Articles | Volume 23, issue 2
https://doi.org/10.5194/acp-23-1091-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-1091-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Temporal and spatial variations in atmospheric unintentional PCB emissions in Chinese mainland from 1960 to 2019
Ye Li
Key Laboratory of Geographic Information Science of the Ministry of
Education, School of Geographic Sciences, East China Normal University, 500
Dongchuan Road, Minhang District, Shanghai, 200241, China
Ye Huang
CORRESPONDING AUTHOR
Key Laboratory of Geographic Information Science of the Ministry of
Education, School of Geographic Sciences, East China Normal University, 500
Dongchuan Road, Minhang District, Shanghai, 200241, China
Yunshan Zhang
Key Laboratory of Geographic Information Science of the Ministry of
Education, School of Geographic Sciences, East China Normal University, 500
Dongchuan Road, Minhang District, Shanghai, 200241, China
Wei Du
Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and
Pollution Control, Faculty of Environmental Science and Engineering,
Kunming University of Science and Technology, Kunming, 650500, China
Shanshan Zhang
Key Laboratory of Geographic Information Science of the Ministry of
Education, School of Geographic Sciences, East China Normal University, 500
Dongchuan Road, Minhang District, Shanghai, 200241, China
Tianhao He
Key Laboratory of Geographic Information Science of the Ministry of
Education, School of Geographic Sciences, East China Normal University, 500
Dongchuan Road, Minhang District, Shanghai, 200241, China
Yan Li
Key Laboratory of Geographic Information Science of the Ministry of
Education, School of Geographic Sciences, East China Normal University, 500
Dongchuan Road, Minhang District, Shanghai, 200241, China
Collaborative Innovation Center of Sustainable Forestry, College of
Forestry, Nanjing Forestry University, 159 Longpan Road, Xuanwu District,
Nanjing, 210037, China
Yan Chen
Key Laboratory of Geographic Information Science of the Ministry of
Education, School of Geographic Sciences, East China Normal University, 500
Dongchuan Road, Minhang District, Shanghai, 200241, China
Fangfang Ding
Key Laboratory of Geographic Information Science of the Ministry of
Education, School of Geographic Sciences, East China Normal University, 500
Dongchuan Road, Minhang District, Shanghai, 200241, China
Lin Huang
Key Laboratory of Geographic Information Science of the Ministry of
Education, School of Geographic Sciences, East China Normal University, 500
Dongchuan Road, Minhang District, Shanghai, 200241, China
Haibin Xia
Key Laboratory of Geographic Information Science of the Ministry of
Education, School of Geographic Sciences, East China Normal University, 500
Dongchuan Road, Minhang District, Shanghai, 200241, China
Wenjun Meng
Laboratory of Earth Surface Processes, College of Urban and
Environmental Science, Peking University, Beijing, 100871, China
Min Liu
Key Laboratory of Geographic Information Science of the Ministry of
Education, School of Geographic Sciences, East China Normal University, 500
Dongchuan Road, Minhang District, Shanghai, 200241, China
Shu Tao
Laboratory of Earth Surface Processes, College of Urban and
Environmental Science, Peking University, Beijing, 100871, China
Related authors
No articles found.
Jinghao Zhai, Yin Zhang, Pengfei Liu, Yujie Zhang, Antai Zhang, Yaling Zeng, Baohua Cai, Jingyi Zhang, Chunbo Xing, Honglong Yang, Xiaofei Wang, Jianhuai Ye, Chen Wang, Tzung-May Fu, Lei Zhu, Huizhong Shen, Shu Tao, and Xin Yang
Atmos. Chem. Phys., 25, 7959–7972, https://doi.org/10.5194/acp-25-7959-2025, https://doi.org/10.5194/acp-25-7959-2025, 2025
Short summary
Short summary
Our study shows that the optical properties of brown carbon depend on its source. Brown carbon from ozone pollution had the weakest light absorption but the strongest wavelength dependence, while biomass burning brown carbon showed the strongest absorption and the weakest wavelength dependence. Nitrogen-containing organic carbon compounds were identified as key light absorbers. These results improve understanding of brown carbon sources and help refine climate models.
