Articles | Volume 23, issue 22
https://doi.org/10.5194/acp-23-14547-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-14547-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Machine-learning-based investigation of the variables affecting summertime lightning occurrence over the Southern Great Plains
Siyu Shan
Department of Atmospheric and Oceanic Science, University of Maryland, College Park, MD 20742, USA
Dale Allen
Department of Atmospheric and Oceanic Science, University of Maryland, College Park, MD 20742, USA
Department of Atmospheric and Oceanic Science, University of Maryland, College Park, MD 20742, USA
Earth System Science Interdisciplinary Centre, University of Maryland, College Park, MD 20740, USA
Kenneth Pickering
Department of Atmospheric and Oceanic Science, University of Maryland, College Park, MD 20742, USA
Jeff Lapierre
Earth Networks, Inc., Advanced Environmental Monitoring (AEM), Germantown, MD 20876, USA
Related authors
No articles found.
Damao Zhang, Jennifer Comstock, Chitra Sivaraman, Kefei Mo, Raghavendra Krishnamurthy, Jingjing Tian, Tianning Su, Zhanqing Li, and Natalia Roldán-Henao
Atmos. Meas. Tech., 18, 3453–3475, https://doi.org/10.5194/amt-18-3453-2025, https://doi.org/10.5194/amt-18-3453-2025, 2025
Short summary
Short summary
Planetary boundary layer height (PBLHT) is an important parameter in atmospheric process studies and numerical model simulations. We use machine learning methods to produce a best-estimate planetary boundary layer height (PBLHT-BE-ML) by integrating four PBLHT estimates derived from remote sensing measurements. We demonstrated that PBLHT-BE-ML greatly improved the comparisons against sounding-derived PBLHT.
Yasin Elshorbany, Jerald R. Ziemke, Sarah Strode, Hervé Petetin, Kazuyuki Miyazaki, Isabelle De Smedt, Kenneth Pickering, Rodrigo J. Seguel, Helen Worden, Tamara Emmerichs, Domenico Taraborrelli, Maria Cazorla, Suvarna Fadnavis, Rebecca R. Buchholz, Benjamin Gaubert, Néstor Y. Rojas, Thiago Nogueira, Thérèse Salameh, and Min Huang
Atmos. Chem. Phys., 24, 12225–12257, https://doi.org/10.5194/acp-24-12225-2024, https://doi.org/10.5194/acp-24-12225-2024, 2024
Short summary
Short summary
We investigated tropospheric ozone spatial variability and trends from 2005 to 2019 and related those to ozone precursors on global and regional scales. We also investigate the spatiotemporal characteristics of the ozone formation regime in relation to ozone chemical sources and sinks. Our analysis is based on remote sensing products of the tropospheric column of ozone and its precursors, nitrogen dioxide, formaldehyde, and total column CO, as well as ozonesonde data and model simulations.
Jing Wei, Zhanqing Li, Jun Wang, Can Li, Pawan Gupta, and Maureen Cribb
Atmos. Chem. Phys., 23, 1511–1532, https://doi.org/10.5194/acp-23-1511-2023, https://doi.org/10.5194/acp-23-1511-2023, 2023
Short summary
Short summary
This study estimated the daily seamless 10 km ambient gaseous pollutants (NO2, SO2, and CO) across China using machine learning with extensive input variables measured on monitors, satellites, and models. Our dataset yields a high data quality via cross-validation at varying spatiotemporal scales and outperforms most previous related studies, making it most helpful to future (especially short-term) air pollution and environmental health-related studies.
Rui Zhang, Yuying Wang, Zhanqing Li, Zhibin Wang, Russell R. Dickerson, Xinrong Ren, Hao He, Fei Wang, Ying Gao, Xi Chen, Jialu Xu, Yafang Cheng, and Hang Su
Atmos. Chem. Phys., 22, 14879–14891, https://doi.org/10.5194/acp-22-14879-2022, https://doi.org/10.5194/acp-22-14879-2022, 2022
Short summary
Short summary
Factors of cloud condensation nuclei number concentration (NCCN) profiles determined in the North China Plain include air mass sources, temperature structure, anthropogenic emissions, and terrain distribution. Cloud condensation nuclei (CCN) spectra suggest that the ability of aerosol activation into CCN is stronger in southeasterly than in northwesterly air masses and stronger in the free atmosphere than near the surface. A good method to parameterize NCCN from aerosol optical data is found.
Yuying Wang, Rong Hu, Qiuyan Wang, Zhanqing Li, Maureen Cribb, Yele Sun, Xiaorui Song, Yi Shang, Yixuan Wu, Xin Huang, and Yuxiang Wang
Atmos. Chem. Phys., 22, 14133–14146, https://doi.org/10.5194/acp-22-14133-2022, https://doi.org/10.5194/acp-22-14133-2022, 2022
Short summary
Short summary
The mixing state of size-resolved soot particles and their influencing factors were investigated. The results suggest anthropogenic emissions and aging processes have diverse impacts on the mixing state of soot particles in different modes. Considering that the mixing state of soot particles is crucial to model aerosol absorption, this finding is important to study particle growth and the warming effect of black carbon aerosols.
