

Supplement of

Temporal and spatial variations in atmospheric unintentional PCB emissions in Chinese mainland from 1960 to 2019

Ye Li et al.

Correspondence to: Ye Huang (huangye@geo.ecnu.edu.cn)

The copyright of individual parts of the supplement might differ from the article licence.

List of Tables

- S1. List of PCBs emission sources with best estimate (BE) and geometric standard deviations (SD) of EFs.
- S2. Emission profiles (percentage of mass) of 12 dioxin-like UP-PCBs used to derived congener specific EFs.
- S3. List of 12 PCBs congeners included in this study and their TEF values.
- S4. Definitions of the seven regions in China.
- S5. TEQ/u (g WHO-TEQ per unit of mass of UP-PCBs emissions) for nine source categories.

List of Figures

- S1. Emission profiles for 9 source categories of 12 UP-PCBs.
- S2. Spatial distribution of per-capita UP-PCBs emissions.
- S3. Emission densities and per capita emissions of UP-PCBs for each province in China in 2019.
- S4. Scatter plots of emission densities with population densities and GDP/Area.
- S5. Comparison of emission densities (A) and per capita emissions (B) among various source categories.
- S6. Time trends of UP-PCBs emissions from various source categories from 1960 to 2019 in seven regions of China.
- S7. Time trends of emission intensities for China and seven regions.
- S8. Relationship between per capita GDP and emission intensities (EIs) with all provincial data from 1960 to 2019 and only provincial data in 2019.

Fig. S1. Emission profiles for 9 source categories of 12 UP-PCBs.

Fig. S2. Spatial distribution of per-capita UP-PCBs emissions

Fig. S3. Emission densities and per capita emissions of UP-PCBs for each province in China in 2019. The two dashed lines shows the national averages.

Fig. S4. Scatter plots of emission densities with population densities (A) and GDP/Area (B).

Fig. S5. Comparison of emission densities (A) and per capita emissions (B) among various source categories.

Fig. S6. Time trends of UP-PCBs emissions from various source categories from 1960 to 2019 in seven regions of China including North China (A), Northeast China (B), East China (C), Central China (D), South China (E), Southwest China (F), and Northwest China (G).

Fig. S7. Time trends of emission intensities for China and seven regions.

Fig. S8. Relationship between per capita GDP and emission intensities (EIs) with all provincial data from 1960 to 2019 (A) and only provincial data in 2019 (B).

8	8,8	1		1	1	
Categories	Fuel/Product	No.	Sub-source	BE	SD	Ref ^a
	Anthracite/ Coke/ Bituminous coal/ Lignite/ Peat	1-5	Uncontrolled/ Controlled	0.105/0.0018	0.07/0.38	1
Power &	Gas/Diesel	6		0.000823	0.1	2
Heating	Residue fuel oil	7		0.000823	0.1	2
	Solid biomass	8	Uncontrolled/ Controlled	0.662/0.066	0.1	2
	Natural gas liquids	9		0.000823	0.1	2
	Municipal waste	10	Uncontrolled/ Controlled	15.31/0.036	1.32	3,4,5,6
Weste	Industry waste	11	Uncontrolled/ Controlled	15.31/0.036	1.32	3,4,5
waste	Non-organized waste burning	12		15.31	1.32	3,4,5
	Medical waste	13	Uncontrolled/ Controlled	13.29/1.77	0.09/1.04	1,3,5
	Sintering iron	14	Uncontrolled/ Controlled	0.379/0.016	0.60	2,3,5,7,8
Inca Pr	Electric arc furnace	15	Uncontrolled/ Controlled	0.628/0.084	0.59	2,3,7,8,9
Iron &	Open Hearth Furnace	16	Uncontrolled/ Controlled	0.01/0.001	0.59	6
Steel	Oxygen Blown Converter	17	Uncontrolled/ Controlled	0.01/0.001	0.59	6
	Hot rolling	18	Uncontrolled/ Controlled	0.62/0.025	1.01	1,2,3,10
	Aluminum	19	Uncontrolled/ Controlled	1.37/0.14	0.48	2,6,7,8,9,11
	Lead	20	Uncontrolled/ Controlled	40/0.36	1.39	2,3,8
Non-	Magnesium	21	Uncontrolled/ Controlled	2.462/0.2462	0.74	6,12
ferrous	Zinc	22	Uncontrolled/ Controlled	100/0.324	1.47	1,2,6,7,9
metals	Copper	23	Uncontrolled/ Controlled	0.92/0.092	0.88	1,2,6,7,8,13,14
	Secondary lead	24	Uncontrolled/ Controlled	1.1/0.002	1.67	2,3,8
	Secondary zinc	25	Uncontrolled/ Controlled	100/1.33	1.25	1,6,15

