., Feng, Z., Gao, W., Gomes, H. B., Mei, F., Pöhlker, C., Pöhlker, M., Pöschl, U., and Souza, R. A. F. D.: Substantial convection and precipitation enhancements by ultrafine aerosol particles, Science, 359, 411–418, 2018. a
Faust, J. A., Wong, J. P., Lee, A. K., and Abbatt, J. P.: Role of aerosol
liquid water in secondary organic aerosol formation from volatile organic
compounds, Environ. Sci. Technol., 51, 1405–1413, 2017. a
Fayer, M. D.: Dynamics of water interacting with interfaces, molecules, and
ions, Accounts Chem. Res., 45, 3–14, 2012. a
Fayer, M. D. and Levinger, N. E.: Analysis of water in confined geometries and at interfaces, Annu. Rev. Anal. Chem., 3, 89, https://doi.org/10.1146/annurev-anchem-070109-103410, 2010. a
Frank, E. S., Fan, H., Shrestha, M., Riahi, S., Tobias, D. J., and Grassian,
V. H.: Impact of adsorbed water on the interaction of limonene with
hydroxylated SiO2: implications of π-hydrogen bonding for surfaces in humid environments, J. Phys. Chem. A, 124, 10592–10599, 2020. a
Frenkel, D. and Smit, B.: Understanding molecular simulation: from algorithms
to applications, in: vol. 1, Elsevier, ISBN 0-12-267351-4, 2001. a
Guo, S., Hu, M., Peng, J., Wu, Z., Zamora, M. L., Shang, D., Du, Z., Zheng, J., Fang, X., Tang, R., Wu, Y., Zeng, L., Shuai, S., Zhang, W., Wang, Y., Ji, Y., Li, Y., Zhang, A. L., Wang, W., Zhang, F., Zhao, J., Gong, X., Wang, C., Molina, M. J., and Zhang, R.: Remarkable nucleation and growth of ultrafine particles from vehicular exhaust, P. Natl. Acad. Sci. USA, 117, 3427–3432, 2020. a
Hallquist, M., Wenger, J. C., Baltensperger, U., Rudich, Y., Simpson, D., Claeys, M., Dommen, J., Donahue, N. M., George, C., Goldstein, A. H., Hamilton, J. F., Herrmann, H., Hoffmann, T., Iinuma, Y., Jang, M., Jenkin, M. E., Jimenez, J. L., Kiendler-Scharr, A., Maenhaut, W., McFiggans, G., Mentel, Th. F., Monod, A., Prévôt, A. S. H., Seinfeld, J. H., Surratt, J. D., Szmigielski, R., and Wildt, J.: The formation, properties and impact of secondary organic aerosol: current and emerging issues, Atmos. Chem. Phys., 9, 5155–5236, https://doi.org/10.5194/acp-9-5155-2009, 2009. a
Hämeri, K., Laaksonen, A., Väkevä, M., and Suni, T.: Hygroscopic
growth of ultrafine sodium chloride particles, J. Geophys. Res.-Atmos., 106, 20749–20757, 2001. a
Hård, S. and Johansson, K.: The surface tension of concentrated aqueous
solutions of 1.1-electrolytes measured by means of Wilhelmy and laser light
scattering methods, J. Colloid Interf. Sci., 60, 467–472, 1977. a
Hess, B.: P-LINCS: A parallel linear constraint solver for molecular simulation, J. Chem. Theor. Comput., 4, 116–122, 2008. a
Horinek, D., Herz, A., Vrbka, L., Sedlmeier, F., Mamatkulov, S. I., and Netz,
R. R.: Specific ion adsorption at the air/water interface: The role of
hydrophobic solvation, Chem. Phys. Lett., 479, 173–183, 2009. a
Hub, J. S., de Groot, B. L., Grubmüller, H., and Groenhof, G.: Quantifying artifacts in Ewald simulations of inhomogeneous systems with a net charge, J. Chem. Theor. Comput., 10, 381–390, 2014. a
Hyder, M., Genberg, J., Sandahl, M., Swietlicki, E., and Jönsson, J. Å.: Yearly trend of dicarboxylic acids in organic aerosols from south
of Sweden and source attribution, Atmos. Environ., 57, 197–204, 2012. a