Katherine T. Junghenn Noyes, Ralph A. Kahn, James A. Limbacher, and Zhanqing Li
Atmos. Chem. Phys., 22, 10267–10290, https://doi.org/10.5194/acp-22-10267-2022, https://doi.org/10.5194/acp-22-10267-2022, 2022
Short summary
Short summary
We compare retrievals of wildfire smoke particle size, shape, and light absorption from the MISR satellite instrument to modeling and other satellite data on land cover type, drought conditions, meteorology, and estimates of fire intensity (fire radiative power – FRP). We find statistically significant differences in the particle properties based on burning conditions and land cover type, and we interpret how changes in these properties point to specific aerosol aging mechanisms.
Francisco J. Pérez-Invernón, Heidi Huntrieser, Thilo Erbertseder, Diego Loyola, Pieter Valks, Song Liu, Dale J. Allen, Kenneth E. Pickering, Eric J. Bucsela, Patrick Jöckel, Jos van Geffen, Henk Eskes, Sergio Soler, Francisco J. Gordillo-Vázquez, and Jeff Lapierre
Atmos. Meas. Tech., 15, 3329–3351, https://doi.org/10.5194/amt-15-3329-2022, https://doi.org/10.5194/amt-15-3329-2022, 2022
Short summary
Short summary
Lightning, one of the major sources of nitrogen oxides in the atmosphere, contributes to the tropospheric concentration of ozone and to the oxidizing capacity of the atmosphere. In this work, we contribute to improving the estimation of lightning-produced nitrogen oxides in the Ebro Valley and the Pyrenees by using two different TROPOMI products and comparing the results.
Lu Chen, Fang Zhang, Dongmei Zhang, Xinming Wang, Wei Song, Jieyao Liu, Jingye Ren, Sihui Jiang, Xue Li, and Zhanqing Li
Atmos. Chem. Phys., 22, 6773–6786, https://doi.org/10.5194/acp-22-6773-2022, https://doi.org/10.5194/acp-22-6773-2022, 2022
Short summary
Short summary
Aerosol hygroscopicity is critical when evaluating its effect on visibility and climate. Here, the size-resolved particle hygroscopicity at five sites in China is characterized using field measurements. We show the distinct behavior of hygroscopic particles during pollution evolution among the five sites. Moreover, different hygroscopic behavior during NPF events were also observed. The dataset is helpful for understanding the spatial variability in particle composition and formation mechanisms.
Xing Yan, Zhou Zang, Zhanqing Li, Nana Luo, Chen Zuo, Yize Jiang, Dan Li, Yushan Guo, Wenji Zhao, Wenzhong Shi, and Maureen Cribb
Earth Syst. Sci. Data, 14, 1193–1213, https://doi.org/10.5194/essd-14-1193-2022, https://doi.org/10.5194/essd-14-1193-2022, 2022
Short summary
Short summary
This study developed a new satellite-based global land daily FMF dataset (Phy-DL FMF) by synergizing the advantages of physical and deep learning methods at a 1° spatial resolution by covering the period from 2001 to 2020. The Phy-DL FMF was extensively evaluated against ground-truth AERONET data and tested on a global scale against conventional satellite-based FMF products to demonstrate its superiority in accuracy.
Lu Chen, Fang Zhang, Don Collins, Jingye Ren, Jieyao Liu, Sihui Jiang, and Zhanqing Li
Atmos. Chem. Phys., 22, 2293–2307, https://doi.org/10.5194/acp-22-2293-2022, https://doi.org/10.5194/acp-22-2293-2022, 2022
Short summary
Short summary
Understanding the volatility and mixing state of atmospheric aerosols is important for elucidating their formation. Here, the size-resolved volatility of fine particles is characterized using field measurements. On average, the particles are more volatile in the summer. The retrieved mixing state shows that black carbon (BC)-containing particles dominate and contribute 67–77 % toward the total number concentration in the winter, while the non-BC particles accounted for 52–69 % in the summer.
Tianning Su, Youtong Zheng, and Zhanqing Li
Atmos. Chem. Phys., 22, 1453–1466, https://doi.org/10.5194/acp-22-1453-2022, https://doi.org/10.5194/acp-22-1453-2022, 2022
Short summary
Short summary
To enrich our understanding of coupling of continental clouds, we developed a novel methodology to determine cloud coupling state from a lidar and a suite of surface meteorological instruments. This method is built upon advancement in our understanding of fundamental boundary layer processes and clouds. As the first remote sensing method for determining the coupling state of low clouds over land, this methodology paves a solid ground for further investigating the coupled land–atmosphere system.
