Articles | Volume 23, issue 20
https://doi.org/10.5194/acp-23-13143-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-13143-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Surface energy balance fluxes in a suburban area of Beijing: energy partitioning variability
Junxia Dou
CORRESPONDING AUTHOR
Institute of Urban Meteorology, China Meteorological Administration, Beijing 100089, China
Key Laboratory of Urban Meteorology, China Meteorological Administration, Beijing 100089, China
Sue Grimmond
Department of Meteorology, University of Reading, Reading, RG6 6ET, UK
Shiguang Miao
Institute of Urban Meteorology, China Meteorological Administration, Beijing 100089, China
Key Laboratory of Urban Meteorology, China Meteorological Administration, Beijing 100089, China
Bei Huang
Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China
Huimin Lei
Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China
Mingshui Liao
Miyun Meteorological station, Beijing Meteorological Bureau, Beijing 101599, China
Related authors
No articles found.
Yuan Liu, Yong Wang, Yong Zhao, Shouzhi Chen, Longhao Wang, Wenjing Yang, Xing Li, Xinxi Li, Huimin Lei, Huanyu Chang, Jiaqi Zhai, Yongnan Zhu, Qingming Wang, and Ting Ye
Hydrol. Earth Syst. Sci., 29, 3379–3404, https://doi.org/10.5194/hess-29-3379-2025, https://doi.org/10.5194/hess-29-3379-2025, 2025
Short summary
Short summary
In the real hydrological Earth system, the relationships between variables are not constant. This study employed advanced statistical models, incorporating physical mechanisms to examine how evaporation stress responds to key factors over time. We found that stronger soil drought effects can be expected in areas undergoing rapid greening. This study may enhance the comprehension of evaporation stress, help optimize parameters in Earth system models, and promote greening initiatives.
Nimra Iqbal, Marvin Ravan, Zina Mitraka, Joern Birkmann, Sue Grimmond, Denise Hertwig, Nektarios Chrysoulakis, Giorgos Somarakis, Angela Wendnagel-Beck, and Emmanouil Panagiotakis
Nat. Hazards Earth Syst. Sci., 25, 2481–2502, https://doi.org/10.5194/nhess-25-2481-2025, https://doi.org/10.5194/nhess-25-2481-2025, 2025
Short summary
Short summary
This work deepens the understanding of how perceived heat stress, human vulnerability (e.g. age, income) and adaptive capacities (e.g. green, shaded spaces) are coupled with urban structures. The results show that perceived heat stress decreases with distance from the urban center, however, human vulnerability and adaptive capacities depend more strongly on inner variations and differences between urban structures. Planning policies and adaptation strategies should account for these differences.
Russell H. Glazer, Sue Grimmond, Lewis Blunn, Daniel Fenner, Humphrey Lean, Andreas Christen, Will Morrison, and Dana Looschelders
EGUsphere, https://doi.org/10.5194/egusphere-2025-2064, https://doi.org/10.5194/egusphere-2025-2064, 2025
Short summary
Short summary
In this study we use very high resolution numerical weather prediction model simulations of the Berlin, Germany region along with assessment of field campaign observations to understand better the impact of urban areas on the near-surface boundary layer. We find that there a clear affect of urban areas up to 15 kilometers downwind of the city centre in both the field campaign observations and the high resolution model.
William Morrison, Dana Looschelders, Jonnathan Céspedes, Bernie Claxton, Marc-Antoine Drouin, Jean-Charles Dupont, Aurélien Faucheux, Martial Haeffelin, Christopher C. Holst, Simone Kotthaus, Valéry Masson, James McGregor, Jeremy Price, Matthias Zeeman, Sue Grimmond, and Andreas Christen
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-167, https://doi.org/10.5194/essd-2025-167, 2025
Preprint under review for ESSD
Short summary
Short summary
We conducted research using sophisticated wind sensors to better understand wind patterns in Paris. By installing these sensors across the city, we gathered detailed data on wind speeds and directions from 2022 to 2024. This information helps improve weather and climate models, making them more accurate for city environments. Our findings offer valuable insights for scientists studying urban air and weather, improving predictions and understanding of city-scale atmospheric processes.
Matthias Zeeman, Andreas Christen, Sue Grimmond, Daniel Fenner, William Morrison, Gregor Feigel, Markus Sulzer, and Nektarios Chrysoulakis
Geosci. Instrum. Method. Data Syst., 13, 393–424, https://doi.org/10.5194/gi-13-393-2024, https://doi.org/10.5194/gi-13-393-2024, 2024
Short summary
Short summary
This study presents an overview of a data system for documenting, processing, managing, and publishing data streams from research networks of atmospheric and environmental sensors of varying complexity in urban environments. Our solutions aim to deliver resilient, near-time data using freely available software.
Ting Sun, Hamidreza Omidvar, Zhenkun Li, Ning Zhang, Wenjuan Huang, Simone Kotthaus, Helen C. Ward, Zhiwen Luo, and Sue Grimmond
Geosci. Model Dev., 17, 91–116, https://doi.org/10.5194/gmd-17-91-2024, https://doi.org/10.5194/gmd-17-91-2024, 2024
Short summary
Short summary
For the first time, we coupled a state-of-the-art urban land surface model – Surface Urban Energy and Water Scheme (SUEWS) – with the widely-used Weather Research and Forecasting (WRF) model, creating an open-source tool that may benefit multiple applications. We tested our new system at two UK sites and demonstrated its potential by examining how human activities in various areas of Greater London influence local weather conditions.