Ismail, A. E., Grest, G. S., and Stevens, M. J.: Capillary waves at the
liquid-vapor interface and the surface tension of water, J. Chem. Phys., 125, 014702, https://doi.org/10.1063/1.2209240, 2006. a, b
Jorgensen, W. L., Maxwell, D. S., and Tirado-Rives, J.: Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids, J. Am. Chem. Soc., 118, 11225–11236, 1996. a
Joswiak, M. N., Duff, N., Doherty, M. F., and Peters, B.: Size-dependent
surface free energy and Tolman-corrected droplet nucleation of TIP4P/2005
water, J. Phys. Chem. Lett., 4, 4267–4272, 2013. a
Jungwirth, P. and Tobias, D. J.: Surface effects on aqueous ionic solvation: A molecular dynamics simulation study of NaCl at the air/water interface from
infinite dilution to saturation, J. Phys. Chem. B, 104, 7702–7706, 2000. a
Jungwirth, P. and Tobias, D. J.: Molecular structure of salt solutions: A new
view of the interface with implications for heterogeneous atmospheric
chemistry, J. Phys. Chem. B, 105, 10468–10472, 2001. a
Karadima, K. S., Mavrantzas, V. G., and Pandis, S. N.: Insights into the morphology of multicomponent organic and inorganic aerosols from molecular dynamics simulations, Atmos. Chem. Phys., 19, 5571–5587, https://doi.org/10.5194/acp-19-5571-2019, 2019. a, b
Karlsson, L., Baccarini, A., Duplessis, P., Baumgardner, D., Brooks, I. M., Chang, R. Y.-W., Dada, L., Dällenbach, K. R., Heikkinen, L., Krejci, R., Leaitch, W. R., Leck, C., Partridge, D. G., Salter, M. E., Wernli, H., Wheeler, M. J., Schmale, J., and Zieger, P.: Physical and chemical properties of cloud droplet residuals and aerosol particles during the Arctic Ocean 2018 expedition, J. Geophys. Res.-Atmos., 127, e2021JD036383, https://doi.org/10.1029/2021JD036383, 2022. a
Kawamura, K. and Yasui, O.: Diurnal changes in the distribution of dicarboxylic acids, ketocarboxylic acids and dicarbonyls in the urban Tokyo atmosphere, Atmos. Environ., 39, 1945–1960, 2005. a
Kiss, G., Tombácz, E., and Hansson, H.-C.: Surface tension effects of
humic-like substances in the aqueous extract of tropospheric fine aerosol,
J. Atmos. Chem., 50, 279–294, 2005. a
Kostenidou, E., Karnezi, E., Hite Jr., J. R., Bougiatioti, A., Cerully, K., Xu, L., Ng, N. L., Nenes, A., and Pandis, S. N.: Organic aerosol in the summertime southeastern United States: components and their link to volatility distribution, oxidation state and hygroscopicity, Atmos. Chem. Phys., 18, 5799–5819, https://doi.org/10.5194/acp-18-5799-2018, 2018. a, b
Kreidenweis, S. M., Petters, M., and Lohmann, U.: 100 years of progress in
cloud physics, aerosols, and aerosol chemistry research, Meteorol. Monogr., 59, 11.1–11.7, https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0024.1, 2019. a
Kürten, A., Li, C., Bianchi, F., Curtius, J., Dias, A., Donahue, N. M., Duplissy, J., Flagan, R. C., Hakala, J., Jokinen, T., Kirkby, J., Kulmala, M., Laaksonen, A., Lehtipalo, K., Makhmutov, V., Onnela, A., Rissanen, M. P., Simon, M., Sipilä, M., Stozhkov, Y., Tröstl, J., Ye, P., and McMurry, P. H.: New particle formation in the sulfuric acid–dimethylamine–water system: reevaluation of CLOUD chamber measurements and comparison to an aerosol nucleation and growth model, Atmos. Chem. Phys., 18, 845–863, https://doi.org/10.5194/acp-18-845-2018, 2018. a