Matthew W. Christensen, Andrew Gettelman, Jan Cermak, Guy Dagan, Michael Diamond, Alyson Douglas, Graham Feingold, Franziska Glassmeier, Tom Goren, Daniel P. Grosvenor, Edward Gryspeerdt, Ralph Kahn, Zhanqing Li, Po-Lun Ma, Florent Malavelle, Isabel L. McCoy, Daniel T. McCoy, Greg McFarquhar, Johannes Mülmenstädt, Sandip Pal, Anna Possner, Adam Povey, Johannes Quaas, Daniel Rosenfeld, Anja Schmidt, Roland Schrödner, Armin Sorooshian, Philip Stier, Velle Toll, Duncan Watson-Parris, Robert Wood, Mingxi Yang, and Tianle Yuan
Atmos. Chem. Phys., 22, 641–674, https://doi.org/10.5194/acp-22-641-2022, https://doi.org/10.5194/acp-22-641-2022, 2022
Short summary
Short summary
Trace gases and aerosols (tiny airborne particles) are released from a variety of point sources around the globe. Examples include volcanoes, industrial chimneys, forest fires, and ship stacks. These sources provide opportunistic experiments with which to quantify the role of aerosols in modifying cloud properties. We review the current state of understanding on the influence of aerosol on climate built from the wide range of natural and anthropogenic laboratories investigated in recent decades.
Sihui Jiang, Fang Zhang, Jingye Ren, Lu Chen, Xing Yan, Jieyao Liu, Yele Sun, and Zhanqing Li
Atmos. Chem. Phys., 21, 14293–14308, https://doi.org/10.5194/acp-21-14293-2021, https://doi.org/10.5194/acp-21-14293-2021, 2021
Short summary
Short summary
New particle formation (NPF) can be a large source of CCN and affect weather and climate. Here we show that the NPF contributes largely to cloud droplet number concentration (Nd) but is suppressed at high particle number concentrations in Beijing due to water vapor competition. We also reveal a considerable impact of primary sources on the evaluation in the urban atmosphere. Our study has great significance for assessing NPF-associated effects on climate in polluted regions.
Rongmin Ren, Zhanqing Li, Peng Yan, Yuying Wang, Hao Wu, Maureen Cribb, Wei Wang, Xiao'ai Jin, Yanan Li, and Dongmei Zhang
Atmos. Chem. Phys., 21, 9977–9994, https://doi.org/10.5194/acp-21-9977-2021, https://doi.org/10.5194/acp-21-9977-2021, 2021
Short summary
Short summary
We analyzed the effect of the proportion of components making up the chemical composition of aerosols on f(RH) in southern Beijing in 2019. Nitrate played a more significant role in affecting f(RH) than sulfate. The ratio of the sulfate mass fraction to the nitrate mass fraction (mostly higher than ~ 4) was a sign of the deliquescence of aerosol. A piecewise parameterized scheme was proposed, which could better describe deliquescence and reduce uncertainties in simulating aerosol hygroscopicity.
Jing Wei, Zhanqing Li, Rachel T. Pinker, Jun Wang, Lin Sun, Wenhao Xue, Runze Li, and Maureen Cribb
Atmos. Chem. Phys., 21, 7863–7880, https://doi.org/10.5194/acp-21-7863-2021, https://doi.org/10.5194/acp-21-7863-2021, 2021
Short summary
Short summary
This study developed a space-time Light Gradient Boosting Machine (STLG) model to derive the high-temporal-resolution (1 h) and high-quality PM2.5 dataset in China (i.e., ChinaHighPM2.5) at a 5 km spatial resolution from the Himawari-8 Advanced Himawari Imager aerosol products. Our model outperforms most previous related studies with a much lower computation burden in terms of speed and memory, making it most suitable for real-time air pollution monitoring in China.
Tianmeng Chen, Zhanqing Li, Ralph A. Kahn, Chuanfeng Zhao, Daniel Rosenfeld, Jianping Guo, Wenchao Han, and Dandan Chen
Atmos. Chem. Phys., 21, 6199–6220, https://doi.org/10.5194/acp-21-6199-2021, https://doi.org/10.5194/acp-21-6199-2021, 2021
Short summary
Short summary
A convective cloud identification process is developed using geostationary satellite data from Himawari-8.
Convective cloud fraction is generally larger before noon and smaller in the afternoon under polluted conditions, but megacities and complex topography can influence the pattern.
A robust relationship between convective cloud and aerosol loading is found. This pattern varies with terrain height and is modulated by varying thermodynamic, dynamical, and humidity conditions during the day.