Xiaohu Jian, Xiaodong Zhang, Xinrui Liu, Kaijie Chen, Tao Huang, Shu Tao, Junfeng Liu, Hong Gao, Yuan Zhao, Ruiyu Zhugu, and Jianmin Ma
Atmos. Chem. Phys., 25, 4251–4268, https://doi.org/10.5194/acp-25-4251-2025, https://doi.org/10.5194/acp-25-4251-2025, 2025
Short summary
Short summary
We implemented a new global land-use-change (LUC) dataset from 1982 to 2010 into a compact earth system model and carried out extensive multiple model scenario simulations. Our result reveals that the global radiative forcing (RF) induced by LUC driving surface albedo change is −0.12 W m−2, 20 % lower than the Intergovernmental Panel on Climate Change (IPCC), and vegetation changes play a key role in RF evolution, which provides an important reference for the assessment of earth energy balance.
Zijiang Song, Zhixiang Cheng, Yuying Li, Shanshan Yu, Xiaowen Zhang, Lina Yuan, and Min Liu
Earth Syst. Sci. Data, 17, 1501–1514, https://doi.org/10.5194/essd-17-1501-2025, https://doi.org/10.5194/essd-17-1501-2025, 2025
Short summary
Short summary
It is hard to access long-time series and high-resolution meteorological data for past years. In this paper, we propose the Geopotential-guided Attention Network (GeoAN) for downscaling which can produce high-resolution data using given low-resolution data. Quantitative and visual comparisons reveal our GeoAN produces better results with regard to most metrics. Using GeoAN, a historical meteorological dataset called MDG625 has been produced daily for the period since 1940.
Lu Zhang, Jin Li, Yaojie Li, Xinlei Liu, Zhihan Luo, Guofeng Shen, and Shu Tao
Atmos. Chem. Phys., 24, 6323–6337, https://doi.org/10.5194/acp-24-6323-2024, https://doi.org/10.5194/acp-24-6323-2024, 2024
Short summary
Short summary
Brown carbon (BrC) is related to radiative forcing and climate change. The BrC fraction from residential coal and biomass burning emissions, which were the major source of BrC, was characterized at the molecular level. The CHOS aromatic compounds explained higher light absorption efficiencies of biomass burning emissions compared to coal. The unique formulas of coal combustion aerosols were characterized by higher unsaturated compounds, and such information could be used for source appointment.
Xiaodong Zhang, Ruiyu Zhugu, Xiaohu Jian, Xinrui Liu, Kaijie Chen, Shu Tao, Junfeng Liu, Hong Gao, Tao Huang, and Jianmin Ma
Atmos. Chem. Phys., 23, 15629–15642, https://doi.org/10.5194/acp-23-15629-2023, https://doi.org/10.5194/acp-23-15629-2023, 2023
Short summary
Short summary
WRF-Chem modeling was conducted to assess impacts of Western Pacific Subtropical High Pressure (WPSH) on interannual fluctuations of O3 pollution in China. We find that, while precursor emissions dominated the long-term trend and magnitude of O3 from 1999 to 2017, WPSH determined interannual variation of summer O3. The response of O3 pollution to WPSH in major urban clusters depended on the proximity of these urban areas to WPSH. The results could help long-term O3 pollution mitigation planning.
Qinke Sun, Jiayi Fang, Xuewei Dang, Kepeng Xu, Yongqiang Fang, Xia Li, and Min Liu
Nat. Hazards Earth Syst. Sci., 22, 3815–3829, https://doi.org/10.5194/nhess-22-3815-2022, https://doi.org/10.5194/nhess-22-3815-2022, 2022
Short summary
Short summary
Flooding by extreme weather events and human activities can lead to catastrophic impacts in coastal areas. The research illustrates the importance of assessing the performance of different future urban development scenarios in response to climate change, and the simulation study of urban risks will prove to decision makers that incorporating disaster prevention measures into urban development plans will help reduce disaster losses and improve the ability of urban systems to respond to floods.