Laage, D., Stirnemann, G., and Hynes, J. T.: Why water reorientation slows
without iceberg formation around hydrophobic solutes, J. Phys. Chem. B, 113, 2428–2435, 2009. a
Laaksonen, A. and Malila, J.: An adsorption theory of heterogeneous nucleation of water vapour on nanoparticles, Atmos. Chem. Phys., 16, 135–143, https://doi.org/10.5194/acp-16-135-2016, 2016. a, b
Lawler, M. J., Saltzman, E. S., Karlsson, L., Zieger, P., Salter, M.,
Baccarini, A., Schmale, J., and Leck, C.: New insights into the composition
and origins of ultrafine aerosol in the summertime high Arctic, Geophys. Res. Lett., 48, e2021GL094395, https://doi.org/10.1029/2021GL094395, 2021. a
Lee, H. D. and Tivanski, A. V.: Atomic force microscopy: an emerging tool in
measuring the phase state and surface tension of individual aerosol particles, Annu. Rev. Phys. Chem., 72, 235–252, 2021. a
Levin, Y., Dos Santos, A. P., and Diehl, A.: Ions at the air-water interface:
an end to a hundred-year-old mystery?, Phys. Rev. Lett., 103, 257802, https://doi.org/10.1103/PhysRevLett.103.257802, 2009. a, b
Lewis, E. R. and Schwartz, S. E.: Sea salt aerosol production: mechanisms,
methods, measurements, and models, in: vol. 152, American Geophysical Union,
ISBN 087590-417-3, 2004. a
Li, W., Shao, L., Zhang, D., Ro, C.-U., Hu, M., Bi, X., Geng, H., Matsuki, A., Niu, H., and Chen, J.: A review of single aerosol particle studies in the
atmosphere of East Asia: morphology, mixing state, source, and heterogeneous
reactions, J. Clean. Product., 112, 1330–1349, 2016. a
Li, W., Pak, C. Y., and Tse, Y.-L. S.: Free energy study of H2O, N2O5, SO2, and O3 gas sorption by water droplets/slabs, J. Chem. Phys., 148, 164706, https://doi.org/10.1063/1.5022389, 2018. a, b
Li, X., Hede, T., Tu, Y., Leck, C., and Ågren, H.: Glycine in aerosol water droplets: a critical assessment of Köhler theory by predicting surface tension from molecular dynamics simulations, Atmos. Chem. Phys., 11, 519–527, https://doi.org/10.5194/acp-11-519-2011, 2011. a, b
Li, X., Hede, T., Tu, Y., Leck, C., and Ågren, H.: Cloud droplet activation mechanisms of amino acid aerosol particles: insight from molecular dynamics simulations, Tellus B, 65, 20476, https://doi.org/10.3402/tellusb.v65i0.20476, 2013. a, b
Lovrić, J., Duflot, D., Monnerville, M., Toubin, C., and Briquez, S.:
Water-induced organization of palmitic acid at the surface of a model sea
salt particle: A molecular dynamics study, J. Phys. Chem. A, 120, 10141–10149, 2016. a
Luo, M., Wauer, N. A., Angle, K. J., Dommer, A. C., Song, M., Nowak, C. M.,
Amaro, R. E., and Grassian, V. H.: Insights into the behavior of nonanoic
acid and its conjugate base at the air/water interface through a combined
experimental and theoretical approach, Chem. Sci., 11, 10647–10656, 2020. a
McGraw, R. and Laaksonen, A.: Interfacial curvature free energy, the Kelvin
relation, and vapor–liquid nucleation rate, J. Chem. Phys., 106, 5284–5287, 1997. a
Menzl, G., Gonzalez, M. A., Geiger, P., Caupin, F., Abascal, J. L., Valeriani, C., and Dellago, C.: Molecular mechanism for cavitation in water under tension, P. Natl. Acad. Sci. USA, 113, 13582–13587, 2016. a
Mester, Z. and Panagiotopoulos, A. Z.: Mean ionic activity coefficients in
aqueous NaCl solutions from molecular dynamics simulations, J. Chem. Phys., 142, 044507, https://doi.org/10.1063/1.4906320, 2015a. a, b