Megan A. Stretton, William Morrison, Robin J. Hogan, and Sue Grimmond
Geosci. Model Dev., 16, 5931–5947, https://doi.org/10.5194/gmd-16-5931-2023, https://doi.org/10.5194/gmd-16-5931-2023, 2023
Short summary
Short summary
Cities' materials and forms impact radiative fluxes. We evaluate the SPARTACUS-Urban multi-layer approach to modelling longwave radiation, describing realistic 3D geometry statistically using the explicit DART (Discrete Anisotropic Radiative Transfer) model. The temperature configurations used are derived from thermal camera observations. SPARTACUS-Urban accurately predicts longwave fluxes, with a low computational time (cf. DART), but has larger errors with sunlit/shaded surface temperatures.
Joanna E. Dyson, Lisa K. Whalley, Eloise J. Slater, Robert Woodward-Massey, Chunxiang Ye, James D. Lee, Freya Squires, James R. Hopkins, Rachel E. Dunmore, Marvin Shaw, Jacqueline F. Hamilton, Alastair C. Lewis, Stephen D. Worrall, Asan Bacak, Archit Mehra, Thomas J. Bannan, Hugh Coe, Carl J. Percival, Bin Ouyang, C. Nicholas Hewitt, Roderic L. Jones, Leigh R. Crilley, Louisa J. Kramer, W. Joe F. Acton, William J. Bloss, Supattarachai Saksakulkrai, Jingsha Xu, Zongbo Shi, Roy M. Harrison, Simone Kotthaus, Sue Grimmond, Yele Sun, Weiqi Xu, Siyao Yue, Lianfang Wei, Pingqing Fu, Xinming Wang, Stephen R. Arnold, and Dwayne E. Heard
Atmos. Chem. Phys., 23, 5679–5697, https://doi.org/10.5194/acp-23-5679-2023, https://doi.org/10.5194/acp-23-5679-2023, 2023
Short summary
Short summary
The hydroxyl (OH) and closely coupled hydroperoxyl (HO2) radicals are vital for their role in the removal of atmospheric pollutants. In less polluted regions, atmospheric models over-predict HO2 concentrations. In this modelling study, the impact of heterogeneous uptake of HO2 onto aerosol surfaces on radical concentrations and the ozone production regime in Beijing in the summertime is investigated, and the implications for emissions policies across China are considered.
Mathew Lipson, Sue Grimmond, Martin Best, Winston T. L. Chow, Andreas Christen, Nektarios Chrysoulakis, Andrew Coutts, Ben Crawford, Stevan Earl, Jonathan Evans, Krzysztof Fortuniak, Bert G. Heusinkveld, Je-Woo Hong, Jinkyu Hong, Leena Järvi, Sungsoo Jo, Yeon-Hee Kim, Simone Kotthaus, Keunmin Lee, Valéry Masson, Joseph P. McFadden, Oliver Michels, Wlodzimierz Pawlak, Matthias Roth, Hirofumi Sugawara, Nigel Tapper, Erik Velasco, and Helen Claire Ward
Earth Syst. Sci. Data, 14, 5157–5178, https://doi.org/10.5194/essd-14-5157-2022, https://doi.org/10.5194/essd-14-5157-2022, 2022
Short summary
Short summary
We describe a new openly accessible collection of atmospheric observations from 20 cities around the world, capturing 50 site years. The observations capture local meteorology (temperature, humidity, wind, etc.) and the energy fluxes between the land and atmosphere (e.g. radiation and sensible and latent heat fluxes). These observations can be used to improve our understanding of urban climate processes and to test the accuracy of urban climate models.
Will S. Drysdale, Adam R. Vaughan, Freya A. Squires, Sam J. Cliff, Stefan Metzger, David Durden, Natchaya Pingintha-Durden, Carole Helfter, Eiko Nemitz, C. Sue B. Grimmond, Janet Barlow, Sean Beevers, Gregor Stewart, David Dajnak, Ruth M. Purvis, and James D. Lee
Atmos. Chem. Phys., 22, 9413–9433, https://doi.org/10.5194/acp-22-9413-2022, https://doi.org/10.5194/acp-22-9413-2022, 2022
Short summary
Short summary
Measurements of NOx emissions are important for a good understanding of air quality. While there are many direct measurements of NOx concentration, there are very few measurements of its emission. Measurements of emissions provide constraints on emissions inventories and air quality models. This article presents measurements of NOx emission from the BT Tower in central London in 2017 and compares them with inventories, finding that they underestimate by a factor of ∼1.48.
Yiqing Liu, Zhiwen Luo, and Sue Grimmond
Atmos. Chem. Phys., 22, 4721–4735, https://doi.org/10.5194/acp-22-4721-2022, https://doi.org/10.5194/acp-22-4721-2022, 2022
Short summary
Short summary
Anthropogenic heat emission from buildings is important for atmospheric modelling in cities. The current building anthropogenic heat flux is simplified by building energy consumption. Our research proposes a novel approach to determine ‘real’ building anthropogenic heat emission from the changes in energy balance fluxes between occupied and unoccupied buildings. We hope to provide new insights into future parameterisations of building anthropogenic heat flux in urban climate models.
Hamidreza Omidvar, Ting Sun, Sue Grimmond, Dave Bilesbach, Andrew Black, Jiquan Chen, Zexia Duan, Zhiqiu Gao, Hiroki Iwata, and Joseph P. McFadden
Geosci. Model Dev., 15, 3041–3078, https://doi.org/10.5194/gmd-15-3041-2022, https://doi.org/10.5194/gmd-15-3041-2022, 2022
Short summary
Short summary
This paper extends the applicability of the SUEWS to extensive pervious areas outside cities. We derived various parameters such as leaf area index, albedo, roughness parameters and surface conductance for non-urban areas. The relation between LAI and albedo is also explored. The methods and parameters discussed can be used for both online and offline simulations. Using appropriate parameters related to non-urban areas is essential for assessing urban–rural differences.