Shijie Liu, Dandan Huang, Yiqian Wang, Si Zhang, Xiaodi Liu, Can Wu, Wei Du, and Gehui Wang
Atmos. Chem. Phys., 21, 17759–17773, https://doi.org/10.5194/acp-21-17759-2021, https://doi.org/10.5194/acp-21-17759-2021, 2021
Short summary
Short summary
A series of chamber experiments was performed to probe the individual and common effects of NH3 and NOx on toluene secondary organic aerosol (SOA) formation through OH photooxidation. The synergetic effects of NH3 and NOx on the toluene SOA concentration and optical absorption were observed. The higher-volatility products formed in the presence of NOx could precipitate into the particle phase when NH3 was added. The formation pathways of N-containing OAs through NOx or NH3 are also discussed.
Wendong Ge, Junfeng Liu, Kan Yi, Jiayu Xu, Yizhou Zhang, Xiurong Hu, Jianmin Ma, Xuejun Wang, Yi Wan, Jianying Hu, Zhaobin Zhang, Xilong Wang, and Shu Tao
Atmos. Chem. Phys., 21, 16093–16120, https://doi.org/10.5194/acp-21-16093-2021, https://doi.org/10.5194/acp-21-16093-2021, 2021
Short summary
Short summary
Compared with the observations, the results incorporating detailed cloud aqueous-phase chemistry greatly reduced SO2 overestimation. The biases in annual simulated SO2 concentrations (or mixing ratios) decreased by 46 %, 41 %, and 22 % in Europe, the USA, and China, respectively. Fe chemistry and HOx chemistry contributed more to SO2 oxidation than N chemistry. Higher concentrations of soluble Fe and higher pH values could further enhance the oxidation capacity.
Jiayi Fang, Thomas Wahl, Jian Fang, Xun Sun, Feng Kong, and Min Liu
Hydrol. Earth Syst. Sci., 25, 4403–4416, https://doi.org/10.5194/hess-25-4403-2021, https://doi.org/10.5194/hess-25-4403-2021, 2021
Short summary
Short summary
A comprehensive assessment of compound flooding potential is missing for China. We investigate dependence, drivers, and impacts of storm surge and precipitation for coastal China. Strong dependence exists between driver combinations, with variations of seasons and thresholds. Sea level rise escalates compound flood potential. Meteorology patterns are pronounced for low and high compound flood potential. Joint impacts from surge and precipitation were much higher than from each individually.
Cited articles
Bond, T. C., Streest, D. G., Yarber, K. F., Nelson, S. M., Woo, J., and Klimont, Z.:
A technology-based global inventory of black and organic carbon emissions
from combustion, J. Geophys. Res., 109, D14203,
https://doi.org/10.1029/2003JD003697, 2004.
Breivik, K., Sweetman, A., Pacyna, J. M., and Jones, K. C.: Towards a global
historical emission inventory for selected PCB congeners – a mass balance
approach 2, Emissions, Sci. Total. Environ., 290, 199–224,
https://doi.org/10.1016/S0048-9697(01)01076-2, 2002a.
Breivik, K., Sweetman, A., Pacyna, J. M., and Jones, K. C.: Towards a global
historical emission inventory for selected PCB congeners – a mass balance
approach 1, Global production and consumption, Sci. Total. Environ., 290,
181–198, https://doi.org/10.1016/S0048-9697(01)01075-0, 2002b.
Breivik, K., Vestreng, V., Rozovskaya, O., and Pacyna, J. M.: Atmospheric
emissions of some POPs in Europe: a discussion of existing inventories and
data needs, Environ. Sci. Policy, 9, 663–674,
https://doi.org/10.1016/j.envsci.2006.09.001, 2006.
Breivik, K., Sweetman, A., Pacyna, J. M., and Jones, K. C.: Towards a global
historical emission inventory for selected PCB congeners – a mass balance
approach 3, An update, Sci. Total. Environ., 377, 296–307,
https://doi.org/10.1016/j.scitotenv.2007.02.026, 2007.