Mester, Z. and Panagiotopoulos, A. Z.: Temperature-dependent solubilities and
mean ionic activity coefficients of alkali halides in water from molecular
dynamics simulations, J. Chem. Phys., 143, 044505, https://doi.org/10.1063/1.4926840, 2015b. a
Min, S. H. and Berkowitz, M. L.: Bubbles in water under stretch-induced
cavitation, J. Chem. Phys., 150, 054501, https://doi.org/10.1063/1.5079735, 2019. a
Nagayama, G. and Tsuruta, T.: A general expression for the condensation
coefficient based on transition state theory and molecular dynamics
simulation, J. Chem. Phys., 118, 1392–1399, 2003. a
Ni, Y., Gruenbaum, S. M., and Skinner, J. L.: Slow hydrogen-bond switching
dynamics at the water surface revealed by theoretical two-dimensional
sum-frequency spectroscopy, P. Natl. Acad. Sci. USA, 110, 1992–1998, 2013. a
Noziere, B., Baduel, C., and Jaffrezo, J.-L.: The dynamic surface tension of
atmospheric aerosol surfactants reveals new aspects of cloud activation,
Nat. Commun., 5, 1–7, 2014. a
Ohashi, K., Kobayashi, K., Fujii, H., and Watanabe, M.: Evaporation coefficient and condensation coefficient of vapor under high gas pressure conditions, Sci. Rep., 10, 1–10, 2020. a
Ohmine, I. and Tanaka, H.: Fluctuation, relaxations, and hydration in liquid
water. Hydrogen-bond rearrangement dynamics, Chem. Rev., 39, 2545–2566, 1993. a
Ohno, P. E., Qin, Y., Ye, J., Wang, J., Bertram, A. K., and Martin, S. T.:
Fluorescence aerosol flow tube spectroscopy to detect liquid–liquid phase
separation, ACS Earth Space Chem., 5, 1223–1232, 2021. a
Petters, M. D. and Kreidenweis, S. M.: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity, Atmos. Chem. Phys., 7, 1961–1971, https://doi.org/10.5194/acp-7-1961-2007, 2007. a, b
Petters, M. D. and Kreidenweis, S. M.: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity – Part 2: Including solubility, Atmos. Chem. Phys., 8, 6273–6279, https://doi.org/10.5194/acp-8-6273-2008, 2008. a, b
Petters, M. D. and Kreidenweis, S. M.: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity – Part 3: Including surfactant partitioning, Atmos. Chem. Phys., 13, 1081–1091, https://doi.org/10.5194/acp-13-1081-2013, 2013. a, b
Pierce, J. R., Leaitch, W. R., Liggio, J., Westervelt, D. M., Wainwright, C. D., Abbatt, J. P. D., Ahlm, L., Al-Basheer, W., Cziczo, D. J., Hayden, K. L., Lee, A. K. Y., Li, S.-M., Russell, L. M., Sjostedt, S. J., Strawbridge, K. B., Travis, M., Vlasenko, A., Wentzell, J. J. B., Wiebe, H. A., Wong, J. P. S., and Macdonald, A. M.: Nucleation and condensational growth to CCN sizes during a sustained pristine biogenic SOA event in a forested mountain valley, Atmos. Chem. Phys., 12, 3147–3163, https://doi.org/10.5194/acp-12-3147-2012, 2012. a
Qi, W., Wang, G., Dai, W., Liu, S., Zhang, T., Wu, C., Li, J., Shen, M., Guo, X., Meng, J., and Li, J.: Molecular characteristics and stable carbon isotope compositions of dicarboxylic acids and related compounds in wintertime aerosols of Northwest China, Sci. Rep., 12, 1–10, 2022. a
Qin, Y., Ye, J., Ohno, P., Zhai, J., Han, Y., Liu, P., Wang, J., Zaveri, R. A., and Martin, S. T.: Humidity Dependence of the Condensational Growth of
α-Pinene Secondary Organic Aerosol Particles, Environ. Sci. Technol., 55, 14360–14369, 2021. a