Yuwei Zhang, Jiwen Fan, Zhanqing Li, and Daniel Rosenfeld
Atmos. Chem. Phys., 21, 2363–2381, https://doi.org/10.5194/acp-21-2363-2021, https://doi.org/10.5194/acp-21-2363-2021, 2021
Short summary
Short summary
Impacts of anthropogenic aerosols on deep convective clouds (DCCs) and precipitation are examined using both the Morrison bulk and spectral bin microphysics (SBM) schemes. With the SBM scheme, anthropogenic aerosols notably invigorate convective intensity and precipitation, causing better agreement between the simulated DCCs and observations; this effect is absent with the Morrison scheme, mainly due to limitations of the saturation adjustment approach for droplet condensation and evaporation.
Yuying Wang, Zhanqing Li, Qiuyan Wang, Xiaoai Jin, Peng Yan, Maureen Cribb, Yanan Li, Cheng Yuan, Hao Wu, Tong Wu, Rongmin Ren, and Zhaoxin Cai
Atmos. Chem. Phys., 21, 915–926, https://doi.org/10.5194/acp-21-915-2021, https://doi.org/10.5194/acp-21-915-2021, 2021
Short summary
Short summary
The unexpected increase in surface ozone concentration was found along with the reduced anthropogenic emissions during the 2019 Chinese Spring Festival in Beijing. The enhanced atmospheric oxidation capacity could promote the formation of secondary aerosols, especially sulfate, which offset the decrease in PM2.5 mass concentration. This phenomenon was likely to exist throughout the entire Beijing–Tianjin–Hebei (BTH) region to be a contributing factor to the haze during the COVID-19 lockdown.
Johannes Quaas, Antti Arola, Brian Cairns, Matthew Christensen, Hartwig Deneke, Annica M. L. Ekman, Graham Feingold, Ann Fridlind, Edward Gryspeerdt, Otto Hasekamp, Zhanqing Li, Antti Lipponen, Po-Lun Ma, Johannes Mülmenstädt, Athanasios Nenes, Joyce E. Penner, Daniel Rosenfeld, Roland Schrödner, Kenneth Sinclair, Odran Sourdeval, Philip Stier, Matthias Tesche, Bastiaan van Diedenhoven, and Manfred Wendisch
Atmos. Chem. Phys., 20, 15079–15099, https://doi.org/10.5194/acp-20-15079-2020, https://doi.org/10.5194/acp-20-15079-2020, 2020
Short summary
Short summary
Anthropogenic pollution particles – aerosols – serve as cloud condensation nuclei and thus increase cloud droplet concentration and the clouds' reflection of sunlight (a cooling effect on climate). This Twomey effect is poorly constrained by models and requires satellite data for better quantification. The review summarizes the challenges in properly doing so and outlines avenues for progress towards a better use of aerosol retrievals and better retrievals of droplet concentrations.
Sarah E. Benish, Hao He, Xinrong Ren, Sandra J. Roberts, Ross J. Salawitch, Zhanqing Li, Fei Wang, Yuying Wang, Fang Zhang, Min Shao, Sihua Lu, and Russell R. Dickerson
Atmos. Chem. Phys., 20, 14523–14545, https://doi.org/10.5194/acp-20-14523-2020, https://doi.org/10.5194/acp-20-14523-2020, 2020
Short summary
Short summary
Airborne observations of ozone and related pollutants show smog was pervasive in spring 2016 over Hebei Province, China. We find high amounts of ozone precursors throughout and even above the PBL, continuing to generate ozone at high rates to be potentially transported downwind. Concentrations even in the rural areas of this highly industrialized province promote widespread ozone production, and we show that to improve air quality over Hebei both NOx and VOCs should be targeted.
Cited articles
Altaratz, O., Koren, I., Yair, Y., and Price, C.: Lightning response to smoke from Amazonian fires, Geophys. Res. Lett., 37, L07801, https://doi.org/10.1029/2010GL042679, 2010.
Bang, S. D. and Zipser, E. J.: Seeking reasons for the differences in size spectra of electrified storms over land and ocean, J. Geophys. Res.-Atmos., 121, 9048–9068, https://doi.org/10.1002/2016JD025150, 2016.
Bartholomew, M. J.: Impact Disdrometers Instrument Handbook (No. DOE/SCARM-TR-111). DOE Office of Science Atmospheric Radiation Measurement (ARM) Program (United States), https://doi.org/10.2172/1251384, 2016.
Bell, T. L., Rosenfeld, D., Kim, K. M., Yoo, J. M., Lee, M. I., and Hahnenberger, M.: Midweek increase in US summer rain and storm heights suggests air pollution invigorates rainstorms, J. Geophys. Res.-Atmos., 113, D02209, https://doi.org/10.1029/2007JD008623, 2008.