Chatzikosma, D. G. and Voudrias, E. A.: Simulation of polychlorinated biphenyls
transport in the vadose zone, Environ. Geol., 53, 211–220,
https://doi.org/10.1007/s00254-006-0635-0, 2007.
Chen, S. J., Tian, M., Zheng, J., Zhu, Z. C., Luo, Y., Luo, X. J., and Mai, B. X.:
Elevated levels of polychlorinated biphenyls in plants, air, and soils at an
E-waste site in Southern China and enantioselective biotransformation of
chiral PCBs in plants, Environ. Sci. Technol., 48, 3847–3855,
https://doi.org/10.1021/es405632v, 2014.
Chen, W., Chi, G., and Li, J.: The spatial association of ecosystem services
with land use and land cover change at the county level in China, 1995–2015,
Sci. Total. Environ., 669, 459–470, https://10.1016/j.scitotenv.2019.03.139,
2019.
Cheng, K., Hao, W., Wang, Y., Yi, P., Zhang, J., and Ji, W.: Understanding the
emission pattern and source contribution of hazardous air pollutants from
open burning of municipal solid waste in China, Environ. Pollut., 263,
114417, https://10.1016/j.envpol.2020.114417, 2020.
Cheng, Z., Wang, J., and Ge, Y.: Mapping monthly population distribution and
variation at 1 km resolution across China, Int. J. Geogr. Inf. Sci., 36,
1166–1184, https://doi.org/10.1080/13658816.2020.1854767, 2022.
Cui, S., Qi, H., Liu, L. Y., Song, W. W., Ma, W. L., Jia, H. L., Ding, Y. S., and Li,
Y. F.: Emission of unintentionally produced polychlorinated biphenyls
(UP-PCBs) in China: Has this become the major source of PCBs in Chinese air?
Atmos. Environ., 67, 73–79,
https://doi.org/10.1016/j.atmosenv.2012.10.028, 2013.
Cui, S., Fu, Q., Ma, W. L., Song, W. W., Liu, L. Y., and Li, Y. F.: A preliminary
compilation and evaluation of a comprehensive emission inventory for
polychlorinated biphenyls in China, Sci. Total. Environ., 533, 247–255,
https://doi.org/10.1016/j.scitotenv.2015.06.144, 2015.
Desforges, J. P., Hall, A., McConnell, B., Rosing-Asvid, A., Barber, J. L.,
Levin, M., Ross, P. S., Samarra, F., Vikingson, G., Sonne, C., and Dietz, R.:
Predicting global killer whale population collapse from PCB pollution,
Science, 361, 1373–1376, https://doi.org/10.1126/science.aat1953, 2018.
Diffenbaugh, N. S., Konings, A. G., and Field, C. B.: Atmospheric variability
contributes to increasing wildfire weather but not as much as global
warming, P. Natl. Acad. Sci. USA, 118, e2117876118,
https://doi.org/10.1073/pnas.2117876118, 2021.
Friedl, M. A., McIver, D. K., Hodges, J. C. F., Zhang, X. Y., Muchoney, D.,
Strahler, A. H., Woodcock, C. E., Gopal, S., Schneider, A., Cooper, A.,
Baccini, A., Gao, F., and Schaaf, C.: Global land cover mapping from MODIS:
algorithms and early results, Remote Sens. Environ., 83, 287–302,
https://doi.org/10.1016/S0034-4257(02)00078-0, 2002.
Glüge, J., Bogdal, C., Scheringer, M., and Hungerbuhler, K.: What determines
PCB concentrations in soils in rural and urban areas? Insights from a
multi-media fate model for Switzerland as a case study, Sci. Total.
Environ., 550, 1152–1162, https://doi.org/10.1016/j.scitotenv.2016.01.097,
2016.
Huang, Y., Shen, H., Chen, H., Wang, R., Zhang, Y., Su, S., Chen, Y., Lin,
N., Zhuo, S., Zhong, Q., Wang, X., Liu, J., Li, B., Liu, W., and Tao, S.:
Quantification of global primary emissions of PM2.5, PM10, and TSP from
combustion and industrial process sources, Environ. Sci. Technol., 48,
13834–13843, https://doi.org/10.1021/es503696k, 2014.