Radola, B., Picaud, S., Vardanega, D., and Jedlovszky, P.: Molecular dynamics
simulations of the interaction between water molecules and aggregates of
acetic or propionic acid molecules, J. Phys. Chem. B, 119, 15662–15674, 2015. a
Radola, B., Picaud, S., Vardanega, D., and Jedlovszky, P.: Analysis of mixed
formic and acetic acid aggregates interacting with water: a molecular
dynamics simulation study, J. Phys. Chem. C, 121, 13863–13875, 2017. a
Radola, B., Picaud, S., Ortega, I. K., and Ciuraru, R.: Formation of
atmospheric molecular clusters from organic waste products and sulfuric acid
molecules: a DFT study, Environ. Sci.-Atmos., 1, 267–275, 2021. a
Rastak, N., Pajunoja, A., Acosta Navarro, J. C., Ma, J., Song, M., Partridge, D. G., Kirkevåg, A., Leong, Y., Hu, W. W., Taylor, N. F., Lambe, A., Cerully, K., Bougiatioti, A., Liu, P., Krejci, R., Petäjä, T., Percival, C., Davidovits, P., Worsnop, D. R., Ekman, A. M. L., Nenes, A., Martin, S., Jimenez, J. L., Collins, D. R., Topping, D. O., Bertram, A. K., Zuend, A., Virtanen, A., and Riipinen, I.: Microphysical explanation of the RH-dependent water affinity of biogenic organic aerosol and its importance for climate, Geophys. Res. Lett., 44, 5167–5177, 2017. a
Renbaum-Wolff, L., Song, M., Marcolli, C., Zhang, Y., Liu, P. F., Grayson, J. W., Geiger, F. M., Martin, S. T., and Bertram, A. K.: Observations and implications of liquid–liquid phase separation at high relative humidities in secondary organic material produced by α-pinene ozonolysis without inorganic salts, Atmos. Chem. Phys., 16, 7969–7979, https://doi.org/10.5194/acp-16-7969-2016, 2016. a
Sareen, N., Waxman, E. M., Turpin, B. J., Volkamer, R., and Carlton, A. G.:
Potential of aerosol liquid water to facilitate organic aerosol formation:
assessing knowledge gaps about precursors and partitioning, Environ. Sci. Technol., 51, 3327–3335, 2017. a
Sato, Y. and Suzuki, K.: How do aerosols affect cloudiness?, Science, 363,
580–581, 2019. a
Sedlmeier, F. and Netz, R. R.: The spontaneous curvature of the
water-hydrophobe interface, J. Chem. Phys., 137, 135102, https://doi.org/10.1063/1.4755753, 2012. a
Semeniuk, K. and Dastoor, A.: Current state of atmospheric aerosol
thermodynamics and mass transfer modeling: A review, Atmosphere, 11, 156, https://doi.org/10.3390/atmos11020156, 2020. a
Shiraiwa, M. and Pöschl, U.: Mass accommodation and gas–particle partitioning in secondary organic aerosols: dependence on diffusivity, volatility, particle-phase reactions, and penetration depth, Atmos. Chem. Phys., 21, 1565–1580, https://doi.org/10.5194/acp-21-1565-2021, 2021. a, b, c
Shiraiwa, M., Pfrang, C., Koop, T., and Pöschl, U.: Kinetic multi-layer model of gas-particle interactions in aerosols and clouds (KM-GAP): linking condensation, evaporation and chemical reactions of organics, oxidants and water, Atmos. Chem. Phys., 12, 2777–2794, https://doi.org/10.5194/acp-12-2777-2012, 2012. a, b
Skarbalius, G., Džiugys, A., Misiulis, E., and Navakas, R.: Molecular
dynamics study on water evaporation/condensation parameters, Microfluid.
Nanofluid., 25, 1–13, 2021. a
Slade, J. H. and Knopf, D. A.: Multiphase OH oxidation kinetics of organic
aerosol: The role of particle phase state and relative humidity, Geophys.