Bell, T. L., Rosenfeld, D., and Kim, K. M.: Weekly cycle of lightning: Evidence of storm invigoration by pollution, Geophys. Res. Lett., 36, L23805, https://doi.org/10.1029/2009GL040915, 2009.
Carey, L. D. and Buffalo, K. M.: Environmental control of cloud-to-ground lightning polarity in severe storms, Mon. Weather Rev., 135, 1327–1353, https://doi.org/10.1175/MWR3361.1, 2007.
Chaudhuri, S.: Convective energies in forecasting severe thunderstorms with one hidden layer neural net and variable learning rate back propagation algorithm, Asia-Pac. J. Atmos. Sci., 46, 173–183, https://doi.org/10.1007/s13143-010-0016-1, 2010.
Chaudhuri, S. and Middey, A.: A composite stability index for dichotomous forecast of thunderstorms, Theor. Appl. Climatol., 110, 457–469, https://doi.org/10.1007/s00704-012-0640-z, 2012.
Chen, Q., Fan, J., Hagos, S., Gustafson Jr, W. I., and Berg, L. K.: Roles of wind shear at different vertical levels: Cloud system organization and properties, J. Geophys. Res.-Atmos., 120, 6551–6574, https://doi.org/10.1002/2015JD023253, 2015.
Cooper, M. A. and Holle, R. L.: Reducing lightning injuries worldwide, Springer International Publishing, https://doi.org/10.1007/978-3-319-77563-0, 2019.
Doswell III, C. A., Brooks, H. E., and Maddox, R. A.: Flash flood forecasting: An ingredients-based methodology, Weather Forecast., 11, 560–581, https://doi.org/10.1175/1520-0434(1996)011<0560:FFFAIB>2.0.CO;2, 1996.
Flynn, D., Shi, Y., Lim, K. S., and Riihimaki, L.: Cloud Type Classification (cldtype) Value-Added Product (No. DOE/SC-ARM-TR-200). DOE Office of Science Atmospheric Radiation Measurement (ARM) Program (United States), https://doi.org/10.2172/1377405, 2017.
Global Modeling and Assimilation Office (GMAO): MERRA-2 tavg1_2d_aer_Nx: 2d, 1-Hourly, Time-averaged, Single-Level, Assimilation, Aerosol Diagnostics V5.12.4, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC), accessed: April 2023, https://doi.org/10.5067/KLICLTZ8EM9D, 2015.
Goldberg, D. L., Harkey, M., de Foy, B., Judd, L., Johnson, J., Yarwood, G., and Holloway, T.: Evaluating NOx emissions and their effect on O3 production in Texas using TROPOMI NO2 and HCHO, Atmos. Chem. Phys., 22, 10875–10900, https://doi.org/10.5194/acp-22-10875-2022, 2022.
Green, D. M. and Swets, J. A.: Signal detection theory and psychophysics, Wiley, New York, vol. 1, 1969–2012, 1966.
He, J. and Loboda, T. V.: Modeling cloud-to-ground lightning probability in Alaskan tundra through the integration of Weather Research and Forecast (WRF) model and machine learning method, Environ. Res. Lett., 15, 115009, https://doi.org/10.1088/1748-9326/abbc3b, 2020.
Heckman, S.: ENTLN status update, XV international conference on atmospheric electricity, National Weather Service, Norman, Oklahoma, USA, 15–20 June 2014, 15–20, https://www.nssl.noaa.gov/users/mansell/icae2014/preprints/Heckman_103.pdf (last access: March 2023), 2014.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., and Schepers, D.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J-N.: ERA5 hourly data on pressure levels from 1940 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.bd0915c6, 2023.
Holton, J. R.: An introduction to dynamic meteorology, Am. J. Phys., 41, 752–754, https://doi.org/10.1119/1.1987371, 1973.
Hu, J., Rosenfeld, D., Ryzhkov, A., Zrnic, D., Williams, E., Zhang, P., Snyder, J. C., Zhang, R., and Weitz, R.: Polarimetric radar convective cell tracking reveals large sensitivity of cloud precipitation and electrification properties to CCN, J. Geophys. Res.-Atmos., 124, 12194–12205, https://doi.org/10.1029/2019JD030857, 2019.
Jensen, M., Giangrande, S., Fairless, T., and Zhou, A.: Interpolated Sonde (INTERPOLATEDSONDE), Atmospheric Radiation Measurement (ARM) User Facility [data set], https://doi.org/10.5439/1095316, 1999.
Jensen, M., Giangrande, S., Fairless, T., and Zhou, A.: Interpolatedsonde, Oak Ridge National Lab (ORNL), Oak Ridge, TN, USA, Atmospheric Radiation Measurement (ARM) Data Center, https://doi.org/10.5439/1095316, 1998.