Huang, Y., Chen, Y., Li, Y., Zhou, L., Zhang, S., Wang, J., Du, W., Yang,
J., Chen, L., Meng, W., Tao, S., and Liu, M.: Atmospheric emissions of PCDDs and
PCDFs in China from 1960 to 2014, J. Hazard. Mater., 424, 127320,
https://doi.org/10.1016/j.jhazmat.2021.127320, 2022.
Jepson, P. D. and Law, R. J.: Persistent pollutants, persistent threats, Science,
352, 1388–1389, https://10.1126/science.aaf9075, 2016.
Jepson, P. D., Deaville, R., Barber, J. L., Aguilar, A., Borrell, A., Murphy,
S., Barry, J., Brownlow, A., Barnett, J., Berrow, S., Cunningham, A. A.,
Davison, N. J., Ten Doeschate, M., Esteban, R., Ferreira, M., Foote, A. D.,
Genov, T., Gimenez, J., Loveridge, J., Llavona, A., Martin, V., Maxwell,
D. L., Papachlimitzou, A., Penrose, R., Perkins, M. W., Smith, B., de
Stephanis, R., Tregenza, N., Verborgh, P., Fernandez, A., and Law, R. J.: PCB pollution continues to impact populations of orcas and other dolphins in
European waters, Sci. Rep., 6, 18573, https://10.1038/srep18573, 2016.
Jurgens, M. D., Chaemfa, C., Hughes, D., Johnson, A. C., and Jones, K. C.: PCB and
organochlorine pesticide burden in eels in the lower Thames River (UK),
Chemosphere, 118, 103–111,
https://doi.org/10.1016/j.chemosphere.2014.06.088, 2015.
Kim, K. S. and Masunaga, S.: Behavior and source characteristic of PCBS in urban
ambient air of Yokohama, Japan, Environ. Pollut., 138, 290–298,
https://doi.org/10.1016/j.envpol.2005.03.011, 2005.
Lee, R. G. M., Coleman, P., Jones, J. L., Jone, K. C., and Lohmann, R.: Emission
Factors and Importance of PCDD/Fs, PCBs, PCNs, PAHs and PM10 from the
domestic burning of coal and wood in the UK, Environ. Sci. Technol., 39,
1436–1477, https://doi.org/10.1021/es048745i, 2005.
Lei, R., Xu, Z., Xing, Y., Liu, W., Wu, X., Jia, T., Sun, S., and He, Y.: Global
status of dioxin emission and China's role in reducing the emission, J.
Hazard. Mater., 418, 126265, https://doi.org/10.1016/j.jhazmat.2021.126265,
2021.
Li, X., Chen, J., Tang, L., Wu, T., Fu, C., Li, Z., Sun, G., Zhao, H.,
Zhang, L., Li, Q., and Feng, X.: Mercury isotope signatures of a pre-calciner
cement plant in Southwest China, J. Hazard. Mater., 401, 123384,
https://doi.org/10.1016/j.jhazmat.2020.123384, 2021.
Liu, G., Zheng, M., Cai, M., Nie, Z., Zhang, B., Liu, W., Du, B., Dong, S.,
Hu, J., and Xiao, K.: Atmospheric emission of polychlorinated biphenyls from
multiple industrial thermal processes, Chemosphere 90, 2453–2460,
https://doi.org/10.1016/j.chemosphere.2012.11.008, 2013.
Lu, Q., Liang, Y., Fang, W., Guan, K. L., Huang, C., Qi, X., Liang, Z., Zeng,
Y., Luo, X., He, Z., Mai, B., and Wang, S.: Spatial Distribution, Bioconversion
and Ecological Risk of PCBs and PBDEs in the Surface Sediment of
Contaminated Urban Rivers: A Nationwide Study in China, Environ. Sci.
Technol., 55, 9579–9590, https://doi.org/10.1021/acs.est.1c01095, 2021.
Marek, R. F., Thorne, P. S., Wang, K., Dewall, J., and Hornbuckle, K. C.: PCBs and
OH-PCBs in serum from children and mothers in urban and rural U.S.
communities, Environ. Sci. Technol., 47, 3353–3361,
https://doi.org/10.1021/es304455k, 2013.