Michael Biggart, Jenny Stocker, Ruth M. Doherty, Oliver Wild, David Carruthers, Sue Grimmond, Yiqun Han, Pingqing Fu, and Simone Kotthaus
Atmos. Chem. Phys., 21, 13687–13711, https://doi.org/10.5194/acp-21-13687-2021, https://doi.org/10.5194/acp-21-13687-2021, 2021
Short summary
Short summary
Heat-related illnesses are of increasing concern in China given its rapid urbanisation and our ever-warming climate. We examine the relative impacts that land surface properties and anthropogenic heat have on the urban heat island (UHI) in Beijing using ADMS-Urban. Air temperature measurements and satellite-derived land surface temperatures provide valuable means of evaluating modelled spatiotemporal variations. This work provides critical information for urban planners and UHI mitigation.
Zhaobin Sun, Xiujuan Zhao, Ziming Li, Guiqian Tang, and Shiguang Miao
Atmos. Chem. Phys., 21, 8863–8882, https://doi.org/10.5194/acp-21-8863-2021, https://doi.org/10.5194/acp-21-8863-2021, 2021
Short summary
Short summary
Different weather types will shape significantly different structures of the pollution boundary layer. The findings of this study allow us to understand the inherent difference among heavy pollution boundary layers; in addition, they reveal the formation mechanism of haze pollution from an integrated synoptic-scale and boundary layer structure perspective.
Claire E. Reeves, Graham P. Mills, Lisa K. Whalley, W. Joe F. Acton, William J. Bloss, Leigh R. Crilley, Sue Grimmond, Dwayne E. Heard, C. Nicholas Hewitt, James R. Hopkins, Simone Kotthaus, Louisa J. Kramer, Roderic L. Jones, James D. Lee, Yanhui Liu, Bin Ouyang, Eloise Slater, Freya Squires, Xinming Wang, Robert Woodward-Massey, and Chunxiang Ye
Atmos. Chem. Phys., 21, 6315–6330, https://doi.org/10.5194/acp-21-6315-2021, https://doi.org/10.5194/acp-21-6315-2021, 2021
Short summary
Short summary
The impact of isoprene on atmospheric chemistry is dependent on how its oxidation products interact with other pollutants, specifically nitrogen oxides. Such interactions can lead to isoprene nitrates. We made measurements of the concentrations of individual isoprene nitrate isomers in Beijing and used a model to test current understanding of their chemistry. We highlight areas of uncertainty in understanding, in particular the chemistry following oxidation of isoprene by the nitrate radical.
Wenhua Wang, Longyi Shao, Claudio Mazzoleni, Yaowei Li, Simone Kotthaus, Sue Grimmond, Janarjan Bhandari, Jiaoping Xing, Xiaolei Feng, Mengyuan Zhang, and Zongbo Shi
Atmos. Chem. Phys., 21, 5301–5314, https://doi.org/10.5194/acp-21-5301-2021, https://doi.org/10.5194/acp-21-5301-2021, 2021
Short summary
Short summary
We compared the characteristics of individual particles at ground level and above the mixed-layer height. We found that the particles above the mixed-layer height during haze periods are more aged compared to ground level. More coal-combustion-related primary organic particles were found above the mixed-layer height. We suggest that the particles above the mixed-layer height are affected by the surrounding areas, and once mixed down to the ground, they might contribute to ground air pollution.
Lisa K. Whalley, Eloise J. Slater, Robert Woodward-Massey, Chunxiang Ye, James D. Lee, Freya Squires, James R. Hopkins, Rachel E. Dunmore, Marvin Shaw, Jacqueline F. Hamilton, Alastair C. Lewis, Archit Mehra, Stephen D. Worrall, Asan Bacak, Thomas J. Bannan, Hugh Coe, Carl J. Percival, Bin Ouyang, Roderic L. Jones, Leigh R. Crilley, Louisa J. Kramer, William J. Bloss, Tuan Vu, Simone Kotthaus, Sue Grimmond, Yele Sun, Weiqi Xu, Siyao Yue, Lujie Ren, W. Joe F. Acton, C. Nicholas Hewitt, Xinming Wang, Pingqing Fu, and Dwayne E. Heard
Atmos. Chem. Phys., 21, 2125–2147, https://doi.org/10.5194/acp-21-2125-2021, https://doi.org/10.5194/acp-21-2125-2021, 2021
Short summary
Short summary
To understand how emission controls will impact ozone, an understanding of the sources and sinks of OH and the chemical cycling between peroxy radicals is needed. This paper presents measurements of OH, HO2 and total RO2 taken in central Beijing. The radical observations are compared to a detailed chemistry model, which shows that under low NO conditions, there is a missing OH source. Under high NOx conditions, the model under-predicts RO2 and impacts our ability to model ozone.
Rutambhara Joshi, Dantong Liu, Eiko Nemitz, Ben Langford, Neil Mullinger, Freya Squires, James Lee, Yunfei Wu, Xiaole Pan, Pingqing Fu, Simone Kotthaus, Sue Grimmond, Qiang Zhang, Ruili Wu, Oliver Wild, Michael Flynn, Hugh Coe, and James Allan
Atmos. Chem. Phys., 21, 147–162, https://doi.org/10.5194/acp-21-147-2021, https://doi.org/10.5194/acp-21-147-2021, 2021
Short summary
Short summary
Black carbon (BC) is a component of particulate matter which has significant effects on climate and human health. Sources of BC include biomass burning, transport, industry and domestic cooking and heating. In this study, we measured BC emissions in Beijing, finding a dominance of traffic emissions over all other sources. The quantitative method presented here has benefits for revising widely used emissions inventories and for understanding BC sources with impacts on air quality and climate.