Johnson, K., Jensen, M., and Giangrande, S.: Active Remote Sensing of CLouds (ARSCL) product using Ka-band ARM Zenith Radars (ARSCLKAZR1KOLLIAS), Atmospheric Radiation Measurement (ARM) User Facility [data set], https://doi.org/10.5439/1228768, 2011.
Johnson, K., Giangrande, S., and Toto, T.: Active Remote Sensing of CLouds (ARSCL) product using Ka-band ARM Zenith Radars (ARSCLKAZR1KOLLIAS), Atmospheric Radiation Measurement (ARM) User Facility [data set], https://doi.org/10.5439/1393437, 2014.
Koontz, A., Uin, J., Andrews, E., Enekwizu, O., Hayes, C., and Salwen, C.: Cloud Condensation Nuclei Particle Counter (AOSCCN2COLAAVG), Atmospheric Radiation Measurement (ARM) User Facility [data set], https://doi.org/10.5439/1323894, 2017.
La Fata, A., Amato, F., Bernardi, M., D'Andrea, M., Procopio, R., and Fiori, E.: Cloud-to-Ground lightning nowcasting using Machine Learning, 35th International Conference on Lightning Protection (ICLP) and XVI International Symposium on Lightning Protection (SIPDA), vol. 1, 1–6, IEEE, 20–26 September 2021, Colombo, Sri Lanka, https://doi.org/10.1109/ICLPandSIPDA54065.2021.9627428, 2021.
Lal, D. M., Ghude, S. D., Singh, J., and Tiwari, S.: Relationship between size of cloud ice and lightning in the tropics, Adv. Meteorol., 2014, 471864, https://doi.org/10.1155/2014/471864, 2014.
Lapp, J. and Saylor, J.: Correlation between lightning types, Geophys. Res. Lett., 34, L11804, https://doi.org/10.1029/2007GL029476, 2007.
Level 3 and 4 Regridder and Subsetter Information: https://disc.gsfc.nasa.gov/information/documents?keywords=grid&title=Level%203%20and%204%20Regridder%20and%20Subsetter%20Information (last access: March 2023).
Li, Z., Wang, Y., Guo, J., Zhao, C., Cribb, M. C., Dong, X., Fan, J., Gong, D., Huang, J., and Jiang, M.: East Asian study of tropospheric aerosols and their impact on regional clouds, precipitation, and climate (EAST-AIRCPC), J. Geophys. Res.-Atmos., 124, 13026–13054, https://doi.org/10.1029/2019JD030758, 2019.
Lynn, B. H., Yair, Y., Price, C., Kelman, G., and Clark, A. J.: Predicting cloud-to-ground and intracloud lightning in weather forecast models, Weather Forecast., 27, 1470–1488, https://doi.org/10.1175/WAF-D-11-00144.1, 2012.
Medina, B. L., Carey, L. D., Bitzer, P. M., Lang, T. J., and Deierling, W.: The Relation of Environmental Conditions with Charge Structure in Central Argentina Thunderstorms, Earth Space Science, 9, e2021EA002193, https://doi.org/10.1029/2021EA002193, 2022.
Mostajabi, A., Finney, D. L., Rubinstein, M., and Rachidi, F.: Nowcasting lightning occurrence from commonly available meteorological parameters using machine learning techniques, Npj Climate and Atmospheric Science, 2, 41, https://doi.org/10.1038/s41612-019-0098-0, 2019.
Orville, R. E., Huffines, G., Nielsen-Gammon, J., Zhang, R., Ely, B., Steiger, S., Phillips, S., Allen, S., and Read, W.: Enhancement of cloud-to-ground lightning over Houston, Texas, Geophys. Res. Lett., 28, 2597–2600, https://doi.org/10.1029/2001GL012990, 2001.
Pawar, S., Lal, D., and Murugavel, P.: Lightning characteristics over central India during Indian summer monsoon, Atmos. Res., 106, 44–49, https://doi.org/10.1016/j.atmosres.2011.11.007, 2012.
Pérez-Invernón, F. J., Gordillo-Vázquez, F. J., Huntrieser, H., and Jöckel, P.: Variation of lightning-ignited wildfire patterns under climate change, Nat. Commun., 14, 739, https://doi.org/10.1038/s41467-023-36500-5, 2023.
Pickering, K. E., Thompson, A. M., Tao, W. K., and Kucsera, T. L.: Upper tropospheric ozone production following mesoscale convection during STEP/EMEX, J. Geophys. Res.-Atmos., 98, 8737–8749, https://doi.org/10.1029/93JD00875, 1993.
Politovich, M. K. and Cooper, W. A.: Variability of the supersaturation in cumulus clouds, J. Atmos. Sci., 45, 1651–1664, https://doi.org/10.1175/1520-0469(1988)045<1651:VOTSIC>,2.0.CO;2, 1988.