Res. Lett., 41, 5297–5306, 2014. a
Smith, D. E. and Dang, L. X.: Computer simulations of NaCl association in
polarizable water, J. Chem. Phys., 100, 3757–3766, 1994. a
Song, M., Marcolli, C., Krieger, U., Zuend, A., and Peter, T.: Liquid-liquid
phase separation in aerosol particles: Dependence on O:C, organic
functionalities, and compositional complexity, Geophys. Res. Lett., 39, L19801, https://doi.org/10.1029/2012GL052807, 2012. a
Song, M., Ham, S., Andrews, R. J., You, Y., and Bertram, A. K.: Liquid–liquid phase separation in organic particles containing one and two organic species: importance of the average O:C, Atmos. Chem. Phys., 18, 12075–12084, https://doi.org/10.5194/acp-18-12075-2018, 2018. a, b, c
Sun, L., Li, X., Hede, T., Tu, Y., Leck, C., and Ågren, H.: Molecular
dynamics simulations of the surface tension and structure of salt solutions
and clusters, J. Phys. Chem. B, 116, 3198–3204, 2012. a
Sun, L., Hede, T., Tu, Y., Leck, C., and Ågren, H.: Combined effect of
glycine and sea salt on aerosol cloud droplet activation predicted by
molecular dynamics simulations, J. Physi. Chem. A, 117, 10746–10752, 2013. a
Takahama, S. and Russell, L.: A molecular dynamics study of water mass
accommodation on condensed phase water coated by fatty acid monolayers, J. Geophys. Res.-Atmos., 116, D02203, https://doi.org/10.1029/2010JD014842, 2011. a, b
Tang, F., Ohto, T., Sun, S., Rouxel, J. R., Imoto, S., Backus, E. H., Mukamel, S., Bonn, M., and Nagata, Y.: Molecular structure and modeling of water–air and ice–air interfaces monitored by sum-frequency generation, Chem. Rev., 120, 3633–3667, 2020. a
Thomas, J. L., Roeselova, M., Dang, L. X., and Tobias, D. J.: Molecular
dynamics simulations of the solution- air interface of aqueous sodium
nitrate, J. Phys. Chem. A, 111, 3091–3098, 2007. a
Thornton, J. A., Mohr, C., Schobesberger, S., D'Ambro, E. L., Lee, B. H., and
Lopez-Hilfiker, F. D.: Evaluating Organic Aerosol Sources and Evolution with
a Combined Molecular Composition and Volatility Framework Using the Filter
Inlet for Gases and Aerosols (FIGAERO), Account. Chem. Res., 53, 1415–1426, 2020. a
Tran, N. K., Steinberg, S. M., and Johnson, B. J.: Volatile aromatic
hydrocarbons and dicarboxylic acid concentrations in air at an urban site in
the Southwestern US, Atmos. Environ., 34, 1845–1852, 2000. a
Tsuruta, T. and Nagayama, G.: Molecular dynamics studies on the condensation
coefficient of water, J. Phys. Chem. B, 108, 1736–1743, 2004. a
Vardanega, D. and Picaud, S.: Water and formic acid aggregates: A molecular
dynamics study, J. Chem. Phys., 141, 104701, https://doi.org/10.1063/1.4894658, 2014. a
Washburn, E. W., Hull, C., and West, C. J.: International critical tables of
numerical data, physics, chemistry and technology, in: vol. 1, National research council, 1926. a
Wilhelmsen, Ø., Bedeaux, D., and Reguera, D.: Communication: Tolman length
and rigidity constants of water and their role in nucleation, J. Chem. Phys., 142, 171103, https://doi.org/10.1063/1.4919689, 2015. a, b
Williamson, C. J., Kupc, A., Axisa, D., Bilsback, K. R., Bui, T., Campuzano-Jost, P., Dollner, M., Froyd, K. D., Hodshire, A. L., Jimenez, J. L., Kodros, J. K., Luo, G, Murphy, D. M., Nault, B. A., Ray, E. A., Weinzierl, B., Wilson, J. C., Yu, F., Yu, P., Pierce, J., R., and Brock, C. A.: A large source of cloud condensation nuclei from new particle formation in the tropics, Nature, 574, 399–403, 2019. a
Winkler, P. M., Vrtala, A., Wagner, P. E., Kulmala, M., Lehtinen, K. E., and
Vesala, T.: Mass and thermal accommodation during gas-liquid condensation of
water, Phys. Rev. Lett., 93, 075701, https://doi.org/10.1103/PhysRevLett.93.075701, 2004. a
Winkler, P. M., Vrtala, A., Steiner, G., Wimmer, D., Vehkamäki, H.,
Lehtinen, K. E., Reischl, G. P., Kulmala, M., and Wagner, P. E.: Quantitative
characterization of critical nanoclusters nucleated on large single
molecules, Phys. Rev. Lett., 108, 085701, https://doi.org/10.1103/PhysRevLett.108.085701, 2012. a
Wise, M. E., Semeniuk, T. A., Bruintjes, R., Martin, S. T., Russell, L. M., and Buseck, P. R.: Hygroscopic behavior of NaCl-bearing natural aerosol particles using environmental transmission electron microscopy, J. Geophys.