Isabella Capel-Timms, Stefán Thor Smith, Ting Sun, and Sue Grimmond
Geosci. Model Dev., 13, 4891–4924, https://doi.org/10.5194/gmd-13-4891-2020, https://doi.org/10.5194/gmd-13-4891-2020, 2020
Short summary
Short summary
Thermal emissions or anthropogenic heat fluxes (QF) from human activities impact the local- and larger-scale urban climate. DASH considers both urban form and function in simulating QF by use of an agent-based structure that includes behavioural characteristics of city populations. This allows social practices to drive the calculation of QF as occupants move, varying by day type, demographic, location, activity, and socio-economic factors and in response to environmental conditions.
Cited articles
Allen, L., Lindberg, F., and Grimmond, C. S. B.: Global to city scale urban anthropogenic heat flux: Model and variability, Int. J. Climatol., 31, 1990–2005, https://doi.org/10.1002/joc.2210, 2011.
Anandakumar, K.: A study on the partition of net radiation into heat fluxes on a dry asphalt surface, Atmos. Environ., 33, 3911–3918, https://doi.org/10.1016/S1352-2310(99)00133-8, 1999.
Ando, T. and Ueyama, M.: Surface energy exchange in a dense urban built-up area based on two-year eddy covariance measurements in Sakai, Japan, Urban Climate, 19, 155–169, https://doi.org/10.1016/j.uclim.2017.01.005, 2017.
Ao, X. Y., Grimmond, C. S. B., Chang, Y. Y., Liu, D. W., Tang, Y. Q., Hu, P., Wang, Y. D., Zou, J., and Tan, J. G.: Heat, water and carbon exchanges in the tall megacity of Shanghai: challenges and results, Int. J. Climatol., 36, 4608–4624, https://doi.org/10.1002/joc.4657, 2016a.
Ao, X. Y., Grimmond, C. S. B., Liu, D. W., Han, Z. H., Hu, P., Wang, Y. D., Zhen, X. R., and Tan, J. G.: Radiation fluxes in a business district of Shanghai, China, J. Appl. Meteorol. Clim., 55, 2451–2468, https://doi.org/10.1175/JAMC-D-16-0082.1, 2016b.
Ao, X. Y., Grimmond, C. S. B., Ward, H. C., Gabey, A. M., Tan, J. G., Yang, X. Q., Liu, D. W., Zhi, X., Liu, H. Y., and Zhang, N.: Evaluation of the surface urban energy and water balance scheme (SUEWS) at a dense urban site in Shanghai: Sensitivity to anthropogenic heat and irrigation, J. Hydrometeorol., 19, 1983–2005, https://doi.org/10.1175/JHM-D-18-0057.1, 2018.
Asaeda, T. and Ca, V. T.: The subsurface transport of heat and moisture and its act on the environment: a numerical model, Bound.-Lay. Meteorol., 65, 159–178, https://doi.org/10.1007/BF00708822, 1993.
Baldocchi, D. D: Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: Past, present and future, Global Change Biol., 9, 479–492, https://doi.org/10.1046/j.1365-2486.2003.00629.x, 2003.
Balogun, A. A., Adegoke, J. O., Vezhapparambu, S., Mauder, M., McFadden, J., and Gallo, K.: Surface energy balance measurements above an exurban residential neighbourhood of Kansas City, Missouri, Bound.-Lay. Meteorol., 133, 299–321, https://doi.org/10.1007/s10546-009-9421-3, 2009.
Bergeron, O. and Strachan, I. B.: Wintertime radiation and energy budget along an urbanization gradient in Montreal, Canada, Int. J. Climatol., 32, 137–152, https://doi.org/10.1002/joc.2246, 2012.
CCRSDA – China Centre for Resources Satellite Data and Application: GF-2 (Gaofen-2) High-resolution Image, China Aerospace Science and Technology Corporation, https://data.cresda.cn/#/home (last access: 13 September 2023), 2016.
Christen, A. and Vogt, R.: Energy and radiation balance of a central European city, Int. J. Climatol., 24, 1395–1421, https://doi.org/10.1002/joc.1074, 2004.
CIESIN – Center for International Earth Science Information Network, Gridded Population of the World, Version 4 (GPWv4): Population Count Grid, NASA SEDAC – Socioeconomic Data and Applications Center, Columbia University, Palisades, NY, https://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-density-rev11/data-download (last access: 13 September 2023), 2016.
Coutts, A. M., Beringer, J., and Tapper, N. J.: Impact of increasing urban density on local climate: Spatial and temporal variations in the surface energy balance in Melbourne, Australia, J. Appl. Meteorol. Clim., 46, 477–493, https://doi.org/10.1175/jam2462.1, 2007.
Doll, D., Ching, J. K. S., and Kaneshiro, J.: Parameterization of subsurface heating for soil and concrete using net radiation data, Bound.-Lay. Meteorol., 32, 351–372, https://doi.org/10.1007/BF00122000, 1985.
Dou, J. X., Grimmond, C. S. B., Cheng, Z. G., Miao, S. G., Feng, D. Y., and Liao, M. S.: Summertime surface energy balance fluxes at two Beijing sites, Int. J. Climatol., 39, 2793–2810, https://doi.org/10.1002/joc.5989, 2019.
Flerchinger, G. N., Xiao, W., Marks, D., Sauer, T. J., and Yu, Q.: Comparison of algorithms for incoming atmospheric longwave radiation, Water Resour. Res., 45, W03423, https://doi.org/10.1029/2008WR007394, 2009.
Foken, T.: The energy balance closure problem: An overview, Ecol. Appl., 18, 1351–1367, https://doi.org/10.1890/06-0922.1, 2008.
Gabey, A., Grimmond, C. S. B., and Capel-Timms, I.: Anthropogenic heat flux: advisable spatial resolutions when input data are scarce. Theor. Appl. Climatol., 135, 791–807, https://doi.org/10.1007/s00704-018-2367-y, 2019.