Price, C. and Federmesser, B.: Lightning-rainfall relationships in Mediterranean winter thunderstorms, Geophys. Res. Lett., 33, L07813, https://doi.org/10.1029/2005GL024794, 2006.
Price, C. and Rind, D.: A simple lightning parameterization for calculating global lightning distributions, J. Geophys. Res.-Atmos., 97, 9919–9933, https://doi.org/10.1029/92JD00719, 1992.
Price, C. and Rind, D.: What determines the cloud-to-ground lightning fraction in thunderstorms?, Geophys. Res. Lett., 20, 463–466, https://doi.org/10.1029/93GL00226, 1993.
Price, C. and Rind, D.: Modeling global lightning distributions in a general circulation model, Mon. Weather Rev., 122, 1930–1939, https://doi.org/10.1175/1520-0493(1994)122<1930:MGLDIA>,2.0.CO;2, 1994.
Richardson, Y. P., Droegemeier, K. K., and Davies-Jones, R. P.: The influence of horizontal environmental variability on numerically simulated convective storms. Part I: Variations in vertical shear, Mon. Weather Rev., 135, 3429–3455, https://doi.org/10.1175/MWR3463.1, 2007.
Romps, D. M., Seeley, J. T., Vollaro, D., and Molinari, J.: Projected increase in lightning strikes in the United States due to global warming, Science, 346, 851–854, https://doi.org/10.1126/science.1259100, 2014.
Romps, D. M., Charn, A. B., Holzworth, R. H., Lawrence, W. E., Molinari, J., and Vollaro, D.: CAPE times P explains lightning over land but not the land-ocean contrast, Geophys. Res. Lett., 45, 12,623-612,630, https://doi.org/10.1029/2018GL080267, 2018.
Rutledge, S. A., Williams, E. R., and Keenan, T. D.: The down under Doppler and electricity experiment (DUNDEE): Overview and preliminary results, B. Am. Meteorol. Soc., 73, 3–16, https://doi.org/10.1175/1520-0477(1992)073<0003:TDUDAE>,2.0.CO;2, 1992.
Scala, J. R., Garstang, M., Tao, W. k., Pickering, K. E., Thompson, A. M., Simpson, J., Kirchhoff, V. W., Browell, E. V., Sachse, G. W., and Torres, A. L.: Cloud draft structure and trace gas transport, J. Geophys. Res.-Atmos., 95, 17015–17030, https://doi.org/10.1029/JD095iD10p17015, 1990.
Seo, E. K. and Liu, G.: Retrievals of cloud ice water path by combining ground cloud radar and satellite high-frequency microwave measurements near the ARM SGP site, J. Geophys. Res.-Atmos., 110, D14203, https://doi.org/10.1029/2004JD005727, 2005.
Sherwood, S. C., Phillips, V. T., and Wettlaufer, J.: Small ice crystals and the climatology of lightning, Geophys. Res. Lett., 33, L05804, https://doi.org/10.1029/2005GL025242, 2006.
Sivaraman, C. and Zhang, D.: Planetary Boundary Layer Height (PBLHTMPL1SAWYERLI). Atmospheric Radiation Measurement (ARM) User Facility [data set], https://doi.org/10.5439/1637942, 2009.
Stolz, D. C., Rutledge, S. A., Pierce, J. R., and van den Heever, S. C.: A global lightning parameterization based on statistical relationships among environmental factors, aerosols, and convective clouds in the TRMM climatology, J. Geophys. Res.-Atmos., 122, 7461–7492, https://doi.org/10.1002/2016JD026220, 2017.
Sun, C. and Liang, X.-Z.: Improving US extreme precipitation simulation: dependence on cumulus parameterization and underlying mechanism, Clim. Dynam., 55, 1325–1352, https://doi.org/10.1007/s00382-020-05328-w, 2020.
Sun, M., Liu, D., Qie, X., Mansell, E. R., Yair, Y., Fierro, A. O., Yuan, S., Chen, Z., and Wang, D.: Aerosol effects on electrification and lightning discharges in a multicell thunderstorm simulated by the WRF-ELEC model, Atmos. Chem. Phys., 21, 14141–14158, https://doi.org/10.5194/acp-21-14141-2021, 2021.
Takahashi, T.: Riming electrification as a charge generation mechanism in thunderstorms, J. Atmos. Sci., 35, 1536–1548, https://doi.org/10.1175/1520-0469(1978)035<1536:REAACG>2.0.CO;2, 1978.
Thornton, J. A., Virts, K. S., Holzworth, R. H., and Mitchell, T. P.: Lightning enhancement over major oceanic shipping lanes, Geophys. Res. Lett., 44, 9102–9111, https://doi.org/10.1002/2017GL074982, 2017.
Tippett, M. K. and Koshak, W. J.: A baseline for the predictability of US cloud-to-ground lightning, Geophys. Res. Lett., 45, 10719–10728, https://doi.org/10.1029/2018GL079750, 2018.