Table S1. List of PCBs emission sources with best estimates (BE) and geometric standard deviations (SD) of EFs. The units of EF are ng WHO-TEQ/cigarette for cigarette smoking, ng WHO-TEQ/body for cremation of corpses, and ng WHO-TEQ/kg fuel consumed or product produced for all other sources.

	Secondary copper	26	Uncontrolled/ Controlled	9.77/0.83	1.55	1,6,9,11,13
	Secondary aluminum	27	Uncontrolled/ Controlled	1.616/0.162	0.19	2
Cement	Cement	28	Uncontrolled/ Controlled	3.844/0.216	0.58	2,3,7
	Machine diesel	29		0.000823	0.1	2
Industry	Anthracite/ Coke/ Bituminous coal/ Lignite/ Peat	30-34	Uncontrolled/ Controlled	0.105/0.0018	0.07/0.38	1
boilers	Natural gas liquid	35		0.000823	0.1	2
	Residue fuel	36		0.000823	0.1	2
	Solid biomass	37		0.066	0.1	2
	Anthracite	38		0.084	0.65	16,17,18
	Coke/ Bituminous coal/ Lignite/ Peat	39-42		0.084	0.65	16,17,18
Residential	Natural gas liquids/Kerosene	43-44		0.000823	0.1	2
	Firewood	45		0.016	0.17	16
	Straw/Dung cake	46-47		0.016	0.17	16
Onen	Agricultural waste	48		1.525	0.89	6
biomaga	Savanna	49		0.03	0.89	16,9
biomass	Forest fire/Deforestation/Peat/Woodland	50-53		0.1	0.89	16,19
			Beehive			
	Coke production	54	coke/Uncontrolled/	0.2/0.2/0.002	0.96	2,7
			Controlled			
0.1	Brick production	55	Uncontrolled/ Controlled	0.20/0.02	0.50	2
Others	Gas Flaring/ Machine diesel in agriculture	56-57		0.000823	0.1	2
	Pulp and paper mill	58	Uncontrolled/ Controlled	0.696/0.070	0.5	2
	Cremation of corpses	59	Uncontrolled/ Controlled	0.006/0.0006	0.5	2

Vinyl chloride monomer manufacturing facilities	60	Uncontrolled/ Controlled	0.122/0.012	0.5	2	
Motor gasoline/ Aviation gasoline/ Biodiesel/ Jet Kerosene/ Gas& Diesel	61-65		0.000823	0.1	2	
Lime	66	Uncontrolled/ Controlled	0.108/0.011	0.1	2	

Notes: ^a1.Pham et al., 2019; 2.Cui et al., 2013; 3.Liu et al., 2013b; 4.Zhang et al., 2011; 5.Li et al., 2017; 6. UNEP; 7.Cui et al., 2015; 8.Yu et al., 2006; 9.Antunes et al., 2012; 10.Lv et al., 2011; 11.Ba et al., 2009b; 12.Nie et al., 2011; 13.Nie et al., 2012a; 14.Hu et al., 2013; 15.Ba et al., 2009a; 16.Lee et al., 2005; 17.Hopan et al., 2009; 18. Šyc et al., 2010; 19.Lohmann et al., 2006