McLeod, A. M., Paterson, G., Drouillard, K. G., and Haffner, G. D.: PCB Food Web
Dynamics Quantify Nutrient and Energy Flow in Aquatic Ecosystems, Environ.
Sci. Technol., 49, 12832–12839, https://doi.org/10.1021/acs.est.5b03978,
2015.
Meng, W., Zhong, Q., Yun, X., Zhu, X., Huang, T., Shen, H., Chen, Y., Chen,
H., Zhou, F., Liu, J., Wang, X., Zeng, E. Y., and Tao, S.: Improvement of a
Global High-Resolution Ammonia Emission Inventory for Combustion and
Industrial Sources with New Data from the Residential and Transportation
Sectors, Environ. Sci. Technol., 51, 2821–2829,
https://doi.org/10.1021/acs.est.6b03694, 2017.
Oak Ridge National Laboratory, LandScan Global 2019,
https://doi.org/10.48690/1524214, 2020.
Quaß, U., Fermann, M., and Bröker, G.: The European Dioxin Air Emission
Inventory Project – Final Results, Chemosphere, 54, 1319–1327,
https://doi.org/10.1016/S0045-6535(03)00251-0, 2004.
Ranjbar Jafarabadi, A., Riyahi Bakhtiari, A., Mitra, S., Maisano, M.,
Cappello, T., and Jadot, C.: First polychlorinated biphenyls (PCBs) monitoring
in seawater, surface sediments and marine fish communities of the Persian
Gulf: Distribution, levels, congener profile and health risk assessment,
Environ. Pollut., 253, 78–88, https://10.1016/j.envpol.2019.07.023, 2019.
Running, S. W.: Is Global Warming Causing More, Larger Wildfires?, Science,
313, 927–928, https://10.1126/science.113037, 2006.
Shen, H., Tao, S., Wang, R., Wang, B., Shen, G., Li, W., Su, S., Huang, Y.,
Wang, X., Liu, W., Li, B., and Sun, K.: Global time trends in PAH emissions from
motor vehicles, Atmos. Environ., 45, 2067–2073,
https://doi.org/10.1016/j.atmosenv.2011.01.054, 2011.
Shen, H., Huang, Y., Wang, R., Zhu, D., Li, W., Shen, G., Wang, B., Zhang,
Y., Chen, Y., Lu, Y., Chen, H., Li, T., Sun, K., Li, B., Liu, W., Liu, J.,
and Tao, S.: Global atmospheric emissions of polycyclic aromatic hydrocarbons
from 1960 to 2008 and future predictions, Environ. Sci. Technol., 47,
6415–6424, https://doi.org/10.1021/es400857z, 2013.
Shen, H., Tao, S., Chen, Y., Ciais, P., Güneralp, B., Ru, M., Zhong, Q.,
Yun, X., Zhu, X., Huang, T., Tao, W., Chen, Y., Li, B., Wang, X., Liu, W.,
Liu, J., and Zhao, S.: Urbanization-induced population migration has reduced
ambient PM2.5 concentrations in China. Sci. Adv., 3, e1700300,
https://10.1126/sciadv.1700300, 2017.
Shen, H., Luo, Z., Xiong, R., Liu, X., Zhang, L., Li, Y., Du, W., Chen, Y.,
Cheng, H., Shen, G., and Tao, S.: A critical review of pollutant emission
factors from fuel combustion in home stoves, Environ. Int., 157, 106841,
https://doi.org/10.1016/j.envint.2021.106841, 2021.
Song, D., Lin, L., and Wu, Y.: Emergy analysis of a typical New Suspension
Preheaters cement plant in China, J. Clean. Prod., 222, 407–413,
https://doi.org/10.1016/j.jclepro.2019.03.041, 2019.
Song, W. and Deng, X.: Land-use/land-cover change and ecosystem service
provision in China, Sci. Total. Environ., 576, 705–719,
https://doi.org/10.1016/j.scitotenv.2016.07.078, 2017.