Uin, J., Andrews, E., Salwen, C., Enekwizu, O., and Hayes, C.: Cloud Condensation Nuclei Particle Counter (AOSCCN1COL), Atmospheric Radiation Measurement (ARM) User Facility [data set], https://doi.org/10.5439/1984587, 2011.
US EPA – U.S. Environmental Protection Agency: Download Daily Data, US EPA [data set], https://www.epa.gov/outdoor-air-quality-data/download-daily-data, last access: April 2023.
Wall, C., Zipser, E., and Liu, C.: An investigation of the aerosol indirect effect on convective intensity using satellite observations, J. Atmos. Sci., 71, 430–447, https://doi.org/10.1175/JAS-D-13-0158.1, 2014.
Wang, D. and Bartholomew, M. J.: Video Disdrometer (VDIS), Atmospheric Radiation Measurement (ARM) User Facility [data set], https://doi.org/10.5439/1992988, 2011.
Wang, Q., Li, Z., Guo, J., Zhao, C., and Cribb, M.: The climate impact of aerosols on the lightning flash rate: is it detectable from long-term measurements?, Atmos. Chem. Phys., 18, 12797–12816, https://doi.org/10.5194/acp-18-12797-2018, 2018.
Wang, Y., Wan, Q., Meng, W., Liao, F., Tan, H., and Zhang, R.: Long-term impacts of aerosols on precipitation and lightning over the Pearl River Delta megacity area in China, Atmos. Chem. Phys., 11, 12421–12436, https://doi.org/10.5194/acp-11-12421-2011, 2011.
Westcott, N. E.: Summertime cloud-to-ground lightning activity around major Midwestern urban areas, J. Appl. Meteorol. Clim., 34, 1633–1642, https://doi.org/10.1175/1520-0450-34.7.1633, 1995.
Williams, E., Rosenfeld, D., Madden, N., Gerlach, J., Gears, N., Atkinson, L., Dunnemann, N., Frostrom, G., Antonio, M., and Biazon, B.: Contrasting convective regimes over the Amazon: Implications for cloud electrification, J. Geophys. Res.-Atmos., 107, LBA 50-51–LBA 50-19, https://doi.org/10.1029/2001JD000380, 2002.
Williams, E. R.: Meteorological aspects of thunderstorms, in: Handbook of atmospheric electrodynamics, CRC Press, 9780203719503, 27–60, 2017.
Williams, E. R., Weber, M., and Orville, R.: The relationship between lightning type and convective state of thunderclouds, J. Geophys. Res.-Atmos., 94, 13213–13220, https://doi.org/10.1029/JD094iD11p13213, 1989.
Yoshida, S., Morimoto, T., Ushio, T., and Kawasaki, Z.: A fifth-power relationship for lightning activity from Tropical Rainfall Measuring Mission satellite observations, J. Geophys. Res.-Atmos., 114, D09104, https://doi.org/10.1029/2008JD010370, 2009.
Yuan, T., Remer, L. A., Pickering, K. E., and Yu, H.: Observational evidence of aerosol enhancement of lightning activity and convective invigoration, Geophys. Res. Lett., 38, L04701, https://doi.org/10.1029/2010GL046052, 2011.
Zhang, Y., Seidel, D. J., and Zhang, S.: Trends in planetary boundary layer height over Europe, J. Climate, 26, 10071–10076, https://doi.org/10.1175/JCLI-D-13-00108.1, 2013.
Zhang, D., Shi, Y., and Riihimaki, L.: Cloud Type Classification (CLDTYPE), Atmospheric Radiation Measurement (ARM) User Facility [data set], https://doi.org/10.5439/1349884, 1996.
Zhao, P., Li, Z., Xiao, H., Wu, F., Zheng, Y., Cribb, M. C., Jin, X., and Zhou, Y.: Distinct aerosol effects on cloud-to-ground lightning in the plateau and basin regions of Sichuan, Southwest China, Atmos. Chem. Phys., 20, 13379–13397, https://doi.org/10.5194/acp-20-13379-2020, 2020.
Zhu, Y., Stock, M., Lapierre, J., and DiGangi, E.: Upgrades of the Earth networks total lightning network in 2021, Remote Sens.-Basel, 14, 2209, https://doi.org/10.3390/rs14092209, 2022.
Short summary
Several machine learning models are applied to identify important variables affecting lightning occurrence in the vicinity of the Southern Great Plains ARM site during the summer months of 2012–2020. We find that the random forest model is the best predictor among common classifiers. We rank variables in terms of their effectiveness in nowcasting ENTLN lightning and identify geometric cloud thickness, rain rate and convective available potential energy (CAPE) as the most effective predictors.
Several machine learning models are applied to identify important variables affecting...
Altmetrics
Final-revised paper
Preprint