No.	PCB77	PCB81	PCB105	PCB114	PCB118	PCB123	PCB126	PCB156	PCB157	PCB167	PCB169	PCB189	Refs
1-5	5.6	0.0	22.4	1.3	53.8	3.7	1.0	7.3	1.4	2.9	0.1	0.5	Lee et al., 2005
6	5.6	0.0	22.4	1.3	53.8	3.7	1.0	7.3	1.4	2.9	0.1	0.5	Lee et al., 2005
7	5.6	0.0	22.4	1.3	53.8	3.7	1.0	7.3	1.4	2.9	0.1	0.5	Lee et al., 2005
8	11.6	0.0	31.9	1.4	42.0	4.3	0.0	4.3	1.4	2.9	0.0	0.0	Lee et al., 2005
9	5.6	0.0	22.4	1.3	53.8	3.7	1.0	7.3	1.4	2.9	0.1	0.5	Lee et al., 2005
													Wang et al., 2010a;
10	25.2	6.7	10.0	3.7	15.9	4.8	10.6	5.6	3.7	3.8	5.0	5.1	Wang et al., 2010b;
													Liu et al., 2013
													Wang et al., 2010a;
11	25.2	6.7	10.0	3.7	15.9	4.8	10.6	5.6	3.7	3.8	5.0	5.1	Wang et al., 2010b;
													Liu et al., 2013a
12	11.6	0.0	31.9	1.4	42.0	4.3	0.0	4.3	1.4	2.9	0.0	0.0	Lee et al., 2005
13	13.3	8.4	21.1	6.2	11.5	6.2	8.4	5.9	3.5	4.6	4.3	6.5	Liu et al., 2013a
													Aries et al., 2006;
14	18.1	4.4	11.6	2.8	33.3	4.5	11.9	4.7	2.0	2.3	1.8	2.6	Lv et al., 2011;
													Liu et al., 2013a
15	18.5	3.1	18.1	2.3	37.4	5.7	5.9	4.0	1.4	1.2	1.1	1.4	Liu et al., 2013a
16	18.5	3.1	18.1	2.3	37.4	5.7	5.9	4.0	1.4	1.2	1.1	1.4	Liu et al., 2013a
17	10.8	1.9	17.5	2.3	42.8	4.6	3.2	9.6	2.8	1.2	2.2	1.1	Li et al., 2014
18	11.9	6.3	13.7	5.6	34.5	6.1	4.6	6.0	3.0	3.0	2.5	2.8	Nie et al., 2012b
19	0.0	0.0	0.0	0.0	0.0	0.0	90.7	0.0	0.0	0.0	9.3	0.0	Yu et al., 2006
20	0.0	0.0	0.0	0.0	0.0	0.0	96.7	0.0	0.0	0.0	3.3	0.0	Yu et al., 2006
21	7.0	0.4	19.1	14.0	33.1	5.6	0.2	12.3	4.4	2.0	0.0	2.0	Nie et al., 2011
22	0.0	0.0	0.0	0.0	0.0	0.0	93.6	0.0	0.0	0.0	6.4	0.0	Yu et al., 2006

Table S2. Emission profiles (percentage of mass) of 12 dioxin-like UP-PCBs used to derived congener specific EFs.

