Articles | Volume 23, issue 22
https://doi.org/10.5194/acp-23-14547-2023
https://doi.org/10.5194/acp-23-14547-2023
Research article
 | 
24 Nov 2023
Research article |  | 24 Nov 2023

Machine-learning-based investigation of the variables affecting summertime lightning occurrence over the Southern Great Plains

Siyu Shan, Dale Allen, Zhanqing Li, Kenneth Pickering, and Jeff Lapierre

Related authors

Tropospheric Ozone Precursors: Global and Regional Distributions, Trends and Variability
Yasin Elshorbany, Jerald Ziemke, Sarah Strode, Hervé Petetin, Kazuyuki Miyazaki, Isabelle De Smedt, Kenneth Pickering, Rodrigo Seguel, Helen Worden, Tamara Emmerichs, Domenico Taraborrelli, Maria Cazorla, Suvarna Fadnavis, Rebecca Buchholz, Benjamin Gaubert, Néstor Rojas, Thiago Nogueira, Thérèse Salameh, and Min Huang
EGUsphere, https://doi.org/10.5194/egusphere-2024-720,https://doi.org/10.5194/egusphere-2024-720, 2024
Short summary
Ground-level gaseous pollutants (NO2, SO2, and CO) in China: daily seamless mapping and spatiotemporal variations
Jing Wei, Zhanqing Li, Jun Wang, Can Li, Pawan Gupta, and Maureen Cribb
Atmos. Chem. Phys., 23, 1511–1532, https://doi.org/10.5194/acp-23-1511-2023,https://doi.org/10.5194/acp-23-1511-2023, 2023
Short summary
Vertical profiles of cloud condensation nuclei number concentration and its empirical estimate from aerosol optical properties over the North China Plain
Rui Zhang, Yuying Wang, Zhanqing Li, Zhibin Wang, Russell R. Dickerson, Xinrong Ren, Hao He, Fei Wang, Ying Gao, Xi Chen, Jialu Xu, Yafang Cheng, and Hang Su
Atmos. Chem. Phys., 22, 14879–14891, https://doi.org/10.5194/acp-22-14879-2022,https://doi.org/10.5194/acp-22-14879-2022, 2022
Short summary
Different effects of anthropogenic emissions and aging processes on the mixing state of soot particles in the nucleation and accumulation modes
Yuying Wang, Rong Hu, Qiuyan Wang, Zhanqing Li, Maureen Cribb, Yele Sun, Xiaorui Song, Yi Shang, Yixuan Wu, Xin Huang, and Yuxiang Wang
Atmos. Chem. Phys., 22, 14133–14146, https://doi.org/10.5194/acp-22-14133-2022,https://doi.org/10.5194/acp-22-14133-2022, 2022
Short summary
Canadian and Alaskan wildfire smoke particle properties, their evolution, and controlling factors, from satellite observations
Katherine T. Junghenn Noyes, Ralph A. Kahn, James A. Limbacher, and Zhanqing Li
Atmos. Chem. Phys., 22, 10267–10290, https://doi.org/10.5194/acp-22-10267-2022,https://doi.org/10.5194/acp-22-10267-2022, 2022
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Machine Learning | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Technical note: Emulation of a large-eddy simulator for stratocumulus clouds in a general circulation model
Kalle Nordling, Jukka-Pekka Keskinen, Sami Romakkaniemi, Harri Kokkola, Petri Räisänen, Antti Lipponen, Antti-Ilari Partanen, Jaakko Ahola, Juha Tonttila, Muzaffer Ege Alper, Hannele Korhonen, and Tomi Raatikainen
Atmos. Chem. Phys., 24, 869–890, https://doi.org/10.5194/acp-24-869-2024,https://doi.org/10.5194/acp-24-869-2024, 2024
Short summary

Cited articles

Altaratz, O., Koren, I., Yair, Y., and Price, C.: Lightning response to smoke from Amazonian fires, Geophys. Res. Lett., 37, L07801, https://doi.org/10.1029/2010GL042679, 2010. 
Bang, S. D. and Zipser, E. J.: Seeking reasons for the differences in size spectra of electrified storms over land and ocean, J. Geophys. Res.-Atmos., 121, 9048–9068, https://doi.org/10.1002/2016JD025150, 2016. 
Bartholomew, M. J.: Impact Disdrometers Instrument Handbook (No. DOE/SCARM-TR-111). DOE Office of Science Atmospheric Radiation Measurement (ARM) Program (United States), https://doi.org/10.2172/1251384, 2016. 
Bell, T. L., Rosenfeld, D., Kim, K. M., Yoo, J. M., Lee, M. I., and Hahnenberger, M.: Midweek increase in US summer rain and storm heights suggests air pollution invigorates rainstorms, J. Geophys. Res.-Atmos., 113, D02209, https://doi.org/10.1029/2007JD008623, 2008. 
Bell, T. L., Rosenfeld, D., and Kim, K. M.: Weekly cycle of lightning: Evidence of storm invigoration by pollution, Geophys. Res. Lett., 36, L23805, https://doi.org/10.1029/2009GL040915, 2009. 
Download
Short summary

Several machine learning models are applied to identify important variables affecting lightning occurrence in the vicinity of the Southern Great Plains ARM site during the summer months of 2012–2020. We find that the random forest model is the best predictor among common classifiers. We rank variables in terms of their effectiveness in nowcasting ENTLN lightning and identify geometric cloud thickness, rain rate and convective available potential energy (CAPE) as the most effective predictors.

Altmetrics
Final-revised paper
Preprint