Goldbach, A, and Kuttler, W.: Quantification of turbulent heat fluxes for adaptation strategies within urban planning, Int. J. Climatol., 33, 143–159, https://doi.org/10.1002/joc.3437, 2012.
Grimmond, C. S. B. and Oke, T. R.: Urban water balance II: Results from a suburb of Vancouver, BC, Water Resour. Res., 22, 1404–1412, https://doi.org/10.1029/WR022i010p01404, 1986.
Grimmond, C. S. B. and Oke, T. R.: Comparison of heat fluxes from summertime observations in the suburbs of four North American cities, J. Appl. Meteorol., 34, 873–889, https://doi.org/10.1175/1520-0450(1995)034<0873:COHFFS>2.0.CO;2, 1995.
Grimmond, C. S. B. and Oke, T. R.: Aerodynamic properties of urban areas derived, from analysis of surface form, J. Appl. Meteorol., 38, 1262–1292, 1999a.
Grimmond, C. S. B. and Oke, T. R.: Heat storage in urban areas: Local-scale observations and evaluation of a simple model, J. Appl. Meteorol., 38, 922–940, 1999b.
Grimmond, C. S. B. and Oke, T. R.: Turbulent heat fluxes in urban areas: Observations and a local-scale urban meteorological parameterization scheme (LUMPS), J. Appl. Meteorol., 41, 792–810, 2002.
Grimmond, C. S. B., Cleugh, H. A., and Oke, T. R.: An objective urban heat storage model and its comparison with other schemes, Atmos. Environ., 25, 311–326, https://doi.org/10.1016/0957-1272(91)90003-W, 1991.
Grimmond, C. S. B., Souch, C., Hubble, M.: Influence of tree cover on summertime energy balance fluxes, San Gabriel Valley, Los Angeles, Clim. Res., 6, 45–57, 1996.
Grimmond, C. S. B., Blackett, M., Best, M. J., Barlow, J., Baik, J. J., Belcher, S. E., Bohnenstengel, S. I., Calmet, I., Chen, F., Dandou, A., Fortuniak, K., Gouvea, M. L., Hamdi, R., Hendry, M., Kawai, T., Kawamoto, Y., Kondo, H., Krayenhoff, E. S., Lee, S. H., Loridan, T., Martilli, A., Masson, V., Miao, S., Oleson, K., Pigeon, G., Porson, A., Ryu, Y. H., Salamanca, F., Shashua-Bar, L., Steeneveld, G. J., Tombrou, M., Voogt, J., Young, D., and Zhang, N.: The international urban energy balance models comparison project: First results from Phase 1, J. Appl. Meteorol. Clim., 49, 1268–1292, https://doi.org/10.1175/2010JAMC2354.1, 2010.
Guo, W. D., Wang, X. Q., Sun, J. N., Ding, A. J., and Zou, J.: Comparison of land–atmosphere interaction at different surface types in the mid- to lower reaches of the Yangtze River valley, Atmos. Chem. Phys., 16, 9875–9890, https://doi.org/10.5194/acp-16-9875-2016, 2016.
Hendel, M., Colombert, M., Diab, Y., and Royon, L.: An analysis of pavement heat flux to optimize the water efficiency of a pavement-watering method, Appl. Therm. Eng., 78, 658–669, https://doi.org/10.1016/j.applthermaleng.2014.11.060, 2015.
Hong, J. W., Lee, S. D., Lee, K., and Hong, J.: Seasonal variations in the surface energy and CO2 flux over a high-rise, high-population, residential urban area in the East Asian monsoon region, Int. J. Climatol., 40, 4384–4407, https://doi.org/10.1002/joc.6463, 2020.
Järvi, L., Grimmond, C. S. B., and Christen, A.: The Surface Urban Energy and Water Balance Scheme (SUEWS): evaluation in Los Angeles and Vancouver, J. Hydrometeorol., 411, 219–237, https://doi.org/10.1016/j.jhydrol.2011.10.001, 2011.
Järvi, L., Grimmond, C. S. B., Taka, M., Nordbo, A., Setälä, H., and Strachan, I. B.: Development of the surface Urban Energy and Water Balance Scheme (SUEWS) for cold climate cities, Geosci. Model. Dev., 7, 1691–1711, https://doi.org/10.5194/gmd-7-1691-2014, 2014.
Järvi, L., Havu, M., Ward, H. C., Bellucco, V., McFadden, J. P., Toivonen, T., Heikinheimo, V., Kolari, P., Riikonen, A., Grimmond, C. S. B.: Spatial modeling of local-scale biogenic and anthropogenic carbon dioxide emissions in Helsinki, J. Geophys. Res.-Atmos., 124, 8363–8384, https://doi.org/10.1029/2018JD029576, 2019.
Kanda, M., Inagaki, A., Miyamoto, T., Gryschka, M., and Raasch, S.: A new aerodynamic parametrization for real urban surfaces, Bound.-Lay. Meteorol., 148, 357–377, https://doi.org/10.1007/s10546-013-9818-x, 2013.
Karsisto, P., Fortelius, C., Demuzere, M., Grimmond, C. S. B., Oleson, K. W., Kouznetsov, R., Masson, V., and Järvi, L.: Seasonal surface urban energy balance and wintertime stability simulated using three land-surface models in the high-latitude city Helsinki, Q. J. Roy. Meteorol. Soc., 142, 401–417, https://doi.org/10.1002/qj.2659, 2015.
Kent, C. W., Grimmond, C. S. B., Barlow, J., Gatey, D., Kotthaus, S., Lindberg, F., Halios, C. H.: Evaluation of urban local-scale aerodynamic parameters: implications for the vertical profile of wind and source areas, Bound.-Lay. Meteorol., 164, 183–213, https://doi.org/10.1007/s10546-017-0248-z, 2017.