23	10.4	1.6	13.4	7.5	20.2	7.3	1.3	9.7	9.7	9.7	0.3	9.0	Nie et al., 2012a;
20	1011	110	1011	,	20.2	, 10	110			2.1	010		Yu et al., 2006
24	89 7	0.0	0.0	0.0	0.0	0.0	95	0.0	0.0	0.0	0.9	0.0	Ba et al., 2009a;
21	07.1	0.0	0.0	0.0	0.0	0.0	2.5	0.0	0.0	0.0	0.9	0.0	Yu et al., 2006
25	0.0	0.0	0.0	0.0	0.0	0.0	28	0.0	96.9	0.0	03	0.0	Ba et al., 2009a;
25	0.0	0.0	0.0	0.0	0.0	0.0	2.0	0.0	<i>J</i> 0. <i>J</i>	0.0	0.5	0.0	Yu et al., 2006
													Ba et al., 2009b;
26	5.0	1.7	9.8	9.8	12.2	8.6	1.9	14.7	12.3	12.3	0.7	11.0	Nie et al., 2012a;
													Yu et al., 2006
27	76	5 0	16.5	0.0	66 1	0.0	2.0	0.0	0.0	0.0	0.7	0.0	Ba et al., 2009b;
21	7.0	/.0 5.8	10.3	0.0	00.4	0.0	5.0	0.0	0.0	0.0	0.7	0.0	Yu et al., 2006
28 39.	20.0	30.0 5.5	0.2	1 /	27.2	0.4	2.1	2.1	0.7	1.0	0.2	0.4	Juan et al., 2016;
28	39.9	5.5	9.2	1.4	27.3	9.4	2.1	2.1	0.7	1.8	0.5	0.4	Liu et al., 2013a
29	5.6	0.0	22.4	1.3	53.8	3.7	1.0	7.3	1.4	2.9	0.1	0.5	Lee et al., 2005
30-34	5.6	0.0	22.4	1.3	53.8	3.7	1.0	7.3	1.4	2.9	0.1	0.5	Lee et al., 2005
35	5.6	0.0	22.4	1.3	53.8	3.7	1.0	7.3	1.4	2.9	0.1	0.5	Lee et al., 2005
36	5.6	0.0	22.4	1.3	53.8	3.7	1.0	7.3	1.4	2.9	0.1	0.5	Lee et al., 2005
37	11.6	0.0	31.9	1.4	42.0	4.3	0.0	4.3	1.4	2.9	0.0	0.0	Lee et al., 2005
38	5.6	0.0	22.4	1.3	53.8	3.7	1.0	7.3	1.4	2.9	0.1	0.5	Lee et al., 2005
39-42	5.6	0.0	22.4	1.3	53.8	3.7	1.0	7.3	1.4	2.9	0.1	0.5	Lee et al., 2005
43-44	5.6	0.0	22.4	1.3	53.8	3.7	1.0	7.3	1.4	2.9	0.1	0.5	Lee et al., 2005
45	11.6	0.0	31.9	1.4	42.0	4.3	0.0	4.3	1.4	2.9	0.0	0.0	Lee et al., 2005
46-47	11.6	0.0	31.9	1.4	42.0	4.3	0.0	4.3	1.4	2.9	0.0	0.0	Lee et al., 2005
48	11.6	0.0	31.9	1.4	42.0	4.3	0.0	4.3	1.4	2.9	0.0	0.0	Lee et al., 2005
49	11.6	0.0	31.9	1.4	42.0	4.3	0.0	4.3	1.4	2.9	0.0	0.0	Lee et al., 2005
50-53	11.6	0.0	31.9	1.4	42.0	4.3	0.0	4.3	1.4	2.9	0.0	0.0	Lee et al., 2005

54	20.5	3.8	21.0	3.2	41.2	4.3	1.3	2.1	0.6	0.8	0.4	0.7	Liu et al., 2009
55	39.9	5.5	9.2	1.4	27.3	9.4	2.1	2.1	0.7	1.8	0.3	0.4	Juan et al., 2016; Liu et al., 2013a
56-57	5.6	0.0	22.4	1.3	53.8	3.7	1.0	7.3	1.4	2.9	0.1	0.5	Lee et al., 2005
58	0.0	7.1	0.0	71.1	0.0	0.0	21.1	0.0	0.0	0.0	0.7	0.0	Yu et al., 2006
59	11.6	0.0	31.9	1.4	42.0	4.3	0.0	4.3	1.4	2.9	0.0	0.0	Lee et al., 2005
60	7.5	8.9	18.6	6.1	40.4	9.0	0.9	5.1	1.1	0.7	0.1	1.5	Liu et al., 2012
61-65	5.6	0.0	22.4	1.3	53.8	3.7	1.0	7.3	1.4	2.9	0.1	0.5	Lee et al., 2005
66	39.9	5.5	9.2	1.4	27.3	9.4	2.1	2.1	0.7	1.8	0.3	0.4	Juan et al., 2016; Liu et al., 2013a

Table S3	. List of	12 PC	Bs congener	s included	l in this	s study	and their	TEF value	s.
			• /						