Tao, S., Ru, M. Y., Du, W., Zhu, X., Zhong, Q. R., Li, B. G., Shen, G. F., Pan,
X. L., Meng, W. J., Chen, Y. L., Shen, H. Z., Lin, N., Su, S., Zhuo, S. J.,
Huang, T. B., Xu, Y., Yun, X., Liu, J. F., Wang, X. L., Liu, W. X., Cheng, H. F.,
and Zhu, D. Q.: Quantifying the rural residential energy transition in China from
1992 to 2012 through a representative national survey, Nat. Energy, 3,
567–573, https://doi.org/10.1038/s41560-018-0158-4, 2018.
ter Schure, A. F. H., Larsson, P., Agrell, C., and Boon, J. P.: Atmospheric
Transport of Polybrominated Diphenyl Ethers and Polychlorinated Biphenyls to
the Baltic sea, Environ. Sci. Technol., 38, 1282–1287,
https://doi.org/10.1021/es0348086, 2004.
UNEP (United nations Environment Programme): The Stockholm Convention on
Persistent Organic Pollutants,
http://chm.pops.int/Home/tabid/2121/Default.aspx (last access: 6 January 2023), 2001.
UNEP (United nations Environment Programme): Toolkit for Identification and
Quantification of Releases of Dioxins, Furans and Other Unintentional POPs,
http://toolkit.pops.int/Publish/Downloads/UNEP-POPS-TOOLKIT-2012-En.pdf (last access: 6 January 2023),
2013.
van der Werf, G., Randerson, J., Giglio, L., van Leeuwen, T., Chen, Y.,
Rogers, B., Mu, M., van Marle, M., Morton, D., Collatze, G., and Yokelson, R.:
Global fire emissions estimates during 1997–2016, Earth Syst. Sci. Data, 9,
697–720, https://doi.org/10.5194/essd-9-697-2017, 2017.
Wang, A., Hu, S., and Lin, B.: Emission abatement cost in China with
consideration of technological heterogeneity, Appl. Energ., 290, 116748,
https://doi.org/10.1016/j.apenergy.2021.116748, 2021.
Wang, R., Tao, S., Shen, H., Wang, X., Li, B., Shen, G., Wang, B., Li, W.,
Liu, X., Huang, Y., Zhang, Y., Lu, Y., and Ouyang, H.: Global emission of black
carbon from motor vehicles from 1960 to 2006, Environ. Sci. Technol., 46,
1278–1284, https://doi.org/10.1021/es2032218, 2012.
Wang, R., Tao, S., Ciais, P., Shen, H. Z., Huang, Y., Chen, H., Shen, G. F.,
Wang, B., Li, W., Zhang, Y. Y., Lu, Y., Zhu, D., Chen, Y. C., Liu, X. P., Wang,
W. T., Wang, X. L., Liu, W. X., Li, B. G., and Piao, S. L.: High-resolution mapping
of combustion processes and implications for CO2 emissions, Atmos. Chem.
Phys., 13, 5189–5203, https://doi.org/10.5194/acp-13-5189-2013, 2013.
Wang, R., Tao, S., Balkanski, Y., Ciais, P., Boucher, O., Liu, J., Piao, S.,
Shen, H., Vuolo, M. R., Valari, M., Chen, H., Chen, Y., Cozic, A., Huang, Y.,
Li, B., Li, W., Shen, G., Wang, B., and Zhang, Y.: Exposure to ambient black
carbon derived from a unique inventory and high-resolution model, P.
Natl. Acad. Sci. USA, 111, 2459–2463,
https://doi.org/10.1073/pnas.1318763111, 2014a.
Wang, R., Tao, S., Shen, H., Huang, Y., Chen, H., Balkanski, Y., Boucher,
O., Ciais, P., Shen, G., Li, W., Zhang, Y., Chen, Y., Lin, N., Su, S., Li,
B., Liu, J., and Liu, W.: Trend in global black carbon emissions from 1960 to
2007, Environ. Sci. Technol., 48, 6780–6787,
https://doi.org/10.1021/es5021422, 2014b.