Kim, H., Hong, J. W., Lim, Y. J., Hong, J., Shin, S. S., and Kim, Y. J.: Evaluation of JULES land surface model based on in-situ data of NIMS flux sites, Atmosphere, 29, 355–365, https://doi.org/10.14191/Atmos.2019.29.4.355, 2019.
Kim, M. S. and Kwon, B. H.: Estimation of sensible heat flux and atmospheric boundary layer height using an unmanned aerial vehicle, Atmosphere, 10, 363, https://doi.org/10.3390/atmos10070363, 2019.
Kljun, N., Calanca, P., Rotach, M. W., and Schmid, H. P.: A simple parameterization for flux footprint predictions, Bound.-Lay. Meteorol., 112, 503–523, https://doi.org/10.1023/B:BOUN.0000030653.71031.96, 2004.
Kokkonen, T. V., Grimmond, C. S. B., Christen, A., Oke, T. R., and Järvi, L.: Changes to the water balance over a century of urban development in two neighborhoods: Vancouver, Canada, Water Resour. Res., 54, 6625–6642, https://doi.org/10.1029/2017WR022445, 2018.
Kotthaus, S. and Grimmond, C. S. B.: Energy exchange in a dense urban environment – Part I: temporal variability of long-term observations in central London, Urban Climate, 10, 261–280, https://doi.org/10.1016/j.uclim.2013.10.002, 2014.
Kyle's Converter: Convert tons of coal equivalent to kilowatt-hours, Kyle's Converter, http://www.kylesconverter.com/energy,-work,-and-heat/tons-of-coal-equivalent-to-kilowatt--hours (last access: 1 December 2021), 2017.
Lee, K. M., Hong, J. W., Kim, J. W., Jo, S. S., and Hong, J. Y.: Traces of urban forest in temperature and CO2 signals in monsoon East Asia, Atmos. Chem. Phys., 21, 17833–17853, https://doi.org/10.5194/acp-21-17833-2021, 2021.
Lei, H. M. and Yang, D. W.: Interannual and seasonal variability in evapotranspiration and energy partitioning over an irrigated cropland in the North China Plain, Agr. Forest Meteorol., 150, 581–589, https://doi.org/10.1016/j.agrformet.2010.01.022, 2010.
Lei, H. M., Gong, T. T., Zhang, Y. C., and Yang, D. W.: Biological factors dominate the interannual variability of evapotranspiration in an irrigated cropland in the North China Plain, Agr. Forest Meteorol., 250–251, 262–276, https://doi.org/10.1016/j.agrformet.2018.01.007, 2018.
Liang, X. D., Miao, S. G., Li, J., Bornstein, R., Zhang, X., Gao, Y., Chen, F., Cao, X., Cheng, Z., Clements, C., Dabberdt, W., Ding, A., Ding, D.,Dou, J. J., Dou, J. X., Grimmond, C. S. B., González-Cruz, J. E., He, J., Huang, M., Huang, X., Ju, S., Li, Q., Niyogi, D., Quan, J., Sun, J., Sun, J. Z., Yu, M., Zhang, J., Zhang, Y., Zhao, X., Zheng, Z., and Zhou, M.: SURF – Understanding and predicting urban convection and haze, B. Am. Meteorol. Soc., 99, 1391–1413, https://doi.org/10.1175/BAMS-D-16-0178.1, 2018.
LI-COR, Inc: EddyPro software instruction manual, https://www.licor.com/env/support/EddyPro/manuals.html (last access: 13 September 2023), 2023.
Lindberg, F., Grimmond, C. S. B., Yogeswaran, N., Kotthaus, S., and Allen, L.: Impact of city changes and weather on anthropogenic heat flux in Europe 1995–2015, Urban Climate, 4, 1–15, https://doi.org/10.1016/j.uclim.2013.03.002, 2013.
Lindberg, F., Grimmond, C. S. B., Gabey, A., Huang, B., Kent, C. W., Sun, T., Theeuwes, N. E., Järvi, L., Ward, H. C., Capel-Timms, I., Chang, Y. Y., Jonsson, P., Krave, N., Liu, D. W., Meyer, D., Olofson, K. F. G., Tan, J. G., Wästberg, D., Xue, L., and Zhang, Z.: Urban multiscale environmental predictor (UMEP) – An integrated tool for city-based climate services, Environ. Model. Softw., 99, 70–87, https://doi.org/10.1016/j.envsoft.2017.09.020, 2018.
Liu, H. Z., Feng, J. W., Järvi, L., and Vesala, T.: Four-year (2006–2009) eddy covariance measurements of CO2 flux over an urban area in Beijing, Atmos. Chem. Phys., 12, 7881–7892, https://doi.org/10.5194/acp-12-7881-2012, 2012.
Liu, X., Li, X. X., Harshan, S., Roth, M., and Velasco, E.: Evaluation of an urban canopy model in a tropical city: the role of tree evapotranspiration, Environ. Res. Lett., 12, 094008, https://doi.org/10.1088/1748-9326/aa7ee7, 2017.
Loridan, T. and Grimmond, C. S. B.: Characterization of energy flux partitioning in urban environments: links with surface seasonal properties, J. Appl. Meteorol. Clim., 51, 219–241, https://doi.org/10.1175/JAMC-D-11-038.1, 2012.
McCaughey, J. H.: Energy balance storage terms in a mature mixed forest at Petawawa Ontario: A case study, Bound.-Lay. Meteorol., 31, 89–101, https://doi.org/10.1007/BF00120036, 1985.