Congeners	Abbreviation	WHO 1998 TEF ¹	WHO 2005 TEF ²
3,3',4,4'-tetraCB	PCB77	0.0001	0.0001
3,4,4',5-tetraCB	PCB81	0.0001	0.0003
2,3,3',4,4'-pentaCB	PCB105	0.0001	0.00003
2,3,4,4',5-pentaCB	PCB114	0.0005	0.00003
2,3',4,4',5-pentaCB	PCB118	0.0001	0.00003
2',3,4,4',5-pentaCB	PCB123	0.0001	0.00003
3,3',4,4',5-pentaCB	PCB126	0.1	0.1
2,3,3',4,4',5-hexaCB	PCB156	0.0005	0.00003
2,3,3',4,4',5'-hexaCB	PCB157	0.0005	0.00003
2,3',4,4',5,5'-hexaCB	PCB167	0.00001	0.00003
3,3',4,4',5,5'-hexaCB	PCB169	0.01	0.03
2,3,3',4,4',5,5'-hexaCB	PCB189	0.0001	0.00003

Notes:¹Van den Berg et al., 1998; ²Van den Berg et al., 2006.

T 11 C 4	D C	C .1		•	
Table V/L	Detinitions	of the	ceven re	onione	in China
Table ST.	Deminuons	or une	SUVUILIU	210HS	m Cinna.
				0	

Regions	Provinces
North China	Beijing, Tianjin, Hebei, Shanxi, Inner Mongolia
Northeast China	Liaoning, Jilin, Heilongjiang
East China	Shanghai, Jiangsu, Zhejiang, Anhui, Fujian, Jiangxi, Shandong
Central China	Henan, Hubei, Hunan
South China	Guangdong, Guangxi, Hainan
Southwest China	Chongqing, Sichuan, Guizhou, Yunnan, Tibet
Northwest China	Shaanxi, Gansu, Qinghai, Ningxia, Xinjiang

Table S5. TEQ/u (g WHO-TEQ per unit of mass of UP-PCBs emissions) :	for nine source
categories.	

Sources	Values, g WHO-TEQ/g.	
Power & heating	5×10^{-4}	
Waste burning	1×10^{-4}	
Iron & Steel production	$6.8 imes 10^{-3}$	
Non-ferrous metals	4.6×10^{-3}	
Cement production	2.2×10^{-3}	
Industry boilers	1.1×10^{-3}	
Residential	1×10^{-4}	
Open biomass	4×10^{-5}	
Others	3×10^{-3}	

References:

- Antunes, P., Viana, P., Vinhas, T., Rivera, J., Gaspar, E. Emission profiles of polychlorinated dibenzodioxins, polychlorinated dibenzofurans (PCDD/Fs), dioxin-like PCBs and hexachlorobenzene (HCB) from secondary metallurgy industries in Portugal[J]. Chemosphere, 2012, 88, 1332-1339.
- Aries, E., Anderson, DR., Fisher, R., Fray, TAT., Hemfrey, D. PCDD/F and "Dioxin-like" PCB emissions from iron ore sintering plants in the UK[J]. Chemosphere, 2006, 1470-1480.
- Ba, T., Zheng, M., Zhang, B., Liu, W., Su, G., Xiao, K. Estimation and characterization of PCDD/Fs and dioxin-like PCB emission from secondary zinc and lead metallurgies in China[J]. Journal of Environmental Monitoring, 2009a, 11, 867-872.
- Ba, T., Zheng, M., Zhang, B., Liu, W., Xiao, K., Zhang, L. Estimation and characterization of PCDD/Fs and dioxin-like PCBs from secondary copper and aluminum metallurgies in China[J]. Chemosphere, 2009b, 75, 1173-1178.
- Cui, S., Fu, Q., Ma, W., Song, W., Liu, L., Li, Y. A preliminary compilation and evaluation of a comprehensive emission inventory for polychlorinated biphenyls in China[J]. Science of the Total Environment, 2015, 533, 247-255.
- Cui, S., Qi, H., Liu, L., Song, W., Ma, W.L., Jia, H.L., Ding, Y., Li, Y. Emission of unintentionally produced polychlorinated biphenyls (UP-PCBs) in China: Has this become the major source of PCBs in Chinese air? [J]. Atmospheric Environment, 2013, 67, 73-79.
- Hopan, F., Šyc, M., Horák, J., Dej, M., Krpec, K., Ocelka, T., Tomšej, T., Pekárek, V. Emission factors of selected organic compounds from domestic hardwood combustion[J]. Transactions of the VŠB – Technical University of Ostrava, Mechanical Series, 2009, 1723, 81-85.
- Hu, J., Zheng, M., Liu, W., Li, C., Nie, Z., Liu, G., Xiao, K., Dong, S. Occupational exposure to polychlorinated dibenzo-p-dioxins and dibenzofurans, dioxin-like polychlorinated biphenyls, and polychlorinated naphthalenes in workplaces of secondary nonferrous metallurgical facilities in China[J]. Environmental Science & Technology, 2013, 47, 7773-7779.
- Juan, A., Nuria, O., Esteban, A., Joan, R. Emissions of PCDD/Fs, PBDD/Fs, dioxin like-PCBs and PAHs from a cement plant using a long-term monitoring system[J]. Science of The Total Environment, 2016, 435-443.
- Lee, R., Coleman, P., Jones, J., Jones, K., Lohmann, R. Emission factors and importance of PCDD/Fs, PCBs, PCNs, PAHs and PM10 from the domestic burning of coal and wood in the UK[J]. Environmental Science & Technology, 2005, 39, 1436-1447.
- Li, S., Liu, G., Zheng, M., Liu, W., Li, J., Wang, M., Li, C., Chen, Y. Unintentional production of persistent chlorinated and brominated organic pollutants during iron ore sintering processes[J]. Journal of Hazardous Materials, 2017, 331, 63-70.
- Li, S., Zheng, M., Liu, W., Liu, G., Xiao, K., Li, C. Estimation and characterization of unintentionally produced persistent organic pollutant emission from converter steelmaking processes[J]. Environmental Science Pollution Research, 2014, 21, 7361-7368.
- Liu, G., Liu, W., Cai, Z., Zheng, M. Concentrations, profiles, and emission factors of unintentionally produced persistent organic pollutants in fly ash from coking processes[J]. Journal of Hazardous Materials, 2013a, 261, 421-426.
- Liu, G., Zheng, M., Ba, T., Liu, W., Guo, L. A preliminary investigation on emission of polychlorinated dibenzo-p-dioxins/dibenzofurans and dioxin-like polychlorinated biphenyls from coke plants in China[J]. Chemosphere, 2009, 75, 692-695.