Wang, Y., Wu, X., Hou, M., Zhao, H., Chen, R., Luo, C., and Zhang, G.: Factors
influencing the atmospheric concentrations of PCBs at an abandoned e-waste
recycling site in South China, Sci. Total. Environ., 578, 34–39,
https://doi.org/10.1016/j.scitotenv.2016.08.131, 2017.
Wirgin, I., Roy, N. K., Loftus, M., Christopher Chambers, R., Franks, D. G.,
and Hahn, M. E.: Mechanistic Basis of Resistance to PCBs in Atlantic Tomcod from
the Hudson River, Science, 331, 1322–1325,
https://doi.org/10.1126/science.1197296, 2011.
WSA (World Steel Association): Steel Statistical Yearbooks, https://worldsteel.org/steel-topics/statistics/steel-statistical-yearbook/ (last access: 6 January 2023), 2021.
Xing, Y., Lu, Y., Dawson, R.W., Shi, Y., Zhang, H., Wang, T., Liu, W., and Ren,
H.: A spatial temporal assessment of pollution from PCBs in China,
Chemosphere, 60, 731–739, https://doi.org/10.1016/j.chemosphere.2005.05.001,
2005.
Yamamoto, M., Kokeguchi, K., G., Y., Yamaguchi, N., Ohtsuka, K., and Sakai, S.:
Air emission factors and emission inventory of HCB, PCB and
pentachlorobenzene, Organohalogen Compounds, 73, 388–391, 2011.
Yang, S. W., Huang, J., and Yu, G.: Inventory study of unintentional produced
hexachlorobenzene and polychlorinated biphenyls release to the air (in
Chinese), Environ. Pollut. Cont., 32, 82e91, https://www.cnki.net/kcms/doi/10.15985/j.cnki.1001-3865.2010.07.002.html (last access: 6 January 2023), 2010.
Yin, S., Wang, X., Zhang, X., Zhang, Z., Xiao, Y., Tani, H., and Sun, Z.:
Exploring the effects of crop residue burning on local haze pollution in
Northeast China using ground and satellite data, Atmos. Environ., 199,
189–201, https://doi.org/10.1016/j.atmosenv.2018.11.033, 2019.
Zhang, H., Luo, Y., Teng, Y., and Wan, H.: PCB contamination in soils of the
Pearl River Delta, South China: levels, sources, and potential risks,
Environ. Sci. Pollut. Res. Int., 20, 5150–5159,
https://doi.org/10.1007/s11356-013-1488-1, 2013.
Zhao, F. and Liu, Y.: Atmospheric Circulation Patterns Associated With
Wildfires in the Monsoon Regions of China, Geophys. Res. Lett., 46,
4873–4882, https://doi.org/10.1029/2019GL081932, 2019.
Zhao, S., Jones, K. C., Li, J., Sweetman, A. J., Liu, X., Xu, Y., Wang, Y.,
Lin, T., Mao, S., Li, K., Tang, J., and Zhang, G.: Evidence for Major
Contributions of Unintentionally Produced PCBs in the Air of China:
Implications for the National Source Inventory, Environ. Sci. Technol., 54,
2163–2171, https://doi.org/10.1021/acs.est.9b06051, 2020.
Zhou, X. and Gao, S.: Confidence intervals for the log-normal mean, Stat. Med.,
16, 783–790, https://doi.org/10.1002/(SICI)1097-0258(19970415)16:7<783::AID-SIM488>3.0.CO;2-2, 1997.
Short summary
Polychlorinated biphenyls (PCBs) are typical persistent organic pollutants (POPs) listed among the 12 initial POPs that should be prohibited or limited under the Stockholm Convention. They are widely present in the environment and pose a threat to human health and ecosystems. Emission estimation for them is essential to understand and evaluate their environment fate and associated health effect. This work developed 12 dioxin-like UP-PCBs from 66 sources from 1960 to 2019 in China.
Polychlorinated biphenyls (PCBs) are typical persistent organic pollutants (POPs) listed among...
Altmetrics
Final-revised paper
Preprint