Mestayer, P. G., Durand, P., Augustin, P., Bastin, S., Bonnefond J. M., Bénech, B., Campistron, B., Coppalle, A., Delbarre, H., Dousset, B., Drobinski, P., Druilhet, A., Fréjafon, E., Grimmond, C. S. B., Groleau, D., Irvine, M., Kergomard, C., Kermadi, S., Lagouarde, J. -P., Lemonsu, A., Lohou, F., Long, N., Masson, V., Moppert, C., Noilhan, J., Offerle, B., Oke, T. R., Pigeon, G., Puygrenier, V., Roberts, S., Rosant, J. -M., Sanïd, F., Salmond, J., Talbaut, M., and Voogt, J.: The urban boundary-layer field campaign in Marseille (UBL/CLU-ESCOMPTE): Set-up and first results, Bound.-Lay. Meteorol., 114, 315–365, https://doi.org/10.1007/s10546-004-9241-4, 2005.
Meyers, T. P. and Hollinger, S. E.: An assessment of storage terms in the surface energy balance of maize and soybean, Agr. Forest Meteorol., 125, 105–115, https://doi.org/10.1016/j.agrformet.2004.03.001, 2004.
Meyn, S. K. and Oke, T. R.: Heat fluxes through roofs and their relevance to estimates of urban heat storage, Energ. Build., 41, 745–52, https://doi.org/10.1016/j.enbuild.2009.02.005, 2009.
Miao, S. G., Dou, J. X., Chen, F., Li, J., and Li, A. G.: Analysis of observations on the urban surface energy balance in Beijing, Sci. China Earth Sci., 55, 1881–1890, https://doi.org/10.1007/s11430-012-4411-6, 2012.
Michel, D., Philipona, R., Ruckstuhl, C., Vogt, R., and Vuilleumier, L.: Performance and uncertainty of CNR1 net radiometers during a one-year field comparison, J. Atmos. Ocean. Tech., 25, 442–451, https://doi.org/10.1175/2007JTECHA973.1, 2008.
Miyun District Bureau of Statistics: Beijing Miyun Statistical Yearbook-2013, http://www.bjmy.gov.cn/art/2013/12/12/art_76_116971.html (last access: 13 September 2023), 2013.
Miyun District Bureau of Statistics: Beijing Miyun Statistical Yearbook-2014, http://www.bjmy.gov.cn/art/2014/12/4/art_76_116972.html (last access: 13 September 2023), 2014.
Miyun District Bureau of Statistics: Beijing Miyun Statistical Yearbook-2020, http://www.bjmy.gov.cn/art/2020/11/19/art_76_339489.html (last access: 13 September 2023), 2020.
Moncrieff, J. B., Massheder, J. M., de Bruin, H., Elbers, J., Friborg, T., Heusinkveld, B., Kabat, P., Scott, S., Soegaard, H., and Verhoef, A.: A system to measure surface fluxes of momentum, sensible heat, water vapour and carbon dioxide, J. Hydrol., 188–199, 589–611, https://doi.org/10.1016/S0022-1694(96)03194-0, 1997.
Moriwaki, R. and Kanda, M.: Seasonal and diurnal fluxes of radiation, heat, water vapor, and carbon dioxide over a suburban area, J. Appl. Meteorol. Clim., 43, 1700–1710, https://doi.org/10.1175/JAM2153.1, 2004.
Narita, K., Sekine, T., and Tokuoka, T.: Thermal properties of urban surface materials: study on heat balance at asphalt pavement, Geogr. Rev. pn. Ser. A, 57, 639–651, https://doi.org/10.4157/grj1984a.57.9_639, 1984.
National Ecosystem Science Data Center: Half-hour flux data of Shandong Yucheng Agro-Ecosystem National Observation and Research Station from 2003 to 2010, National Ecosystem Science Data Center [data set], https://doi.org/10.12199/nesdc.ecodb.chinaflux2003-2010.2021.yca.005, last access: 3 August 2023.
Newton, T., Oke, T. R., Grimmond, C. S. B., Roth, M: The suburban energy balance in Miami, Florida, Geogr. Ann. A, 89, 331-347, https://doi.org/10.1111/j.1468-0459.2007.00329.x, 2007.
Offerle, B., Jonsson, P., Eliasson, I., Grimmond, C. S. B.: Urban modification of the surface energy balance in the West African Sahel: Ouagadougou, Burkina Faso, J. Climate., 18, 3983–3995, https://doi.org/10.1175/JCLI3520.1, 2005.
Offerle, B., Grimmond, C. S. B., Fortuniak, K., Kłysik, K., and Oke, T. R.: Temporal variations in heat fluxes over a central European city centre, Theor. Appl. Climatol., 84, 103–115, https://doi.org/10.1007/s00704-005-0148-x, 2006a.
Offerle, B., Grimmond, C. S. B., Fortuniak, K., Pawlak, W.: Intraurban differences of surface energy fluxes in a central European city, J. Appl. Meteorol. Clim., 45, 125–136, https://doi.org/10.1175/JAM2319.1, 2006b.
Oke, T. R., Spronken-Smith, R. A., Jáuregui, E., Grimmond, C. S. B.: The energy balance of central Mexico City during the dry season, Atmos. Environ., 33, 3919–3930, https://doi.org/10.1016/S1352-2310(99)00134-X, 1999.
Oke, T. R., Mills, G., Christen, A., and Voogt, J. A.: Urban Climates, Cambridge University Press, Cambridge, 525 pp., https://doi.org/10.1017/9781139016476, 2017.
Oliphant, A. J., Grimmond, C. S. B., Zutter, H. N, Schmid, H. P., Su, H. B., Scott, S. L., Offerle, B., Randolph, J. C., and Ehman, J.: Heat storage and energy balance fluxes for a temperate deciduous forest, Agr. Forest Meteorol., 126, 185–201, https://doi.org/10.1016/j.agrformet.2004.07.003, 2004.