- Liu, G., Zheng, M., Cai, M., Nie, Z., Zhang, B., Liu, W., Du, B., Dong, S., Hu, J., Xiao, K. Atmospheric emission of polychlorinated biphenyls from multiple industrial thermal processes[J]. Chemosphere, 2013b, 90, 2453-2460.
- Liu, G., Zheng, M., Du, B., Nie, Z., Zhang, B., Hu, J., Xiao, K. Identification and characterization of the atmospheric emission of polychlorinated naphthalenes from electric arc furnaces[J]. Environmental Science Pollution Research, 2012a, 19, 3645-3650.
- Liu, W., Zhang, W., Li, S., Meng, C., Tao, F., Li, H., Zhang, B. Concentrations and profiles of polychlorinated dibenzo-p-dioxins and dibenzofurans in air and soil samples in the proximity of a municipal solid waste incinerator plant[J]. Environmental Engineering Science, 2012b, 29, 693-699.
- Lohmann, R., Lee, R., Abbott, J., Coleman, P., Jones, K. Verifying emission factors and national POPs emission inventories for the UK using measurements and modelling at two rural locations[J]. Journal of Environmental Monitoring, 2006, 8, 79-88.
- Lv, P., Zheng, M., Liu, G., Liu, W., Xiao, K. Estimation and characterization of PCDD/Fs and dioxin-like PCBs from Chinese iron foundries[J]. Chemosphere, 2011, 82, 759-763.
- Nie, Z., Liu, G., Liu, W., Zhang, B., Zheng, M. Characterization and quantification of unintentional POP emissions from primary and secondary copper metallurgical processes in China[J]. Atmospheric Environment, 2012a, 57, 109-115.
- Nie, Z., Zheng, M., Liu, G., Liu, W., Lv, P., Zhang, B., Su, G., Gao, L., Xiao, K. A preliminary investigation of unintentional POP emissions from thermal wire reclamation at industrial scrap metal recycling parks in China[J]. Journal of Hazardous Materials, 2012b, 215, 259-265.
- Nie, Z., Zheng, M., Liu, W., Zhang, B., Liu, G., Su, G., Lv, P., Xiao, K. Estimation and characterization of PCDD/Fs, dl-PCBs, PCNs, HxCBz and PeCBz emissions from magnesium metallurgy facilities in China[J]. Chemosphere, 2011, 85, 1707-1712.
- Pham, M., Anh, H., Nghiem, X., Tu, B., Dao, T., Nguyen, M. Characterization of PCDD/Fs and dioxin-like PCBs in flue gas from thermal industrial processes in Vietnam: A comprehensive investigation on emission profiles and levels[J]. Chemosphere, 2019, 225, 238-246.
- Šyc, M., Keppert, M., Pohořelý, M., Novák, P., Punčochář, M., Fišerová, E., Pekárek, V. Fly ash treatment technology in modern waste incineration plant, Proceedings of the Second International Conference on Sustainable Construction Materials and Technologies[M]. June 28-June 30, 2010, Università Politecnica delle Marche, Ancona, Italy.
- United Nations Environment Program (UNEP), Toolkit for Identification and Quantification of Releases of Dioxins, Furans and Other Unintentional POPs. 2013, http://toolkit.pops.int/Publish/Downloads/UNEP-POPS-TOOLKIT-2012-En.pdf.
- Van den Berg, M., Birnbaum, L., Bosveld, A.T., Brunström, B., Cook, P., Feeley, M., Giesy, J.P., Hanberg, A., Hasegawa, R., Kennedy, S.W., Kubiak, T., Larsen, J.C., van Leeuwen, F.X., Liem, A.K., Nolt, C., Peterson, R.E., Poellinger, L., Safe, S., Schrenk, D., Tillitt, D., Tysklind, M., Younes, M., Waern, F., Zacharewski, T., 1998. Toxic equivalency factors (TEFs) for PCBs, PCDDs, PCDFs for humans and wildlife. Environ. Health Perspect. 106, 775–792.
- Van den Berg, M., Birnbaum, L.S., Denison, M., De Vito, M., Farland, W., Feeley, M., Fiedler, H., Hakansson, H., Hanberg, A., Haws, L., Rose, M., Safe, S., Schrenk, D., Tohyama, C., Tritscher, A., Tuomisto, J., Tysklind, M., Walker, N., Peterson, R.E., 2006. The 2005 World Health Organization reevaluation of human and Mammalian toxic equivalency factors for dioxins and

dioxin-like compounds. Toxicol. Sci. 93, 223-241.

- Wang, M., Chen, S., Huang, K., Lai, Y., Chang-Chien, G., Tsai, J. Characterization of Persistent Organic Pollutants Emitted from a Municipal Solid Waste Incinerator in Taiwan[J]. Environmental Engineering Science, 2010a, 27:11, 955-965.
- Wang, M., Chen, S., Lai, Y., Huang, K., Chang-Chien, G. Characterization of Persistent Organic Pollutants in Ash Collected from Different Facilities of a Municipal Solid Waste Incinerator[J]. Aerosol and Air Quality Research, 2010b, 10: 391–402.
- Yu, B., Jin, G., Moon, Y., Kim, M., Kyoung, J., Chang, Y. Emission of PCDD/Fs and dioxin-like PCBs from metallurgy industries in S. Korea[J]. Chemosphere, 2006, 62, 494-501.
- Zhang, T., Fiedler, H., Yu, G., Ochoa, G., Carroll Jr, W., Gullett, B., Marklund, S., Touati, A. Emissions of unintentional persistent organic pollutants from open burning of municipal solid waste from developing countries[J]. Chemosphere, 2011, 84, 994-1001.