Res.-Atmos., 112, D10224, https://doi.org/10.1029/2006JD007678, 2007. a
Wu, Z., Chen, J., Wang, Y., Zhu, Y., Liu, Y., Yao, B., Zhang, Y., and Hu, M.:
Interactions between water vapor and atmospheric aerosols have key roles in
air quality and climate change, Nat. Sci. Rev., 5, 452–454, 2018. a
You, Y., Smith, M. L., Song, M., Martin, S. T., and Bertram, A. K.: Liquid–liquid phase separation in atmospherically relevant particles
consisting of organic species and inorganic salts, Int. Rev. Phys. Chem., 33, 43–77, 2014. a
Zhang, Q., Jimenez, J. L., Canagaratna, M. R., Allan, J. D., Coe, H., Ulbrich, I., Alfarra, M. R., Takami, A., Middlebrook, A. R., Sun, Y. L., Dzepina, K., Dunlea, E., Docherty, K., DeCarlo, P. F., Salcedo, D., Onasch, T., Jayne, J. T., Miyoshi, T., Shimono, A., Hatakeyama, S., Takegawa, N., Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., Weimer, S., Demerjian, K., Williams, P., Bower, K., Bahreini, R., Cottrell, L., Griffin, R. J., Rautiainen, J., Sun, J. Y., Zhang, Y. M., and Worsnop, D. R.: Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes, Geophys. Res. Lett., 34, L13801, https://doi.org/10.1029/2007GL029979, 2007.
a
Zhao, W., Kawamura, K., Yue, S., Wei, L., Ren, H., Yan, Y., Kang, M., Li, L., Ren, L., Lai, S., Li, J., Sun, Y., Wang, Z., and Fu, P.: Molecular distribution and compound-specific stable carbon isotopic composition of dicarboxylic acids, oxocarboxylic acids and α-dicarbonyls in PM2.5 from Beijing, China, Atmos. Chem. Phys., 18, 2749–2767, https://doi.org/10.5194/acp-18-2749-2018, 2018. a
Zhao, Z., Kong, K., Wang, S., Zhou, Y., Cheng, D., Wang, W., Zeng, X. C., and
Li, H.: Understanding Hygroscopic Nucleation of Sulfate Aerosols: Combination
of Molecular Dynamics Simulation with Classical Nucleation Theory, J. Phys. Chem. Lett., 10, 1126–1132, 2019. a
Zheng, Y., Chen, Q., Cheng, X., Mohr, C., Cai, J., Huang, W., Shrivastava, M., Ye, P., Fu, P., Shi, X., Ge, Y., Liao, K., Miao, R., Qiu, X., Koenig, T. K., and Chen, S.: Precursors and pathways leading to enhanced secondary organic aerosol formation during severe haze episodes, Environ. Sci. Technol., 55, 15680–15693, 2021. a, b
Zieger, P., Väisänen, O., Corbin, J. C., Partridge, D. G., Bastelberger, S., Mousavi-Fard, M., Rosati, B., Gysel, M., Krieger, U. K., Leck, C., Nenes, A., Riipinen, I., Virtanen, A., and Salter, M. E.: Revising the hygroscopicity of inorganic sea salt particles, Nat. Commun., 8, 15883, https://doi.org/10.1038/ncomms15883, 2017. a
Short summary
Aerosol particles with sizes smaller than 50 nm impact cloud formation and precipitation. Representation of this effect is hindered by limited understanding of the properties of liquid water in these particles. Our simulations of aerosol particles containing salt or organic compounds reveal that water enters a less cohesive phase at droplet sizes below 4 nm. This effect causes important deviations from theoretical predictions of aerosol properties, including phase state and hygroscopic growth.
Aerosol particles with sizes smaller than 50 nm impact cloud formation and precipitation....
Altmetrics
Final-revised paper
Preprint