Ren, Z. H., Zhang, Z. F., Sun, C., Liu, Y. M., Li, J., Ju, X. H., Zhao, Y. F., Li, Z. P., Zhang, W., Li, H. K., Zeng, X. J., Ren, X. W., Liu, Y., and Wang, H. J.: Development of three-step quality control system of real-time observation data from AWS in China, Meteorol. Month., 41, 1268–1277, https://doi.org/10.7519/j.issn.1000-0526.2015.10.010, 2015.
Roberts, S. M., Oke, T. R., and Grimmond, C. S. B.: Comparison of four methods to estimate urban heat storage, J. Appl. Meteorol. Clim., 45, 1766–1781, https://doi.org/10.1175/JAM2432.1, 2006.
Rotach, M. W., Vogt, R., Bernhofer, C., Batchvarova, E., Christen, A., Clappier, A., Feddersen, B., Gryning, S. E., Martucci, G., Mayer, H., Mitev, V., Oke, T. R., Parlow, E., Richner, H., Roth, M., Roulet, Y. A., Ruffieux, D., Salmond, J. A., Schatzmann, M., and Voogt, J. A.: BUBBLE-an urban boundary layer meteorology project, Theor. Appl. Climatol., 81, 231–261, https://doi.org/10.1007/s00704-004-0117-9, 2005.
Roth, M., Jansson, C., and Velasco, E.: Multi-year energy balance and carbon dioxide fluxes over a residential neighbourhood in a tropical city, Int. J. Climatol., 37, 2679–2698, https://doi.org/10.1002/joc.4873, 2017.
Spronken-Smith, R. A.: Comparison of summer- and winter-time suburban energy fluxes in Christchurch, New Zealand, Int. J. Climatol., 22, 979–992, https://doi.org/10.1002/joc.767, 2002.
Stewart, I. D. and Oke, T. R.: Local climate zones for urban temperature studies, B. Am. Meteorol. Soc., 93, 1879–1900, https://doi.org/10.1175/BAMS-D-11-00019.1, 2012.
Tomoya, A. and Masahito, U.: Surface energy exchange in a dense urban built-up area based on two-year eddy covariance measurements in Sakai, Japan, Urban Climate, 19, 155–169, https://doi.org/10.1016/j.uclim.2017.01.005, 2017.
Vesala, T., Järvi, L., Launiainen, S., Sogachev, A., Rannik, Ü., Mammarella, I., Siivola, E., Keronen, P., Rinne, J., Riikonen, A., and Nikinmaa, E.: Surface-atmosphere interactions over complex urban terrain in Helsinki, Finland, Tellus B, 60, 188–199, https://doi.org/10.1111/j.1600-0889.2007.00312.x, 2008.
Wang, C. G., Sun, J. N., and Jiang, W. M.: Observation and analysis on thermodynamic characteristics of heat storage of urban roof, Acta Energiae Solaris Sinica, 6, 694–699, https://doi.org/10.3321/j.issn:0254-0096.2008.06.011, 2008.
Wang, L. L., Gao, Z. Q., Miao, S. G., Guo, X. F., Sun, T., Liu, M. F., and Li, D.: Contrasting characteristics of the surface energy balance between the urban and rural areas of Beijing, Adv. Atmos. Sci., 32, 505–514, https://doi.org/10.1007/s00376-014-3222-4, 2015.
Wang, L. L., Fan, S. H., Hu, F., Miao, S. G., Yang, A. Q., Li, Y. B., Liu, J. K., Liu, C. W., Chen, S. S., Ho, H. C., Duan, Z. X., Gao, Z. Q., and Yang, Y. J.: Vertical gradient variations in radiation budget and heat fluxes in the urban boundary layer: A comparison study between polluted and clean air episodes in Beijing during winter, J. Geophys. Res.-Atmos., 125, e2020JD032478, https://doi.org/10.1029/2020JD032478, 2020.
Ward, H. C., Evans, J. G., and Grimmond, C. S. B.: Multi-season eddy covariance observations of energy, water and carbon fluxes over a suburban area in Swindon, UK, Atmos. Chem. Phys., 13, 4645–4666, https://doi.org/10.5194/acp-13-4645-2013, 2013.
Ward, H. C., Kotthaus, S., Järvi, and Grimmond, C. S. B.: Surface Urban Energy and Water Balance Scheme (SUEWS): Development and evaluation at two UK sites, Urban Climate, 18, 1–32, https://doi.org/10.1016/j.uclim.2016.05.001, 2016.
Webb, E., Pearman, G., and Leuning, R.: Correction of the flux measurements for density effects due to heat and water vapor transfer, Q. J. Roy. Meteorol. Soc., 106, 85–100, https://doi.org/10.1002/qj.49710644707, 1980.
Wilson, K., Goldstein, A., Falge, E., Aubinet, M., Baldocchi, D., Berbigier, P., Bernhofer, C., Ceulemans, R., Dolman, H., Field, C., Grelle, A., Ibrom, A., Law, B. E., Kowalski, A., Meyers, T., Moncrieff, J., Monson, R., Oechel, W., Tenhunen, J., Valentini, R., and Verma, S.: Energy balance closure at FLUXNET sites, Agr. Forest Meteorol., 113, 223–243, https://doi.org/10.1016/S0168-1923(02)00109-0, 2002.
Short summary
Multi-timescale variations in surface energy fluxes in a suburb of Beijing are analyzed using 16-month observations. Compared to previous suburban areas, this study site has larger seasonal variability in energy partitioning, and summer and winter Bowen ratios are at the lower and higher end of those at other suburban sites, respectively. Our analysis indicates that precipitation, irrigation, crop/vegetation growth activity, and land use/cover all play critical roles in energy partitioning.
Multi-timescale variations in surface energy fluxes in a suburb of Beijing are analyzed using...
Altmetrics
Final-revised paper
Preprint